IB Chemistry Higher Level Paper 2 Past Exam Questions by Topic 2020w to 2023w (7 Papers)

Topic Chem 2 Atomic structure

For a digital version of this document scan the code below, or go here: https://www.smashingscience.org/ib-chemistry-hl-sl

A note on the topic numbers used here:

IB Chemistry topic numbers from 12 onwards have been merged with their SL counterparts, so "Topic 3" in this booklet includes marks for both IB Chemistry Topic 3 (Periodicity) and Topic 13 (The periodic table—the transition metals). For more information see the syllabus ("Chemistry Guide: First Assessment 2016"). For exams in 2025 and later changes to the ordering of the syllabus have been made which are not addressed here.

Topic **Chem Q# 1/** IB Chem/**2020/s**/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o **Entire exam paper was not published**

Topic Chem 2 Atomic structure Q# 11/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :0)

- Beryllium is a low-density metal that is used in specialized lightweight alloys.
 - (h) Outline how the first ionization energy of beryllium could be found from its atomic emission spectrum.

H 1. CON HAR HE BUT AND HE HE HE HE HE HAR HAR HAR HE HE HE HE HE HAR HAR HE HAR HE	

[1]

Topic Chem 2 Q# 12/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4. Carbon disulfide, CS2, undergoes gas phase hydrolysis according to the overall equation

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

(c) Sulfur has a number of natural isotopes and a sample of sulfur was enriched in ³⁶₁₆S, to produce a mixture with the following composition:

Isotope	Percent
³² S	90%
33 16	1%
³⁴ ₁₆ S	4%
36 16	5%

(i	i)	Calculate the relative atomic mass of this enriched sample, correct to two decimal places.	[2]
			8

	• • •		
(i	ii)	In naturally occurring sulfur, the relative abundance of 36 S is only 0.0100%. Calculate the number of atoms of this isotope that would be present in 1.00g of natural sulfur. Use sections 2 and 6 of the data booklet.	[2]
	100		

Topic Chem 2 Q# 13/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org ::

- 2. The periodic table is a useful tool in explaining trends of chemical behaviour.
 - (a) (i) Annotate and label the ground state orbital diagram of boron, using arrows to represent electrons.

[1]

[He]	
Orbital label:	5—————————————————————————————————————

(ii) Sketch the shapes of the occupied orbitals identified in part (a)(i).

[2]

Topic **Chem 2 Q# 14/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3.	Consider	41	f-Il-	
.5	Lonsider	Ine	TOHOWING	reaction
•	Combiaci	WI I'V	TOHOTTHING	I CUCUCII.

$$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$$

(a) State the ground-state electron configuration for Fe ²⁺ .	[1]
(c) Predict, with a reason, whether Cu or Cu ²⁺ has the greater ionization energy.	[1]
(d) Determine the frequency, in s ⁻¹ , of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.	[2]
(e) Outline the magnetic properties of iron by referring to its electron configuration.	[2]
	- 20
Chem 2 Q# 15/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2(e). www.SmashingScience.org :o) (ii) This reaction can be done with a conner catalyst. State the ground state electron.	
(ii) This reaction can be done with a copper catalyst. State the ground-state electron configuration for copper.	[1]

Topic Chem 2 Q# 16/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

Nitric acid is usually produced by the oxidation of ammonia.

(a)	(i)	Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.	[1]
-----	-----	--	-----

30071300007 3840-001		***	22000	
	2p			
	2s			
	1s			

(e) Mos	t nitride ions are "N".	
(i)	State the number of subatomic particles in this ion.	[1]
Protons:		
Neutrons:		
Electrons		
(ii)	Some nitride ions are $^{15}N^{3-}$. State the term that describes the relationship between $^{14}N^{3-}$ and $^{15}N^{3-}$.	[1]
(iii)	The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.	[1]
(iv)	Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.	[1]
(f) Sug	gest two reasons why atoms are no longer regarded as the indivisible units of matter.	[2]

Topic Chem 2 Q# 17/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

Topic Chem 2 Q# 18/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9. www.SmashingScience.org :o)

 Fast moving helium nuclei (⁴He²⁺) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.

