CAIE AS Level Chemistry Paper 3

Past Exam Questions

Organised by Experiment SubType

Summer 2009 to Winter 2022 (35 Papers)

Name:

Class:

For and electronic version of this Paper 3 Workbook (scan code):

Contents

For and electronic version of this Paper 3 Workbook (scan code): 2
Introduction, Exercises and Analysis 4
A General Note on All These Sample Data 4
Analysis -Graphs 5
Analysis - Tables 9
Notes on analysis of Paper 3 10
Alternate sample data and exercises 11
REDOX TITRATIONS Alternate Sample data and Notes 11
THERMAL DECOMPOSITION Sample data and Notes 12
THERMAL DECOMPOSITION activities and things to think about 12
RATE OF REACTION (thiosulfate and acid) notes on experiments 12
THERMOMETRIC TITRATIONS Notes, Example Tables and Graphs 14
Calendars and time management 16
Planning your days 20
Paper 1 and 2 Analysis and Graphs 24
Paper 2: Notes and points of interest 27
SECTION 1: Past Exam Questions with SAMPLE Data Provided 30
T1 Acid Base Titration Chem 7 Q\# 1 30
T2 Redox Titration $\left(\mathrm{KMnO}_{4}\right)$ Chem 6 Q\# 11 57
G1 Gravimetric Thermal Decomposition Chem 10 Q\# 17 71
R1 Rate (Thiosulfate and acid) Chem 8 Q\# 22 85
Qo Qualitative: Organic compounds test Chem 17 Q\# 24 94
Qi Qualitative: Inorganic ions test Chem 17 Q\# 28 101
SECTION 1: Mark Scheme for Questions with SAMPLE Data 193
Q\# 1/ T1 Acid Base Titration 193
Q\# 11/ T2 Redox Titration $\left(\mathrm{KMnO}_{4}\right)$ 201
Q\# 17/ G1 Gravimetric Thermal Decomposition 210
Q\# 22/ R1 Rate (Thiosulfate and acid) 222
Q\# 24/ Qo Qualitative: Organic compounds test 225
Q\# 28/ Qi Qualitative: Inorganic ions test 227
SECTION 2 Unedited Exam questions ordered by Experiment SubType 245
Qi Qualitative inorganic ions tests Chem 12 Q\# 1 245
Ti1 Acid/base titrations Chem 7 Q\# 32 316
Ti2 Redox titrations with KMNO ${ }_{4}$ Chem 6 Q\# 42 339
Ti3 Titrations with thiosulfate and iodine Chem 7 Q\# 51 360
H1 Thermometric (metal displacement) enthalpy experiments Chem 6 Q\# 57 376
H2 Thermometric (carbonate and acid) enthalpy experiments Chem 10 Q\# 61 394
H3 Thermometric (decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$) enthalpy experiments Chem 5 Q\# 62 399
G1 Gravimetric (thermal decomposition) experiments Chem 10 Q\# 65 406
G2 Gravimetric (water of crystallisation) experiments Chem 2 Q\# 73 424
G3 Gravimetric (mass of gas lost) experiments Chem 10 Q\# 75 428
R1 Rate (thiosulfate and acid) experiments Chem 8 Q\# 76 430
R2 Rate (thiosulfate and iodine) experiments Chem 8 Q\# 81 447
ThTi Thermometric titration experiments Chem 7 Q\# 83 456
GC1 Gas collection (carbonate reacting with acid) Chem 10 Q\# 87. 471
GC2 Gas collection (Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$) Chem 2 Q\# 90 478
GC3 Gas collection (metal and acid) Chem 6 Q\# 91 481
Qo Qualitative tests to identify unknown organic compounds Chem 17 Q\# 92 483
SECTION 2 Unedited Mark Scheme ordered by Experiment SubType 491
Q\# 1/ Qualitative inorganic ions tests 491
Q\# 32/ Acid/base titrations 512
Q\# 42/ Redox titrations with KMNO_{4} 521
Q\# 51/ Titrations with thiosulfate and iodine 531
Q\# 57/ Thermometric (metal displacement) enthalpy experiments 538
Q\# 61/ Thermometric (carbonate and acid) enthalpy experiment 545
Q\# 62/ Thermometric (decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$) enthalpy experiment 546
Q\# 63/ Thermometric (enthalpies of solution) experiments 546
Q\# 65/ Gravimetric (thermal decomposition) experiment 547
Q\# 73/ Gravimetric (water of crystallisation) 553
Q\# 75/ Gravimetric (mass of gas lost) experiment 555
Q\# 81/ Rate (thiosulfate and iodine) experiment 562
Q\# 83/ Thermometric titration experiments 565
Q\# 87/ Gas collection (carbonate reacting with acid) 571
Q\# 90/ Gas collection (Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$) 573
Q\# 91/ Gas collection (metal and acid) 573
Q\# 92/ Qualitative tests to identify unknown organic compounds 574
Qualitative Analysis Notes, Constants and Periodic Table 577

Introduction, Exercises and Analysis

A General Note on All These Sample Data

This is still a draft of the more complete version that might be finished in the second half of 2024.
This book cannot replace practical experience gained in a lab over years of secondary science education, but it can help to shed light on some of the patterns in how marks are assigned and how skills are assessed, especially for common experiments like the quantitative titration and the qualitative ions tests.

Section 1 contains sample data usually provided at the start of the question, or within it.
Section 2 only contains the questions in experiment subtype order ranked according to mark frequency (experiment type rank first, then within that group ranked by subtype frequency).

The sample data normally is the value that would be measured if all aspects of the experiment were performed perfectly (without any error) given the mounts of reagents used. In the real experiment you cannot get these exact figures because, for instance, of small variations and impurities in the chemicals prepared, which would affect all results using them equally (systematic error). This is why accuracy marks are compared against values that have been experimentally determined within the same centre using the same equipment, but also, importantly the same batches of solutions.

Results tables

You should create a suitable results table for every sample value for each question. The most successful students will be able to create these kinds of tables quickly and error free because they have practiced drawing up suitable tables a lot before. Good exam preparation delivers an ability to perform at a certain level, and a phrase that is sometimes used in another competitive activity, sport, is "practice it until you get it right". Outstanding exam preparation is going further to "then practice until you cannot get it wrong". The highest levels of success are all about a passionate, ranked, fascination with all aspects of the details that impact that success. It can be helpful to know that it is thought by scientists that there are different kinds of memory, with different properties; your memory from thoughtful habits and repeated practicing (a kind of long-term memory) is longer lasting.

For a neat article about the current science of memory: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491610/
For titrations, this results table should always be the same format, like the one below. You will therefore need to think about suitable initial and final burette readings that could produce those Sample Data titres given in this book.

	Titration trial					
	ROUGH	1	2	3	4	5
FINAL burette reading $\left(\mathrm{cm}^{3}\right)$						
Initial burette reading $\left(\mathrm{cm}^{3}\right)$						
Titre $\left(\mathrm{cm}^{3}\right)$						
Concordant results (tick)						

Always include units in the headings. When reading through the mark schemes, take time to think about what marks are awarded for. There are systematic reasons why marks are awarded for a complete and correct results table, learning how to use those marking rules is good; learning them consistently well, is better.

Always include the same number of decimal places for every measurement, so $0 \mathrm{~cm}^{3}$ needs to instead be written as $0.00 \mathrm{~cm}^{3}$ (it is a reading on an instrument, rather than an mathematical idea).

Normally, the most successful students will always have their last two titrations as within $0.05 \mathrm{~cm}^{3}$ for the titres. Often there is a mark awarded for this feature in the table. They will also only have 1 rough value and a maximum of 3 recorded titres; if you are note getting agreement to $0.1 \mathrm{~cm}^{3}$ within 2 or 3 titrations, then the problem preventing you from getting reliable results (random error) is not going to get fixed by doing more, the time saved can used in other parts of the exam, especially making sure the calculations are done properly.

$\downarrow \downarrow$ \% OF MARKS AWARDED FOR EACH TOPIC
Patrick Brannac 0.0
0.5
$\stackrel{0}{\circ}$
$\stackrel{H}{\circ}$
No
N
0
し
$\underset{\sim}{\omega}$
000

Analysis - Tables

Experiment Name	Code	SAMPLE Data \%	P3 09s-22w \%
Qualitative: Inorganic ions test	Qi	49.6	28.4
Titration 1: Acid/base	T1	17.8	9.9
Titration 2: Redox of KMnO_{4} and a reductant	T2	10.8	9.1
Titration 3: Thiosulfate and	T3	0.0	6.6
Gravimetric: Thermal decomposition	G1	8.5	7.4
Gravimetric 2: Water of crystallisation	G2	0.0	1.5
Gravimetric 3: Gas mass lost	G3	0.0	1.1
Rate 1: Thiosulfate and acid	R1	0.0	5.8
Rate 2: Thiosulfate and iodine	R2	9.8	2.9
Qualitative: Organic reactions	Qo	3.5	1.9
Thermometric Titrations	ThT	0.0	5.7
Gas Collection 1: Carbonate reacting with acid	GC1	0.0	2.0
Gas Collection 2: Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$	GC2	0.0	0.8
Gas Collection 3: Metal reacting with acid	GC3	0.0	0.6
Enthalpy 1: Metal displacement	H1	0.0	5.9
Enthalpy 2: Carbonate reacting with acid	H2	0.0	1.8
Enthalpy 3: Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$	H3	0.0	0.8
Enthalpy 4: Heat changes of salts dissolving	H4	0.0	1.5
	-		
No longer on the syllabus	X	0.0	6.3

Experiment Name	02s to 23s
Gravimetric	10.0
Gas collection	3.4
Thermometric	10.0
Rate	8.7
Titration	25.6
Qualitative ions	28.4
Qualitative organic	1.9
Therm. Titrn	5.7
Old content	6.3
Total	100.0

Experiment Name	Code	P3 09s-22w
Gravimetric: Thermal decomposition	G1	7.4
Gravimetric 2: Water of crystallisation	G2	1.5
Gravimetric 3: Gas mass lost	G3	1.1
Gravimetric Total		10.0
Gas Collection 1: Carbonate reacting with acid	GC1	2.0
Gas Collection 2: Decomposition of H2O2	GC2	0.8
Gas Collection 3: Metal reacting with acid	GC3	0.6
Gas Collection Total		3.4
Enthalpy 1: Metal displacement	H1	5.9
Enthalpy 2: Carbonate reacting with acid	H2	1.8
Enthalpy 3: Decomposition of H2O2	H3	0.8
Enthalpy 4: Heat changes of salts dissolving	H4	1.5
Enthalpy Total		10.0
Rate 1: Thiosulfate and acid	R1	5.8
Rate 2: Thiosulfate and iodine	R2	2.9
Rate Total		8.7
Titration 1: Acid/base	T1	9.9
Titration 2: Redox of KMnO4 and a reductant	T2	9.1
Titration 3: Thiosulfate and	T3	6.6
Titration Total		25.6
Qualitative: Inorganic ions test	Qi	28.4
Qualitative: Organic reactions	Qo	1.9
Qualitative Total		30.3
Thermometric Titrations	ThT	5.7
No longer on the syllabus	X	6.3

Notes on analysis of Paper 3

Generally, as with Paper 5, it is harder to assign topic numbers to these kinds of skill-based exam questions. As a result, topics like 12, which includes sulfates, nitrates and the ammonium ions have an outsized impact on these statistics, even though there is very little chemistry syllabus content that these would be directly assessing. Similarly, most marks that are assigned to the electrochemistry topic, Topic 6, can be accessed without knowing much or any theory from this topic, as most of the marks relate to using moles in calculations and redox titrations.

A different approach, to assign marks instead to an experiment type makes it harder to compare the 3 different exam question papers with each other and with the syllabus. But it has also been used here and allows a way to organise and order the questions in a way that allows patterns to be more visible.

SAMPLE Data exists for most of the experiment types that are most frequently assigned marks.
Qualitative experiments, almost always on ions, are always included in every exam paper. The sample data provided should be used to deliver the conclusions about what these results tell you about the identity of the unknown substance. Titrations, both acid base and redox using the MnO_{4}^{-}ion as the oxidizer and the indicator are very common and included here, as are gravimetric analysis investigating the thermal decomposition of carbonates. Notably absent in the sample data are thermometric titrations and thermometric (enthalpy experiments). A more comprehensive and systematic approach to Sample Data will be attempted, possibly for the November 2024 exams.

Alternate sample data and exercises

You can use this data, which is slightly incorrect for the questions shown.
This will help you get a better understanding of how, even if an experiment does not go to plan, you can still use the data you do end up with to get many, if not most of the marks available for the exam.

REDOX TITRATIONS Alternate Sample data and Notes

For a comprehensive explanation of the chemistry for this type of experiment go here:
https://www.chemguide.co.uk/inorganic/transition/manganese.html
For alternate sample data that will be slightly incorrect:

Sample data for 2002/s/TZ 5/Q1.a-c

During the experiment you have these titres:

- $27,24,24.2,24.1$

Sample data for 2011/s/TZ 3/Q1

During the experiment you have these titres:

- 32, 31, 29.8

Sample data for 2014/s/TZ 3/Q1

During the experiment you have these titres:

- 32, 33, 26.7, 29, 28, 36

Sample data for 2015/s/TZ 1/Q1

During the experiment you have these titres:

- 29.8

Sample data for 2015/s/TZ 1/Q1

During the experiment you have these titres:

- $32.0,31,30.05$ and 30.1

Sample data for 2010/w/TZ 4/Q1

During the experiment you have these titres:

- 29, 32, 25.9, 15.05

Activities and Questions for Redox Titrations

1. After you have used the corre3ct values at the start of each question, repeat the question but use instead the values above, which are slightly incorrect.
2. Work through the calculations for each exam question using these values. How differently do the correct values make things?
3. Are the calculations any easier or harder if you don't get the titration exactly right?
4. Is there any way to increase the number of marks awarded by presenting the data you have been given better?

Questions and Things to Think About for Redox Titrations

1. You will never be able to know how much exactly the correct volume for the titre.
2. What is the direction of error for this experiment, are you likely to add too much from the burette or too little?
3. Which of these sets of results would have taken the most time in the real exam? Do you think they were more accurate?
4. How many marks are awarded for getting the amount added correct?
5. What usually goes into the burette?
6. What is the end point? How do you know when all of the limiting reactant has been used up?
7. If you have limited results, how can you maximise your marks (analyse at the mark schemes!)?
8. What proportion of the marks are awarded for calculations?
9. What is the most common volume for a titre?

THERMAL DECOMPOSITION Sample data and Notes

For a background that goes a little beyond AS level:
https://chem.libretexts.org/Bookshelves/Analytical Chemistry/Instrumental Analysis (LibreTexts)/31\%3A Thermal Meth ods/31.01\%3A Thermogravimetric Methods

Table 1: Use the following data to complete the 4 thermal decomposition questions that follow (they include the kinds of mistakes you could make):

Paper ID	Marks	Measured initial mass	Measured final mass
2022/s/TZ 3/Q2	12	42	41.42
2019/s/TZ 1/Q2	14	42.98	41.52
2017/s/TZ 1/Q2	10	43.60	42.76
2016/s/TZ 4/Q2	14	35.8	41.29

THERMAL DECOMPOSITION activities and things to think about

1. Mark your first experiments using the mark scheme at the back and the exact values given in Table 2 above.
2. Complete the 4 exam questions again, using the values in Table 2 instead.
3. Describe and explain any differences you notice between values you might measure in the lab and the exact values given in Table 2. Think about the kinds of mistakes that you could make in an experiment like this and how they could either make the measured mass larger or smaller than it should be.
4. Identify which experiment had an incorrect initial mass.
5. Describe and explain this error in initial mass.
6. Identify which experiment had the largest error.
7. Describe and explain what could have caused this error.
8. Identify which carbonate is most often used for thermal decompositions.
9. Calculate the average exact starting mass for these 4 experiments.
10. Calculate the average exact mass lost for the 4 experiments.
11. Sometimes the crucible cracks, if for instance it is very hot and gets wet. Describe and explain a strategy to deal with this problem in the actual exam so that you can maximise your marks after this mistake.

RATE OF REACTION (thiosulfate and acid) notes on experiments
For a background that covers the chemistry behind this experiment type:
https://www.chemguide.co.uk/physical/basicrates/concentration.html
For a background that goes a little beyond AS level:
https://chem.libretexts.org/Courses/University of British Columbia/UBC CHEM 154\%3A Chemistry for Engineering/10 \%3A Chemical Kinetics/10.02\%3A Measuring Reaction Rates

For a YouTube video on this experiment type:
https://www.youtube.com/watch?v=J8zyMnMzbLA
https://www.youtube.com/watch?v=r4IZDPpN-bk

Answers to the questions about the Thermal Decomposition Sample Data:

Mark your first experiments using the mark scheme at the back and the exact values given in the exam questions.

1. Complete the 4 exam questions again, now using the values in Table 1 instead.
2. Describe and explain any differences you notice between values you might measure in the lab and the exact values and those given in Table 1. Think about the kinds of mistakes that you could make in an experiment like this and how they could either make the measured mass larger or smaller than it should be.

Mistakes and experimenter error fall into $\mathbf{2}$ categories:

More mass is measured than should be. For instance, if the crucible is wet, or if a different, heavier lid is used, or if some other substance, for instance from the pipe-clay triangles gets on the crucible. Or the thermal decomposition was not complete, so some carbonate remains.

Less mass is measured than should be. For instance, the compound used was wet (so the water is lost). Some of the residue was lost, for instance because of 'spitting' and crackling, where the heated solid changes shape suddenly causing it to fly out of the crucible. Residue could also be lost from the crucible if some substance, like soot, gets wiped off after the initial mass has been measured.
3. Identify which experiment had an incorrect initial mass.

Paper ID	Marks	Measured initial mass	Measured final mass	Mass of crucible and lid	Initial mass	Final mass
2017/s/TZ 1/Q2	10	43.60	42.76	40.76	43.51	42.74

4. Describe and explain this error in initial mass.

Crucible could have gotten wet, or the balance had contaminants on it.
5. Identify which experiment had the largest error.

Paper ID	Marks	Measured initial mass
2016/s/TZ 4/Q2	14	35.8

6. Describe and explain what could have caused this error.

The crucible lid was not measured with the crucible.
7. Identify which carbonate is most often used for thermal decompositions.

Magnesium carbonate
8. Calculate the average exact starting mass for these 4 experiments.
1.66 g ; average of 1.30 g for MgCO_{3} and 2.75 for the single experiment with CuCO_{3}.
9. Calculate the average exact mass lost for the 4 experiments.
0.71 g for all 4 experiments; average of $0.69 \mathrm{~g}^{\text {for }} \mathrm{MgCO}_{3}$ and 0.77 g for the single experiment with CuCO_{3}.