(a) Suggest what can be concluded about the gold atom from this experiment.

		paoo	mig oc	algite	through						
								 	 	 	• •
Very	few 4	He ²⁺	deviati	ing larg	jely fro	m their	path:				

[2]

	(b)	(1)	Subsequen various orb		owed electrons e	existing in energy leve	ls occupying	
			Draw diagra	ams of 1s, 2s and	d 2p.			[2]
41			1s		2s		2p	
		(ii)	State the el	ectron configura	tion of copper.			[1]
Topic					Higher Level/Q2. wo	vw.SmashingScience.org	:o)	
_	(b) Sodium emits yellow light with a frequency of 5.09 × 10 ¹⁴ Hz when electrons transition from 3p to 3s orbitals.							
			lculate the end he data bookl		n J, between thes	se two orbitals using s	sections 1 and 2	[1]
	+ +0 +							
	1070							
	+1-0-		****				******	

Topic Chem 2 Q# 20/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :0

3. Magnetite, Fe_3O_4 , is another ore of iron that contains both Fe^{2+} and Fe^{3+} .

	(b)	Iron exists	s as several isotopes.			
			te the type of spectroscotive abundances.	opy that could be used	to determine their	[1]
						1111
		(ii) Stat	te the number of protons	s, neutrons and electror	ns in each species.	[2
			Protons	Neutrons	Electrons	
		⁵⁴ Fe				
		⁵⁶ Fe ³⁺				
-	wer al	I questions.	Chem/2021/s/TZ1/Paper 2/h . Answers must be writte	en within the <mark>ans</mark> wer bo		
	(d)	Iron (II) su	lfide, FeS, is io <mark>nically b</mark> e the full electron config	onded.	n.	[1]
			ine, in terms of their ele de ion is greater than th		the ionic radius of the	[1]

6.	The electron configuration of copper makes it a useful metal.					
	(a)		ermine the frequency of a photon that will cause the first ionization of copper. Use ons 1, 2 and 8 of the data booklet.	[2]		

opio Ans	Chem wer al	2 Q# 2 I que:	3/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) stions. Answers must be written within the answer boxes provided.			
1.	Chlo	orine (undergoes many reactions.			
	(a)	(i)	State the full electron configuration of the chlorine atom.	[1]		
	20-20121					
		(ii)	State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius.	[1]		
			Marie 137			
	****	*******				
	57.5					
		(iii)	Outline why the chlorine atom has a smaller atomic radius than the sulfur atom.	[2]		
	***	****				

	120					

Topic Chem 2 Q# 22/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

		١.	
•	\sim	١	
•	v	,	

• '	0)				
33	5	h	frequency /wavelength of «the radiation at» convergence limit «is proportional to the ionization energy» \checkmark	Accept highest frequency/shortest wavelength.	1

Q# 12/ Chem 2 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4	С	i	0.9x32 + 0.01x33 + 0.04x34 + 0.05x36 ✓ «A _r =» 32.29 ✓	Award [2] for correct final answer. Do not accept 32.07 which is the data booklet value. M2 can only be awarded for answer with two decimal places.	2
4	с	H	amount of ${}^{36}_{16}\text{S} = \frac{0.0100}{100} \times \frac{1.00}{32.07} = 3.12 \times 10^{-6} \text{ mol} \text{ mol} \text{ mol}$ $\text{number of atoms} = 3.12 \times 10^{-6} \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1} = 1.88 \times 10^{18} \checkmark$	Award [2] for correct final answer.	2

Q# 13/ Chem 2 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2.	(a)	(i)	25 arrows AND identifies 2s AND 2p sub orbitals ✓	Accept "hooks" to represent the electrons.	1
2.	(a)	(ii)	x x x	P _{s,y} or z can be used. M2 cannot be awarded if labels of orbital types are missing or incorrect Node of p orbital must be at the origin	2