Sometimes the crucible cracks, if for instance it is very hot and gets wet. Describe and explain a strategy to deal with this problem in the actual exam so that you can maximise your marks after this mistake.

Use an estimated value of 0.71 g as the mass lost in your calculations.

THERMOMETRIC TITRATIONS Notes, Example Tables and Graphs

For a background that covers the chemistry behind this experiment type:

https://edu.rsc.org/experiments/a-thermometric-titration/429.article

If you really wanted to, you could try using some of this data in a thermometric titration question, which would get you some more practice on some of the questions that followed. Often you are looking at around 25 to $35 \mathrm{~cm}^{3}$ as being the necessary volume needed to reach the end point (the middle of the range given in the exam question). Both intersecting lines would need at least 2 data points each, so there should always be two points which have a lower temperature than the theoretical temperature where the two lines intersect.

Fig. 2. Representation of a thermometric titration curve for a reaction with a non-stoichiometric equilibrium

Total volume of sodium hydroxide added $/ \mathrm{cm}^{3}$	0.00	5.00	10.00	15.00	20.00	25.00	30.00
Temperature $/{ }^{\circ} \mathrm{C}$	20.4	22.8	25.5	28.0	27.2	24.1	20.8

Figs. 1a \& 1b. Idealized thermometric titration plots of exothermic (left) and endothermic (right) reactions

January						
S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

February						
S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29		

March						
S	M	T	W	T	F	S
					$\mathbf{1}$	2
3	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	9
10	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	16
17	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	23
24	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	30
31						

April						
S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				

May						
S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

International Education

Cambridge IGCSE ${ }^{\text {m }}$
Cambridge O Level
Cambridge International AS \& A Level

Cambridge Final Exam Timetable June 2024

Administrative zone 5

CAIE Chemistry 9701 A Level Chemistry Exam Timetable for Administrative Zone 5 (Time Zone 2):
Paper 1 - AS Chemistry

Tuesday 04 June									
	Syllabus/Component	Code	Duration	Session		Syllabus/Component	Code	Duration	Session
IG	Drama	0411/13	2 h 30 m	AM	AS	Chemistry (Multiple Choice)	9701/12	1h 15m	PM
IG	Design \& Technology	0445/33	1h	AM					
IG	Design \& Technology	0445/43	1h	AM					
IG	Design \& Technology	0445/53	1h	AM					
AS	Accounting (Multiple Choice)	9706/13	1h	AM					

Paper 2 - AS Chemistry

Paper 3 - AS Chemistry

Thursday 02 May								
Syllabus/Component	Code	Duration	Session		Syllabus/Component	Code	Duration	Session
IG Geography	0460/13	1h 45m	AM	IG	Sanskrit	0499/22	1h 30m	PM
				IG	Biology (Core)	0610/32	1h 15m	PM
				IG	Biology (Extended)	0610/42	1h 15m	PM
				IG	Combined Science (Core)	0653/32	1h 15 m	PM
				IG	Combined Science (Extended)	0653/42	1h 15m	PM
				IG	Co-ordinated Sciences (Double Award) (Core)	0654/32	2h	PM
				IG	Co-ordinated Sciences (Double Award) (Extended)	0654/42	2 h	PM
				OL	Biology	5090/22	1h 45m	PM
				OL	Combined Science	5129/22	1h 45m	PM
				AS	Global Perspectives \& Research	9239/12	1h 30 m	PM
				AS	Chemistry (Practical - Advanced)	9701/33	2 h	PM

| Thursday 30 May |
| :--- |$|$| | Cyllabus/Component | Code | Duration |
| :--- | :--- | :--- | :--- |
| OL | Commerce | $7100 / 23$ | 2 h |
| AL | Sociology | $9699 / 43$ | hh 45 m |

Syllabus/Component		Code	Duration	Session
IG	Accounting (Multiple Choice)	$0452 / 12$	1 h 15 m	PM
OL	Accounting (Multiple Choice)	$7707 / 12$	1 h 15 m	PM
AS	Law	$9084 / 22$	1 h 30 m	PM
AS	Chemistry (Practical - Advanced)	$9701 / 34$	2 h	PM

Paper 4 (A2 Chemistry)

Wednesday 08 May								
Syllabus/Component	Code	Duration	Session		Syllabus/Component	Code	Duration	Session
IG $\begin{aligned} & \text { Information \& Communication Technology }\end{aligned}$	0417/13	1h 30m	AM	IG	English (as an Additional Language)	0472/22	1h	PM
IG Global Perspectives	0457/13	1h 15m	AM	IG	English (as an Additional Language)	0472/42	1h	PM
AS Computer Science	9618/13	1 h 30 m	AM	IG	First Language English (Oral Endorsement)	0500/12	2h	PM
AS Information Technology	9626/13	1h 45m	AM	IG	English as a Second Language (Speaking Endorsement)	0510/12	2h	PM
				IG	English as a Second Language (Count-in Speaking)	0511/12	2h	PM
				OL	English Language	1123/12	2h	PM
				AL	Chemistry	9701/42	2 h	PM
				IG	Latin	0480/13	1 h 30 m	EV
				AS	Thinking Skills	9694/23	1h 45m	ev

Paper 5 (A2 Chemistry)

Wednesday 15 May									
	Syllabus/Component	Code	Duration	Session		Syllabus/ Component	Code	Duration	Session
IG	Literature in English	0475/23	1h 30 m	AM	IG	Computer Science	0478/12	1h 45m	PM
IG	Literature in English	0475/33	45m	AM	IG	French	0520/22	1h	PM
IG	Literature in English	0475/43	1h 15m	AM	OL	Computer Science	2210/12	1h 45m	PM
OL	Literature in English	2010/23	1h 30 m	AM	OL	French	3015/02	1 h	PM
AL	Mathematics (Pure Mathematics 3)	9709/33	1h 50 m	AM	AS	Chemistry	9701/22	1h 15m	PM
					AL	Chemistry	9701/52	1h 15m	PM

Cambridge International AS Level				
Syllabus/Component	Code	Duration	Date	Session
A				
Accounting (Multiple Choice)	9706/13	1h	Tuesday 04 June 2024	AM
Accounting	9706/23	1h 45m	Thursday 09 May 2024	AM
B				
Biology (Multiple Choice)	9700/12	1h 15m	Tuesday 11 June 2024	PM
Biology	9700/22	1h 15m	Tuesday 14 May 2024	PM
Biology (Practical - Advanced)	9700/33	2h	Thursday 09 May 2024	PM
Biology (Practical - Advanced)	9700/34	2 h	Tuesday 28 May 2024	PM
Business	9609/13	1h 15m	Monday 06 May 2024	AM
Business	9609/23	1h 30 m	Friday 10 May 2024	AM
C				
Chemistry (Multiple Choice)	9701/12	1h 15m	Tuesday 04 June 2024	PM
Chemistry	9701/22	1h 15m	Wednesday 15 May 2024	PM
Chemistry (Practical - Advanced)	9701/33	2 h	Thursday 02 May 2024	PM
Chemistry (Practical - Advanced)	9701/34	2 h	Thursday 30 May 2024	PM
Chinese Language (Listening - Multiple Choice)	8238/12	1 h	Monday 27 May 2024	PM
Chinese Language (Multiple Choice)	8238/22	1h 30 m	Wednesday 29 May 2024	PM
Chinese Language	8238/32	1h 30 m	Friday 26 April 2024	PM
Computer Science	9618/13	1h 30 m	Wednesday 08 May 2024	AM
Computer Science	9618/23	2 h	Friday 17 May 2024	AM
D				
Drama	9482/13	2 h	Friday 24 May 2024	AM
E				
Economics (Multiple Choice)	9708/12	1 h	Friday 07 June 2024	PM
Economics	9708/22	2 h	Friday 10 May 2024	PM
English General Paper	8021/12	1h 15m	Thursday 25 April 2024	PM
English General Paper	8021/22	1h 45m	Monday 29 April 2024	PM
English Language	9093/12	2h 15m	Friday 03 May 2024	PM
English Language	9093/22	2h	Monday 06 May 2024	PM
Environmental Management	8291/13	1h 45m	Friday 26 April 2024	EV
Environmental Management	8291/23	1h 45 m	Wednesday 01 May 2024	ev
F				
French Language	8682/23	1h 45m	Wednesday 01 May 2024	AM
French Language	8682/33	1h 30 m	Wednesday 29 May 2024	AM
Further Mathematics	9231/13	2 h	Monday 06 May 2024	AM
Further Mathematics	9231/33	1h 30m	Friday 24 May 2024	AM
Further Mathematics	9231/43	1h 30 m	Wednesday 29 May 2024	AM
G				
Geography (Core)	9696/12	1h 30 m	Friday 03 May 2024	PM
Geography (Core)	9696/22	1h 30 m	Friday 17 May 2024	PM
Global Perspectives \& Research	9239/12	1h 30 m	Thursday 02 May 2024	PM
H				
History	9489/13	1h 15m	Friday 03 May 2024	AM
History	9489/23	1h 45m	Friday 10 May 2024	AM

Cambridge Final Exam Timetable June 2024
Syllabus view (A-Z)

Syllabus/Component	Code	Duration	Date	Session
1				
Information Technology	9626/13	1h 45 m	Wednesday 08 May 2024	AM
L				
Language \& Literature in English	8695/12	2h	Monday 06 May 2024	PM
Language \& Literature in English	8695/22	2 h	Wednesday 01 May 2024	PM
Law	9084/12	1 h 30 m	Tuesday 28 May 2024	PM
Law	9084/22	1h 30 m	Thursday 30 May 2024	PM
Literature in English	9695/12	2h	Wednesday 01 May 2024	PM
Literature in English	9695/22	2h	Monday 13 May 2024	PM
M				
Marine Science	9693/13	1h 45 m	Friday 26 April 2024	ev
Marine Science	9693/23	1h 45 m	Wednesday 01 May 2024	AM
Mathematics (Pure Mathematic 1)	9709/13	1h 50 m	Monday 29 April 2024	AM
Mathematics (Pure Mathematic 2)	9709/23	1 h 15 m	Tuesday 07 May 2024	ev
Mathematics (Mechanics)	9709/43	1h 15 m	Tuesday 07 May 2024	AM
Mathematics (Probability \& Statistics 1)	9709/53	1h 15 m	Monday 13 May 2024	AM
Media Studies	9607/22	2 h	Tuesday 07 May 2024	PM
Music (Listening)	9483/13	2h	Monday 20 May 2024	AM
P				
Physics (Mutiple Choice)	9702/12	1h 15 m	Thursday 06 June 2024	PM
Physics	9702/22	1h 15 m	Thursday 16 May 2024	PM
Physics (Practical - Advanced)	9702/33	2 h	Tuesday 30 April 2024	PM
Physics (Practical - Advanced)	9702/34	2 h	Thursday 23 May 2024	PM
Portuguese Language	8684/02	1h 45 m	Tuesday 30 April 2024	ev
Portuguese Language	8684/03	1h 30 m	Monday 20 May 2024	ev
Psychology	9990/12	1h 30 m	Thursday 25 April 2024	PM
Psychology	9990/22	1h 30 m	Tuesday 30 April 2024	PM
5				
Sociology	9699/13	1h 30 m	Thursday 09 May 2024	AM
Sociology	9699/23	1h 30 m	Friday 17 May 2024	AM
Spanish Language (Listening - Multiple Choice)	8022/13	1 h	Monday 13 May 2024	AM
Spanish Language (Multiple Choice)	8022/23	1h 30 m	Wednesday 22 May 2024	ev
Spanish Language	8022/33	1h 30 m	Monday 06 May 2024	ev
Sport \& Physical Education	8386/13	1h 45 m	Friday 24 May 2024	AM
T				
Thinking skills	9694/13	1h 30 m	Monday 29 April 2024	ev
Thinking skills	9694/23	1h 45m	Wednesday 08 May 2024	ev
Travel \& Tourism	9395/13	2 h	Tuesday 30 April 2024	AM
U				
Urdu Language	8686/02	1h 45 m	Monday 29 April 2024	ev
Urdu Language	8686/03	1h 30 m	Wednesday 22 May 2024	ev

CAMBRIDGE
International Education

Cambridge International A Level									
Syllabus/Component	Code	Duration	Date	Session	Syllabus/Component	Code	Duration	Date	Session
A					$\stackrel{1}{4}$				
Accounting	9706/33	1h 30 m	Tuesday 14 May 2024	AM	Law	9084/32	1h 30 m	Monday 03 June 2024	PM
Accounting	9706/43	1 h	Tuesday 21 May 2024	AM	Law	9084/42	1h 30 m	Wednesday 05 June 2024	PM
					Literature in English	9695/32	2 h	Tuesday 21 May 2024	PM
Biology	9700/42	2h	Tuesday 07 May 2024	PM	Literature in English	9695/42	2 h	Thursday 23 May 2024	PM
Biology	9700/52	1h 15 m	Tuesday 14 May 2024	PM	M				
Business	9609/33	1h 45 m	Thursday 16 May 2024	AM	Marine Science	9693/33	1h 45m	Monday 06 May 2024	AM
Business	9609/43	1h 15 m	Monday 20 May 2024	AM	Marine Science	9693/43	1h 45 m	Friday 24 May 2024	ev
c					Mathematics (Pure Mathematics 3)	9709/33	1h 50 m	Wednesday 15 May 2024	AM
Chemistry	9701/42	2h)	Wednesday 08 May 2024	PM	Mathematics (Probability \& Statistics 2)	9709/63	1h 15 m	Tuesday 07 May 2024	AM
Chemistry	9701/52	$1 \mathrm{~h} \mathrm{15m}$	Wednesday 15 May 2024	PM	Media Studies	9607/42	2 h	Wednesday 22 May 2024	PM
Chinese Language \& Literature (Multiple Choice)	9868/12	1 h 30 m	Monday 27 May 2024	PM	P				
Chinese Language \& Literature	9868/22	2h	Friday 26 April 2024	PM	Physics	9702/42	2 h	Monday 13 May 2024	PM
Chinese Language \& Literature	9868/32	2h	Monday 29 April 2024	PM	Physics	9702/52	1h 15m	Thursday 16 May 2024	PM

Week Starting	$\begin{gathered} \text { Wk } \\ \# \end{gathered}$	Events	Topic Focus
25-Mar	11		
1-Apr	12		
8-Apr	13	MOCK EXAM(?)	
15-Apr	14		
22-Apr	15		
29-Apr	16	Thur $2^{\text {nd }}$ PM Paper 33 (TZ2)	
6-May	17	Wed $8^{\text {th }}$ PM Paper 4 (TZ2)	
13-May	18	Wed 15 ${ }^{\text {th }}$ PM Paper 2 (TZ2) Wed 15 ${ }^{\text {th }}$ PM Paper 5 (TZ2)	
20-May	11		
27-May	12	Thur 30 ${ }^{\text {th }}$ PM Paper 34 (TZ2)	
3-Jun	13	Tues 4 ${ }^{\text {th }}$ PM Paper 1 (TZ2)	
10-Jun	14		
17-Jun	15		
24-Jun	16		

 5:30 pm $3: 40 \mathrm{pm}$
$4: 20 \mathrm{pm}$
$5: 00 \mathrm{pm}$
 N
$\stackrel{O}{0}$
$\frac{0}{3}$ md $0 \tau: \tau$ ue 00: IT
 ∞
$\stackrel{0}{\circ}$
$\stackrel{1}{3}$ ue 0s:
 هِ
$\dot{0}$
0
3
3 9
0
0
3
3 4
0
0
3
3
3

Planning your days
Period Time

$\stackrel{\rightharpoonup}{\bullet}$	ம	0	6	∞	∞	\checkmark	\checkmark	の	σ
O	？	iu	$\ddot{\square}$						
$\ddot{\text { u }}$	$\dot{\circ}$	0	O	ω	8	w	8	ω	
$\begin{aligned} & 0 \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{2} \end{aligned}$	$\frac{7}{3}$	$\frac{0}{3}$	$\frac{0}{3}$	$\frac{0}{3}$	$\frac{0}{3}$	$\frac{0}{3}$	$\frac{0}{3}$	

Paper 2: Notes and points of interest

Paper 2 By Chemistry Branch	P2 09s-15w	P2 16m-22w	16m-22w P1+2
Physical Chemistry			
1 Atomic structure	3.7	7.3	6.3
2 Atoms, molecules and stoichiometry	5.1	4.2	3.9
3 Chemical bonding	4.5	7.7	6.9
4 States of matter	1.6	4.1	3.9
5 Chemical energetics	6.8	5.4	5.3
6 Electrochemistry	1.7	1.7	2.6
7 Equilibria	9.3	5.2	5.7
8 Reaction kinetics	1.3	3.1	3.4
Physical Chemistry Totals	34.0	38.8	38.0
Inorganic Chemistry			
9 The Periodic Table: chemical periodicity	7.4	5.6	6.0
10 Group 2	4.9	5.6	5.7
11 Group 17	2.3	6.5	6.2
12 Nitrogen and sulfur	6.7	3.5	3.4
Inorganic Chemistry Totals	21.2	21.3	21.3
Organic Chemistry			
13 An introduction to AS Level organic chemistry	2.1	4.6	5.2
14 Hydrocarbons	10.9	9.6	7.2
15 Halogen compounds	2.3	2.1	3.1
16 Hydroxy compounds	2.3	3.9	3.8
17 Carbonyl compounds	2.4	4.4	5.0
18 Carboxylic acids and derivatives	2.5	3.0	4.5
19 Nitrogen compounds	0.0	0.4	0.6
20 Polymerisation	0.0	1.4	1.8
21 Organic synthesis	18.7	5.2	4.3
Organic Chemistry Totals	41.2	34.6	35.5
Analytical Techniques			
22 Analytical techniques	0.0	4.1	3.5
No longer assessed	3.6	1.3	1.6
AS Total (if <100, then because some material moved to A2)	100.0	100.0	100.0

Physical Chemistry Totals	34.0	38.8	38.0
Inorganic Chemistry Totals	21.2	21.3	21.3
Organic Chemistry Totals	41.2	34.6	35.5
22 Analytical techniques	0.0	4.1	3.5

The main change was in Topic 21 Organic Synthesis, which in 2015 and before was a larger part of the course (18.7% of all marks in 2015 and before, to 5.2% in Paper 2 from 2016 onwards). Questions that required several answers from various parts to solve an unknown compound tended to be broken down into smaller steps in 2016 and afterwards and the marks were therefore easier to assign to individual
organic topics instead. This is line with a decades long trend away from thrilling subject-specific esoteric riddles towards an increasingly prosaic, quantised and rational assessment approach.