Q# 14/ Chem 2 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3. (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ OR [Ar]3d ⁶ ✓	1
3. (c)	Cu²+ AND fewer shielding electrons/less electron-electron repulsion «from same nuclear charge» OR Cu²+ AND larger effective nuclear charge OR Cu²+ AND more energy required to remove electron from positive ion than neutral parent atom OR Cu²+ AND smaller radius OR Cu²+ AND electron is being lost from a lower energy/inner/3d orbital ✓	1

	$\overline{}$	T .			
3.	(d)		Alternative 1 $*E = 745 \text{ kJ } mol^{-1} \times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ atoms}} = *1.24 \times 10^{-21} \text{ kJ atom}^{-1} \text{ s} \checkmark$		
			$\ll E = hv \gg$		
			$\times 1.24 \times 10^{-21} kJ \times \frac{1000 J}{1 kJ} = 6.63 \times 10^{-34} Js \times v $		
			$\ll v = *1.87 \times 10^{15} \ll s^{-1} * \checkmark$	Award [2] for correct final answer.	2
			Alternative 2		
			$^{(E=h\nu)}$ $^{(745 \times 10^3 \text{J mol}^1 = 6.63 \times 10^{-34} \text{J s } \times \nu)}$		
			$ (U =) 1.12 \times 10^{39} \text{es}^{-1} \text{mof}^{-1}) \checkmark $		
			$\alpha = \frac{1.12 \times 10^{29} \text{s}^{-1}}{6.02 \times 10^{23}} \Rightarrow = 1.87 \times 10^{16} \alpha \text{s}^{-1} \text{s} \checkmark$		
3.	(e)		«iron atoms have 4» unpaired electrons ✓	For M1 accept diagrams showing unpaired electrons.	
			aligns with a magnetic field/paramagnetic	anjuniou orodi one.	
			OR		
			has a magnetic moment		2
			OR		
			ferromagnetic ✓		
	. 5/ CI	100000	2 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScier 1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 3d ¹⁰ 4s ¹	nce.org :o)	
2.	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓		1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience		1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓	ce.org :o) Accept all 2p electrons pointing	1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	
# 1	(e) 6/ Cl	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓	Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	
# 1 ;	(e) 6/ Cl	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓ 1s ↑↓	Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	
# 1 ;.	(e) 6/ Cl a	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓ 1s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience	Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	1
# 1 - -	(e) 6/ Cl a	hem i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ 2s ↑↓ 1s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience Protons: 7 AND Neutrons: 7 AND Electrons: 10 ✓	Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	1
# 1	(e) 6/ Cl a 7/ Cl e e	hem i ii	1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ 2s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience Protons: 7 AND Neutrons: 7 AND Electrons: 10 ✓ isotope**s** ✓	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows. ce.org :o)	1 1