One of the most substantial changes in A2 was a move away from organic chemistry towards allocating a larger share of marks to the other branches of chemistry with the new 2016 syllabus. This change was not really seen at AS level, though organic chemistry is less common.

The 11 topics most frequently given marks in both Paper 1 and Paper 2 were more important from 2016 and onwards, representing almost 2 in 3 of all marks.

Mark were assigned based on when a student, learning in topic order, ought be able to produce an answer that would be awarded that mark, so sometimes material which the examiner may have intended to cover in one topic, say Topic 12 Nitrogen and Sulfur, may have been assigned to a different topic here, for instance Topic 3 Chemical Bonding instead because drawing a dot cross diagram of the triple covalent bond in N_{2} is fully covered in Topic 3. But explaining why N_{2} is unreactive, but CO, also with a triple covalent bond, is reactive, would be placed in Topic 12 because although bond polarity is covered earlier, this specific example isn't obviously fully covered in Topic 3. This difference between the topics assigned in these workbooks and what part of the syllabus the examiner was intending to assess was somewhat evident in Paper 1, where questions assess topics largely in syllabus order, though this general rule is not at all always followed in Paper 1.

Paper 1 and 2 By Frequency	P1 16m-22w	P2 16m-22w	09w-15w P1+2	16m-22w P1+2
Physical Chemistry				
14 Hydrocarbons	3.6	9.6	8.2	7.2
3 Chemical bonding	5.7	7.7	4.6	6.9
1 Atomic structure	4.8	7.3	4.1	6.3
11 Group 17	5.8	6.5	3.9	6.2
9 The Periodic Table: chemical periodicity	6.5	5.6	7.1	6.0
7 Equilibria	6.4	5.2	8.1	5.7
10 Group 2	5.7	5.6	4.8	5.7
5 Chemical energetics	5.2	5.4	6.2	5.3
13 An introduction to AS Level organic chemistry	6.2	4.6	3.5	5.2
17 Carbonyl compounds	6.0	4.4	2.7	5.0
18 Carboxylic acids and derivatives	6.8	3.0	4.1	4.5
Top half most represented topics totals	62.7	64.9	57.3	64
21 Organic synthesis	2.9	5.2	13.9	4.3
2 Atoms, molecules and stoichiometry	3.5	4.2	4.1	3.9
4 States of matter	3.5	4.1	2.3	3.9
16 Hydroxy compounds	3.6	3.9	3.5	3.8
22 Analytical techniques	2.5	4.1	0.0	3.5
8 Reaction kinetics	3.8	3.1	2.2	3.4
12 Nitrogen and sulfur	3.3	3.5	5.7	3.4
15 Halogen compounds	4.8	2.1	3.1	3.1
6 Electrochemistry	4.0	1.7	2.1	2.6
20 Polymerisation	2.4	1.4	0.5	1.8
19 Nitrogen compounds	1.0	0.4	0.1	0.6
No longer assessed	2.0	1.3	4.4	1.6
AS Total (if <1000, then because some material moved to A2)	99.9	100.0	99.4	2100.0

Paper 1 and 2 By Chemistry Branch P1 16m-22w
P2 16m-22w 09w-15w P1+2
16m-22w P1+2
Physical Chemistry
1 Atomic structure
2 Atoms, molecules and stoichiometry
4.8

3 Chemical bonding	
4 States of matter	

7 Equilibria	
8 Reaction kinetics	
Physical Chemistry Totals	

Inorganic Chemistry

9 The Periodic Table: chemical periodicity	
10 Group 2	

11 Group 17	
12 Nitrogen and sulfur	

Inorganic Chemistry Totals	
Organic Chemistry	

13 An introduction to AS Level organic chemistry

14 Hydrocarbons
15 Halogen compounds
16 Hydroxy compounds
6.5

18 Carboxylic acids and derivatives	
19 Nitrogen compounds	

20 Polymerisation	
21 Organic synthesis	

Organic Chemistry Totals	37.0

Analytical Techniques

22 Analytical techniques	2.5	4.1	0.0	3.5
No longer assessed	2.0	1.3	4.4	1.6
AS Total (if <100, then because some material moved to A2)	99.9	100.0	99.4	100.0
Physical Chemistry Totals	36.9	38.8	33.8	38.0
Inorganic Chemistry Totals	21.4	21.3	21.4	21.3
Organic Chemistry Totals	37.0	34.6	39.8	35.5
22 Analytical techniques	2.5	4.1	0.0	3.5

Exam Papers, their marks and their weighting towards the AS and A2 years and the A Level qualification:

Exam Paper	\% of AS/ A2	\% of ALvl	Marks	Time in min	secs/ marks	\% YEAR	\% ALL A-Level/ mark (weighting)
1	31	15.5	40	75	112.5	0.78	0.39
2	46	23	60	75	75	0.77	0.38
3	23	11.5	40	120	180	0.58	0.29
4	77	38.5	100	120	72	0.77	0.39
5	23	11.5	30	75	150	0.77	0.38

SECTION 1: Past Exam Questions with SAMPLE Data Provided

T1 Acid Base Titration Chem 7 Q\# 1/ ALvl Chemistry/2022/s/TZ 1/Paper 3/Q\# 1 :o)
www.SmashingScience.org

SAMPLE DATA

Use these burette readings to fill in the table you have created: 30, 27.25,
(c) Calculations
(i) Calculate the amount, in mol, of sodium hydroxide present in the volume of FA 2 calculated
in (b).
(ii) Use your answer to (c)(i) and the information on page 2 to calculate the relative formula
[1]

Draw its skeletal formula.
skeletal formula
[z]

홍
(i) Construct an equation for the reaction taking place in the student's titration.
Include state symbols.
[1]
(ii) State whether the student's titre will be larger or smaller than your titre. Explain your answer.

$$
\begin{aligned}
& \text { The student's titre will be than mine. } \\
& \text { explanation .. }
\end{aligned}
$$

[1
(i) Construct an equation for the reaction taking place in the student's titration.
Include state symbols. In

E
:

name of acid

［L］

白	人	く	を	目	日	－

Make sure your recorded results show the accuracy of your practical work．

Rinse the pipette with a little distilled water and then a little FA 4
Fill the burette with FA 3 ．
Pipette $25.0 \mathrm{~cm}^{3}$ of $F A 4$ into a conical flask．
Add distilled water to the flask to make $250 \mathrm{~cm}^{3}$ of solution．Shake the flask thoroughly to
ensure complete mixing．Label this solution FA ．
Rinse the pipette with a little distilled water and then a little FA 4 ． （a）Method bromophenol blue indicato FA 3 is $0.0500 \mathrm{~mol}^{-3}$ dm sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ FA $\mathbf{2}$ is $26.3 \mathrm{gdm}^{-3}$ aqueous hydroxide of metal $\mathbf{z}, \mathbf{Z O H}$ ． （1） $\mathrm{O}^{2} \mathrm{HZ}+(\mathrm{be})^{\downarrow} \mathrm{OS}^{2} \mathrm{Z} \leftarrow(\mathrm{be})^{\downarrow} \mathrm{OS}^{2} \mathrm{H}+$（be） HOZZ
\mathbf{Z} may or may not be the same as \mathbf{X} ．
N
\sim
SAMPLE DATA
Use these burette readings to fill in the table you have created： $\mathbf{3 0 . 0 , 2 5}$ ，
SAMPLE DATA
Use these burette readings to fill in the table you have created：30．0，25，
T1 Acid Base Titration Chem 7 Q\＃2／ALvl Chemistry／2021／w／TZ 1／Paper 3／Q\＃ 2 ：o）www．SmashingScience．org
In this experiment you will titrate a solution of the hydroxide of a Group 1 element， \mathbf{Z} ，with sulfuric acid
The equation for the reaction is shown． S6．tz

 ［st：：｜tioll

［z］－－．．．．．．．．．．．．．．．．．．．．．．．s！Z

，		эеииеля צวиред	צ．
＊IVG 37 dW VS			
［เ］\％		uəコəコ	

II
โટ

Show your working．

[^0]

［เ］ε－шр

24.95
Quantitative analysis
Read through the whole method before starting any practical work．Where appropriate，prepare a table
for your results in the space provided． for your results in the space provided．
Show your working and appropriate significant figures in the final answer to each step of your calculations．
1 In this experiment you will carry out a titration to identify the Group 1 metal， \mathbf{M} ，present in a metal hydrogencal
FA 1 is $0.0550 \mathrm{moldm}^{-3}$ sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ．
FA 2 is the metal hydrogencarbonate， MHCO_{3} ．
bromophenol blue indicator
（a）Method

Preparing a solution of FA 2

Titration
Fill the burette with FA 1.
－Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask．

Carry out as many accurate titrations as you think necessary to obtain consistent results．
Make sure any recorded results show the precision of your practical work．
Record in a suitable form below all of your burette readings and the volume of FA 1 added

ー	日	目	¿	か	S	S	目

in your calculations．
Show clearly how you obtained this value．

응

[^1]

By titrating FA 3 with hydrochloric acid, you will determine how much of the sodium hydroxide
remained after reaction with \mathbf{W}. You will then calculate how much sodium hydroxide had reacted
remained after reaction with \mathbf{W}. You will then calculate how much sodium hydroxide had reacted
and use this to determine the identity of X in $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$.
FA 3 is aqueous sodium hydroxide after reaction with W.
FA 4 is $0.100 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
bromophenol blue indicator
FA 3 is aqueous sodium hydroxide after reaction with W
FA 4 is $0.100 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
bromophenol blue indicator

> Fill the second burette with FA 4 . Rinse the pipette with distilled water followed by a little FA 3 . Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
4 g of \mathbf{W} were heated with $250 \mathrm{~cm}^{3}$ of $0.400 \mathrm{moldm}^{-3}$ aqueous sodium hydroxide. Some of the
sodium hydroxide reacted with compound \mathbf{W}. The solution that remained after this reaction is $F A 3$. halogenoethanoic acid $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$, where X is a halogen.
(e) In Question 1 and Question 2 you have determined the concentration of FA 2 by two different largest source of error is escape of gas
Apart from this error, state and explain a source of error for each method.
Question 1

SAMPLE DATA
Use these burette readings to fill in the table you have created: 30, 25, 25.95 In this question you will determine the identity of the halogen in compound \mathbf{W}. Compound \mathbf{W} is the
(a) Method
The rough titre

www.SmashingScience.org

Page $\mathbf{4 2}$ of 579
[ı] $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{1} W$

 三关

T1 Acid Base Titration Chem 7 Q\# 6/ ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# 1 :o) www.SmashingScience.org SAMPLE DATA
Use these burette readings to fill in the table you have created: 30, 24.5, 24.45 Quantitative Analysis
Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.
Show your working and appropriate significant figures in the final answer to each step of your calculations.
1 In this experiment you will use a solution of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, to determine the
 $\left(\mathrm{I} \mathrm{O}^{2} \mathrm{H}+(6)^{2} \mathrm{O} \supset+(\mathrm{be}) 1 \mathrm{~J}^{2} \mathrm{~N} Z \leftarrow(\mathrm{be}) 1 \mathrm{OHZ}+(\mathrm{be})^{\varepsilon} \mathrm{O} \supset^{2} \mathrm{eN}\right.$
FA 1 is a solution of sodium carbonate containing $1.30 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in each $250 \mathrm{~cm}^{3}$. FA 2 is hydrochloric acid, HCl .
(a) Method
Fill a burette with FA 2.
Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
Add a few drops of methyl orange indicator.
Perform a rough titration and record your bur
cm.
The rough titre is

itonimsw			
	6LS fo st ${ }^{\text {der }}$	כeuuexg＞ग！ıłed	

d
\exists

白	引	く	乙	目	日	ー

[^2]
Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Calculate the number of moles of sodium hydroxide, NaOH , present in the volume of FA 3 you calculated in (b)
hydrochloric acid, HC l, present in the $25.0 \mathrm{~cm}^{3}$ of FA 4 pipetted in (a)

(c) Calculations

.

 .

(iv) Use the relevant information on page 2 to calculate the number of moles of hydrochloric
acid, HCl , pipetted into flask \mathbf{X} in $\mathbf{1}(\mathbf{a})$.
 -1

HCl , which reacted with the marble chips in flask X
moles of HCl which reacted in flask $\mathbf{X}=$

moles of HCl which rea

T1 Acid Base Titration Chem 7 Q\# 7/ ALvl Chemistry/2016/w/TZ 1/Paper 3/Q\# 2 :0) www.SmashingScience.org
SAMPLE DATA
Use these burette readings to fill in the table you have created: 30, 27.35,
27.3
2 You will determine the amount of hydrochloric acid remaining in flask \mathbf{X} after the reaction with the marble chips in Question 1. You will do this by titration with sodium hydroxide of known
concentration.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The impurities in the calcium carbonate will not react with the alkali.
FA 3 is 0.140 mol dm $^{-3}$ sodium hydroxide, NaOH .
bromophenol blue indicator
(a) Method

- Transfer all the contents of flask \mathbf{X} into the $250 \mathrm{~cm}^{3}$ volumetric flask.
$\downarrow \forall \unlhd$ uoln
Rinse the pipette then use it to transfer $25.0 \mathrm{~cm}^{3}$ of
Add about 10 drops of bromophenol blue indicator
Fill the burette with FA 3 .
Fill the burette with FA 3.
Perform a rough titration a
- Perform a rough titration and record your burette readings in the space below.

$$
\mathrm{cm}^{3}
$$

added in each accurate titration.
Make certain any recorded results show the precision of your practical work.
I

[7]

[^3]
www.SmashingScience.org
seuneגg y y!ułed

 Titration ensure thorough mixing
Label this solution FA 4

 นо!̣n!!a (a) Method
Dilution FA 3 is $0.0400 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH .
methyl orange indicator
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
иәप| pue I uo! ! seno
 SAMPLE DATA T1 Acid Base Titration Chem 7 Q\# 8/ ALvl Chemistry/2016/s/TZ 1/Paper 3/Q\# 2 :o) www.SmashingScience.org
（d）（i）One of the sources of error in determining the concentration of FA 2 involves measuring
volumes of solutions in both Questions 1 and 2.
State which volume of solution that you have measured has the greatest percentage error． How could you have reduced this error？
（ii）A student suggested that a greater mass of XCO_{3} should be used so that the average titre calculated in 2（b）would be a greater volume
Explain whether you agree with the student that this would lead to a greater volume for the average titre．
［てし：｜ełol］

[^4]$$
\text { moles of } \mathrm{NaOH}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \mathrm{mol}
$$
（ii）Calculate the number of moles of hydrochloric acid， HCl ，present in $250 \mathrm{~cm}^{3}$ of FA 4 ．

 （iii）Use your answers to $\mathbf{1}$（b）（i）and $\mathbf{1 (b) (i i) ~ t o ~ c a l c u l a t e ~ t h e ~ n u m b e r ~ o f ~ m o l e s ~ o f ~} \mathrm{HCl}$ that reacted with FA 1 in the experiment you carried out in Question 1.

concentration of FA $2=$
（iv）Use your answers to 2（c）（ii）and 2（c）（iii）to calculate the concentration of FA 2

T2 Redox Titration（ KMnO_{4} ）Chem 6 Q\＃11／As Chemistry／2015／s／TZ 1／Paper 3／：o）					
SAMPLE DATA					
Use these burette readings to fill in the table you have created：35，30， 30.05					
	In this question you will determine the concentration of iron（II）ions in FA 2．To do this you will do a titration using potassium manganate（VII）solution．The iron（II）ions， Fe^{2+} ，are oxidised by the manganate（VII）ions， MnO_{4}^{-}．				
	$5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$				
	When all the Fe^{2+} ions have been oxidised，the presence of unreacted $\mathrm{MnO}_{4}{ }^{-}$ions causes the solution to become a permanent pink colour．				
FA 1 contains $0.0200 \mathrm{moldm}^{-3}$ manganate（VII）ions， MnO_{4}^{-} FA 2 is a solution containing iron（II）ions， Fe^{2+} ． FA 3 is $1.0 \mathrm{moldm}^{-3}$ sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ．					
（a）Method					
－Fill the burette with FA 1. －Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 2 into the conical flask． －Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to add $10 \mathrm{~cm}^{3}$ of FA 3 to the conical flask． －Add FA 1 from the burette into the conical flask until the solution becomes a permanent pink colour． －Perform a rough titration and record your burette readings in the space below．					
The rough titre is ．．．．．．．．．．．．．．．．．．．． cm^{3} ．					
－Do as many accurate titrations as you think necessary to obtain consistent results． －Make certain any recorded results show the precision of your practical work． －Record in a suitable form below all of your burette readings and the volume of FA 1 added in each accurate titration．					
Keep FA 2 to use in Question 3.					

VIVG ヨ7dWVS

（ $A_{r}: \mathrm{H}, 1.0 ; \mathrm{N}, 14.0 ; \mathrm{O}, 16.0 ; \mathrm{S}, 32.1 ; \mathrm{Fe}, 55.8$ ） $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in distilled water．Calculate the mass of salt that would have to be
dissolved in $1.00 \mathrm{dm}^{3}$ of water to prepare FA 2 ．
（iv）FA 2 was prepared by dissolving hydrated ammonium iron（II）sulfate，

（iii）Calculate the concentration，in moldm ${ }^{-3}$ ，of iron（II）ions in FA 2.

乙	目	日	ー

seuneגg yगułed

18
18
(c) Calculations
Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Calculate the number of moles of potassium manganate(VII) present in the volume of
FA 1 calculated in (b).
FA 1 calculated in (b).
moles of $\mathrm{KMnO}_{4}=\ldots \ldots . ~$

Iow …....................... = 'OSW !o səou

a

Use these burette readings to fill in the table you have created: $\mathbf{3 0} \mathbf{, 2 6 . 4 5 ,}$
1 You are to determine, by titration, the change in oxidation number of a transition metal ion, \mathbf{M}^{2+},
You are to determine, by titration, the change in oxidation number of a transition metal ion, \mathbf{M}^{2+},
when reacted with acidified potassium manganate(VII).
FA 1 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 2 is $0.0530 \mathrm{~mol} \mathrm{dm}^{-3}$ transition metal salt, MSO_{4}.
FA 3 is $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(a) Method

- Fill the burette with FA 1 .
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into the conical flask.
- Use the measuring cylinder to add $25 \mathrm{~cm}^{3}$ of F
- Carry out a rough titration and record your bu
until the contents of the flask turn a permanent
- Use the measuring cylinder to add $25 \mathrm{~cm}^{3}$ of FA 3 into the conical flask.
til the contents of the flask turn a permanent pale pink colour.
(b) From your accurate titration results, obtain a suitable value to be used in your calculations.
Show clearly how you have obtained this value.