1.	f		Any two of:	Accept atoms can undergo fusion «to	
			subatomic particles «discovered»	produce heavier atoms».	
			OR particles smaller/with masses less than atoms «discovered»	Accept specific examples of particles.	
			OR «existence of» isotopes «same number of protons, different number of neutrons»√	Award [2] for "atom shown to have a	
			charged particles obtained from «neutral» atoms	nucleus with electrons around it" as both M1 and M3.	2
			OR atoms can gain or lose electrons «and become charged» ✓		
			atom «discovered» to have structure ✓		
			fission		
			OR atoms can be split ✓		
# 1	। 8/ Cl	ı nem	2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9. www.SmashingScien	ice.org :o)	
	a	£ :	Most ⁴ He ²⁺ passing straight through:	Do not accept the same reason for both	
			most of the atom is empty space	M1 and M2. Accept "most of the atom is an electron	
			OR	cloud" for M1.	
			the space between nuclei is much larger than ⁴ He ²⁺ particles		
			OR		
			nucleus/centre is «very» small «compared to the size of the atom» ✓		
			V. 6. 411.2+11.11.11.11.11.11.11.11.11.11.11.11.11.		2
			Very few ⁴ He ²⁺ deviating largely from their path:		
			nucleus/centre is positive «and repels ⁴ He ²⁺ particles»	Do not accept only "nucleus repels	
			OR	⁴ He ²⁺ particles" for M2 .	
			nucleus/centre is «more» dense/heavy «than ⁴ He ²⁺ particles and deflects them»		
_			nucleus/centre is «very» small «compared to the size of the atom» ✓		
	b	i	- \ / a - K		
					2
			1s 2s 2p		
			1s AND 2s as spheres ✓		
			one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (px, py pz)	15	
	ь	ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	Accord configuration with 2d hofers do	
	D	III :	OR	Accept configuration with 3d before 4s.	
			[Ar] 4s¹3d¹0 ✓		1
	l	l	[11] 40 30 4	1	
‡ 1	9/ Cł	nem	2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScien	ice.org :o)	
	b		«∆E = hv = 6.63 × 10 ⁻³⁴ J s × 5.09 × 10 ¹⁴ s ⁻¹ =» 3.37 × 10 ⁻¹⁹ «J» ✓		1725
			Description (Science American Control of Ameri		1
‡ 2	0/ Cł	iem	2 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience	ce.org :o)	
	b	i	mass «spectroscopy»/MS ✓		
				V 1700 W 7000 Ru 17 MP	
- 9	11.00	1		Account Ed amount for a discount of continue	
	b	ii	Protons Neutrons Electrons '	Award [1 max] for 4 correct values.	
	b	Ш	Protons Neutrons Electrons 1	Award [1 max] for 4 correct values.	2

Q# 21/ Chem 2 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

•		_			
1.	d	III	1s² 2s² 2p6 3s² 3p6 ✓	Do not accept "[Ne] 3s² 3p ⁶ ".	1
1.	d	iv	«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»√	Accept 2,8 (for O2-) and 2,8,8 (for S2-)	1
1.	d	v	allows them to explain the properties of different compounds/substances OR enables them to generalise about substances OR enables them to make predictions ✓	Accept other valid answers.	1
1.	е	i	$4FeS(s) + 7O_2(g) → 2Fe_2O_3(s) + 4SO_2(g)$ ✓	Accept any correct ratio.	1
1.	е	ı	+6 OR −2 to +4 ✓	Accept "6/VI". Accept "-II, 4/+4/IV". Do not accept 2- to 4+.	1
1.	е	iii	sulfur dioxide/SO₂ causes acid rain ✓	Accept sulfur dioxide/SO₂/dust causes respiratory problems Do not accept just "causes respiratory problems" or "causes acid rain".	1
1.	f		disrupts the regular arrangement «of iron atoms/ions» OR carbon different size «to iron atoms/ions» ✓		2
			prevents layers/atoms sliding over each other ✓		

Q# 22/ Chem 2 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6. a	$ «E = \frac{745000\mathrm{Jmol^{-1}}}{6.02\times10^{23}\mathrm{mol^{-1}}} = *1.24\times10^{-18}\mathrm{J}\checkmark $	Award [2] for correct final answer. Award [1] for 1.12x10 ³⁹ «Hz».	
	« $E = hv$ » «1.24 × 10 ⁻¹⁸ J = 6.63 × 10 ⁻³⁴ J s × v» v = 1.87 × 10 ¹⁵ «s ⁻¹ /Hz» ✓		2

O# 23/ Chem 2 IB Chem/2020/w/T70/Paper 2/Higher Level/O1 www SmashingScience org :0)

- 3	Quest	1011	Mijawcia	NOTES	Total
1.	а	i	1s²2s²2p⁵3s²3p⁵ ✓	Do not accept condensed electron configuration.	1
1.	a	ii	Cl ⁻ AND more «electron–electron» repulsion ✓	Accept Cl ⁻ AND has an extra electron.	1
1.	а	iii	Ct has a greater nuclear charge/number of protons/Z _e «causing a stronger pull on the outer electrons» ✓ same number of shells OR same «outer» energy level OR similar shielding ✓		2