Page $\mathbf{6 2}$ of $\mathbf{5 7 9}$

maximum percentage error＝．．．．．．．．．．．．．．．．．．．．．．\％［2］ ［91：：｜카익
T2 Redox Titration（KMnO4）Chem 6 Q\＃14／AS Chemistry／2010／w／TZ 4／Paper 3／：0）www．SmashingScie T2 Redox Titration（KMnO4）Chem 6 Q\＃14／AS Chemistry／2010／w／TZ 4／Paper 3／：o）www．SmashingScience．com
SAMPLE DATA Use these burett
these burette readings to fill in the table you have created：30，25．8， 25.85
There are three questions on this paper．Question 2 should not be the last question $\left.\right|_{\text {Evaminero }} ^{\text {For }}$
FB 1 is an aqueous solution containing $21.50 \mathrm{~g} \mathrm{dm}^{-3}$ of a mixture of iron（II）sulfate， FeSO_{4}
attempted．
and iron（III）sulfate， $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ ．
FB 2 is an aqueous solution containg $2.00 \mathrm{~g} \mathrm{dm}^{-3}$ potassium manganate（VII）， KMnO_{4} ．
In the presence of acid，the iron（II）sulfate is oxidised by potassium manganate（VII）．
$2 \mathrm{KMnO}_{4}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+10 \mathrm{FeSO}_{4}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+2 \mathrm{MnSO}_{4}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
（a）Method
Fill a burette with FB 2 ．
Pipette $\quad 2 \boldsymbol{2 5} \neq$ of $F B 1$ into the conical flask．
Use a $25 \mathrm{~cm}^{3}$ measuring cylinder to add $10 \mathrm{~cm}^{3}$ of dilute sulfuric acid to the flask．
－Carefully titrate with FB 2 until the first permanent pink colour is obtained．
You should perform a rough titration．
In the space below record your burette readings for this rough titration．

Carry out as many accurate titrations as you think necessary to obtain consistent
Record in a suitable form below all of your burette readings and the volume of FB 2
Make certain any recorded results show the precision of your practical work．

$$
\begin{aligned}
& \text { added in each accurate titration. } \\
& \text { Make certain any recorded result }
\end{aligned}
$$

ー 日	日	B	$>$	

[^5] moles of $\mathrm{Fe}^{2+}(\mathrm{aq})$ in the conical flask $=\ldots \ldots$. mol
（iii）Calculate the number of moles of Fe^{2+} in your weighed sample of FA 1.
（iv）Calculate the percentage of iron in FA 1.
the percentage of iron in FA $1=\ldots \%$
d）There are a number of sources of potential error in this experiment．One of these involves the readings taken using the balance．
（i）State the maximum individual error in any single balance reading．

IidmHESWS			
		reunerg \% >ulaed	

b) From your titration results obtain a suitable volume of FB 2 to be used in your
calculations.
calculations.
Show clearly how you obtained this volume.
Ξ

Calculations
 Show your working and appropriate significant figures in all of your calculations.
 (c) Calculate how many moles of KMnO_{4} were run from the burette during the titration

 mol of KMnO_{4} were run from the burette.Calculate how many moles of Fe^{2+} ions reacted with the KMnO_{4} run from the burette.
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of Fe^{2+} in FB 3.

liIDNIHSVWS 4184	$6 \angle S ~ f 069 ~ \partial 8 e_{\text {d }}$	गeuuesg >ว!ıłed	
	625 fo 69 ә১ed	reukex rọaed	

www.SmashingScience.org
seuneגg yगułed
Page $\mathbf{7 0}$ of 579

 Run FB 1 from the burette into the conical flask until the first permanent pale pink colour
remains. This is the end point of the titration.

 (a) Experiment 1

 FB 1 is $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}
FB 2 is a solution containing iron(II) ions. Fe^{2+}.
FB 3 is an aqueous solution of a substance, X . 24.3 Use these burette readings to fill in the table you have created: 30, 24.25, SAMPLE DATA T2 Redox Titration (KMnO4) Chem 6 Q\# 16/ AS Chemistry/2002/s/TZ 5/Paper 3/:o) www.SmashingScience.com
Record the mass．
Calculate and record the total loss of mass and the mass of residue obtained
This residue is FA 5 ．

$$
\text { Keep FA } 5 \text { for use in 2(d). }
$$

－	日	日	乙	$>$

$\sqrt{5}$

- Weigh the empty crucible with its lid. Record the mass.

- Transfer all the FA 4 from the container into the crucible.
- Weigh the crucible, lid and FA 4. Record the mass.
Weigh the crucible, lid and FA 4. Record the mass.
Place the crucible and contents on a pipe－clay triangle．
Heat the crucible gently，with the lid on，for approximately 1 minute．
Heat strongly，with the lid off，for a further 4 minutes．
Replace the lid and leave the crucible to cool for at least 5 minutes．
Replace the lid and leave the crucible to cool for at least 5 minutes
During the cooling period，you may wish to begin work on Qu
During the cooling period，you may wish to begin work on Question 3.
When the crucible has cooled，weigh the crucible with its lid and contents．
Record the mass．
Heat strongly，with the lid off，for a further 2 minutes．
Replace the lid and leave the crucible to cool for at le
Heat strongly，with the lid off，for a further 2 minutes．
Replace the lid and leave the crucible to cool for at least 5 minutes．
When the crucible has cooled，reweigh the crucible with its lid and contents．
Record the mass．
－This residue is FA 5 ．
（b）
2 In this experiment you will identify the metal， \mathbf{M} ，in a metal carbonate， $\mathbf{M C O}_{3}$ ，by thermal
decomposition．
You are advised to show full working in all parts of the calculations．

[^6]흐
Ξ
G1 Gravimetric Thermal Decomposition Chem 10 Q\＃17／AS Chemistry／2022／s／TZ 3／Paper 3／：0） www．SmashingScience．com
SAMPLE DATA

Paper ID	Marks	Measured initial mass	Measured final mass	Mass of crucible and lid	Initial mass	Final mass
2022／s／TZ 3／Q2	12	42	41.42	40.76	42.06	41.38
2019／s／TZ 1／Q2	14	42.98	41.52	41.58	42.98	42.24
2017／s／TZ 1／Q2	10	43.60	42.76	40.76	43.51	42.74
2016／s／TZ 4／Q2	14	35.8	41.29	41.58	42.78	42.10

(c) A student carries out the same procedure, using the same mass of solid. However, the student
uses the basic carbonate, $\mathbf{M C O}_{3} \cdot \mathbf{M}(\mathrm{OH})_{2}$, instead of the pure carbonate, MCO_{3}.
When the metal hydroxide part of the basic carbonate decomposes, metal oxide and steam
are produced. The metal carbonate part decomposes in the usual way.
State how the loss of mass from the student's solid compares with the loss of mass you
obtained when you carried out your experiment. Explain your reasoning. (c) A student carries out the same procedre, using the same mass of solid However, the student [เ] $\cdots \cdots \cdots$

0
0
0
0
0
N
0
0
0

E

	$\begin{aligned} & \infty \\ & \underset{i}{\dot{f}} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\underset{~}{j}} \end{array}\right\|$	$\stackrel{\underset{\sim}{\dot{~}}}{\underset{\sim}{2}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
	$\begin{aligned} & \stackrel{\circ}{\dot{U}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{\sim} \\ \hline \end{gathered}$	$\left.\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \tilde{y} \end{aligned} \right\rvert\,$	$\stackrel{\infty}{\sim}$
		$\begin{aligned} & \infty \\ & \underset{q}{i} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{o}{0} \\ & \dot{q} \end{aligned}$	$\stackrel{\infty}{\sim}$
	$\begin{gathered} \tilde{\sim} \\ \dot{f} \end{gathered}$	$\left.\begin{array}{\|c\|} \tilde{N} \\ \dot{q} \end{array} \right\rvert\,$	$\stackrel{\stackrel{\circ}{\tilde{j}}}{\stackrel{\mathcal{F}}{ }}$	－
	\％	$\begin{aligned} & \infty \\ & \underset{\sim}{\alpha} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{q}} \\ & \dot{y} \end{aligned}$	$\stackrel{\infty}{\sim}$
$\stackrel{\frac{n}{2}}{\stackrel{n}{0}}$	$\underset{7}{ }$	\pm	9	\pm
\circ \vdots 힝 in				

2 In Question 1 you measured the volume of carbon dioxide produced by a metal carbonate， $\mathbf{M C O}_{3}$ ， in order to identify \mathbf{M} ．In Question 2 you will identify another Group 2 metal， \mathbf{Q} ，by using a gravimetric
method．
When Group 2 carbonates are heated they decompose．
$\mathrm{aCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{QO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
FA 3 is the metal carbonate， QCO_{3} ．
（a）Method heat gently for approximately 1 minute．
－Use tongs to remove the lid and hueat the crucible strongly for approximately 5 minutes．
Replace the lida and then leave to cool．
－While the crucible is cooling，begin work on Question 3 ．
－Weigh the crucible with its lid and record the mass．
－Add between 1.30 g and 1.50 g of FA 3 into the crucible．Record the mass of crucible，lid －Place the crucible on the pipe－clay triangle on the tripod．Put the lid on the crucible and
While the crucible is cooling，begin work on Question 3 ．
When cool，reweigh the crucible with it lid and contents．Record the mass．
Calculate and record the mass of FA 3 paced in the cucible．
Calculate and record the mass of residue left after heating．
－Calculate and record the mass of FA 3 placed in the crucible．
Keep the crucible and its contents for use in Question 3（b）．
Results

ー	日	日	$己$

（b）Calculations
（i）Calculate the number of moles of copper oxide， CuO ，obtained as residue

$\boxed{\square}$
（iii）Use the Periodic Table to calculate the relative formula mass of $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ ．

		reuuedg >juled	

Experiment 2
Repeat the method used in Experiment 1, using between 1.5 g and 2.0 g of FA 5 in the second crucible.

Results
[6]
Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Use your results from Experiment 1 to calculate the number of moles of copper oxide,
Use the Periodic Table on page 12 for any data you may require.
moles of CuO obtained in Experiment 1 = mol
(ii) Use your answer to (i), the equation on page 4 and the mass of FA 5 you used in Experiment 1, to calculate the relative formula mass, $M_{r n}$ of malachite.
M_{r} of malachite (from Experiment 1) =
(iii) Use your results from Experiment 2 to calculate another value for the relative formula
mass, M_{n} of malachite.

G1 Gravimetric Thermal Decomposition Chem 10 Q\# 20/ AS Chemistry/2017/s/TZ 1/Paper 3/ :0) www.SmashingScience.com

Paper ID	Marks	Measured initial mass	Measured final mass	Mass of crucible and lid	Initial mass	Final mass
2022/s/TZ 3/Q2	12	42	41.42	40.76	42.06	41.38
2019/s/TZ 1/Q2	14	42.98	41.52	41.58	42.98	42.24
2017/s/TZ 1/Q2	10	43.60	42.76	40.76	43.51	42.74
2016/s/TZ 4/Q2	14	35.8	41.29	41.58	42.78	42.10

2 Malachite is a basic form of copper carbonate in which copper hydroxide is also present. The accepted chemical formula of malachite is $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. When malachite is heated, it decomposes as shown.
$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
about the accepted formula of malachite.

FA 5 is malachite, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

(a) Method

Read through the method before starting any practical work.
In the space below prepare a single table for your results of Experiments 1 and 2

Experiment 1

- Weigh a crucible with its lid and record the mass. and record the mass.

Place the crucible on the pipe-clay triangle.
Heat the crucible and contents gently for about two minutes, with the lid on.
Remove the lid and continue heating gently for about three minutes.
Replace the lid and leave the crucible and residue to cool for at least five minutes. Then
reweigh the crucible and contents with the lid on. Record the mass.
While the crucible is cooling, you may wish to begin work on Q
While the crucible is cooling, you may wish to begin work on Question 3.
Calculate and record the mass of FA 5 used and the mass of residue obtained

mass, M_{n} of malachite

	6LS f0 18 วรึed	Jeunesg >ว!ıted	
	6LS fo 18 อ8ed	seunexg routed	

(iv) Use data from the Periodic Table to calculate the relative formula mass, M_{r} of malachite
(c) Evaluation
(i) State one way in which the accuracy of the experimental procedure could have been improved using the same mass of FB 4
Explain your answer.
(ii) A student carried out the experiment twice using different masses of FB 4. He used the mean mass of FB 4 and the mean mass of magnesium oxide obtained to calculate the relative formula mass of basic magnesium carbonate.
Instead of doing this, he could have calculated the relative formula mass of basic
magnesium carbonate from his two experiments separately.
Suggest one advantage of carrying out separate calculations for each experiment.
(iii) State the error when making one reading on your balance

\quad
[Total:
[4]
[4]
(b) Calculations
Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Use your results to calculate the number of moles of magnesium oxide, MgO , obtained as
residue.

(ii) Use your answer to (i), with the equation on page 4 and the mass of FB 4 you used, to calculate the relative formula mass, M_{r} of basic magnesium carbonate.
M_{r} of basic magnesium carbonate (from experiment) $=$..
(iii) Use data from the Periodic Table to calculate the relative formula mass, M_{n} of basic
magnesium carbonate from its possible formula, $\mathrm{MgCO}_{3} \cdot \mathrm{Mg}(\mathrm{OH})_{2} .2 \mathrm{H}_{2} \mathrm{O}$.

Abstract

(iv) If the relative formula mass of basic magnesium carbonate obtained from your experiment $\mathrm{MgCO}_{3} \cdot \mathrm{Mg}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is correct Does your experiment support the eom mia? Oive a leason ion your diswe

n

自		4	4	a	日	日	\square

	pue əsuly
	әц！Кıduヨ
	S！̣l pıoכəy
	6ulum dols
	ıd әपł Mə！\wedge
	x！u วบt I！
－Kןə！！	
	00\％ $9 \downarrow$ uny
ᄂ 日』	q әuo ןəqе

\downarrow ไuəu！」ədxヨ
Stop timing when the print on the insert is no longer visible．
Record this reaction time to the nearest second．
Stir the mixture once and place the beaker on the printed insert．
View the print on the insert from above the mixture． Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to measure $10.0 \mathrm{~cm}^{3}$ of FB 2
Add FB 2 to FB 1 and start timing immediately． Label one burette FB 1 and fill it with FB 1. are emptied into the quenching bath and the beaker is rinsed thoroughly． Throughout these experiments care must be taken to avoid inhaling any SO_{2} that is produced
It is very important that as soon as each experiment is complete，the contents of the beaker Throughout these experiments care must be taken to avoid inhaling any SO_{2} that is produced
You will investigate how the concentration of the thiosulfate ions affects the rate of this reaction． formed to make the mixture too cloudy to see through The rate of this reaction can be measured by timing how long it takes for the solid sulfur that is （I） $\mathrm{O}^{2} \mathrm{H}+(\mathrm{be})^{z} \mathrm{OS}+(\mathrm{s}) \mathrm{S} \leftarrow(\mathrm{be})_{+} \mathrm{HZ}+(\mathrm{be})_{-} \varepsilon^{\varepsilon} \mathrm{O}^{z} \mathrm{~S}$

Show your working and appropriate significant figures in the final answer to each step of your calculations
Read through the whole method before starting any practical work．Where appropriate，prepare a table
for your results in the space provided． Quantitative analysis

	Var	Exp1	Time／s	Exp2	Time／s	Exp3	Time／s	Exp4	Time／s	Exp5	Time／s
$\begin{aligned} & \text { 2018/m/TZ } \\ & \text { 3/Q1 } \end{aligned}$	TEMP （degrees C）	$25^{\circ} \mathrm{C}$	78	$55^{\circ} \mathrm{C}$	12	$47^{\circ} \mathrm{C}$	20	$35^{\circ} \mathrm{C}$	44	$30^{\circ} \mathrm{C}$	61
$\begin{aligned} & \text { 2021/w/TZ } \\ & \text { 4/Q1 } \end{aligned}$	Volume of Sodium thiosulfate	$45 \mathrm{~cm}^{3}$	35	$20 \mathrm{~cm}^{3}$	120	$25 \mathrm{~cm}^{3}$	90	$\begin{array}{r} 30 \\ \mathrm{~cm}^{3} \end{array}$	67	$35 \mathrm{~cm}^{3}$	52

（c）In these experiments，the volume of FB 1 is related to the concentration of the thiosulfate ions．
Use your graph to suggest the relationship between the rate of reaction and the concentration
of the thiosulfate ions．
［1］
（d）The quenching bath contains an aqueous mixture of sodium carbonate and universal indicator．
（i）How does the quenching bath prevent the further production of SO_{2} from the reaction？
［เ］
［1］
ㄴ

（e）（i）In each experiment the acid is in large excess．

（ii）Suggest a reason why the acid used should be in large excess．

 Sop down through as as as the precipitate of sulfur obscures the print on the Insert.
Record the reaction time to the nearest second.
Empty the contents of the beaker into the quenching bath. Swirl the beaker once to mix the solutions and place the beaker on the Insert.
Look down through the beaker and contents onto the Insert.
Stop timing as soon as the precipitate of sulfur obscures the print on the Insert.
 Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA 2 into the $100 \mathrm{~cm}^{3}$ beaker.
Measure and record the temperature of $F A 2.2$.
Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into the same beaker a

> Leave boiling tubes $\mathbf{1}$ and $\mathbf{2}$ in the hot water bath to heat up for use in Experiment 2.
Start Experiment $\mathbf{1}$. Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA $\mathbf{2}$ into boiling tube $\mathbf{2}$. Place
boiling tube $\mathbf{2}$ into your hot water bath. Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into boiling tube 1 . Place
boiling tube 1 into your hot water bath. Heat the water in the beaker to about $55^{\circ} \mathrm{C}$ and then switch off the Bunsen burner. This
will be your hot water bath.
Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into boiling tube 1 . Place

> Approximately half fill the $250 \mathrm{~cm}^{3}$ beaker with tap water and place it on the tripod and
gauze over the Bunsen burner. Method (a) FA 1 is an $18.1 \mathrm{gdm}^{-3}$ solution of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
FA 2 is a $0.050 \mathrm{moldm}^{-3}$ solution of a strong monoprotic acid, HZ . experiment.

Record your results in a table on page 4. Your table should include the rate of reaction for each You will measure the time it takes for the sulfur formed in the reaction to obscure the print on the
Insert supplied. $(\mathrm{l}) \mathrm{O}^{2} \mathrm{H}+(6)^{2} \mathrm{OS}+(\mathrm{s}) \mathrm{S} \leftarrow(\mathrm{be})_{+} \mathrm{HZ}+(\mathrm{be})_{-2} \mathrm{z}^{2} \mathrm{O}^{2} \mathrm{~S}$

The ionic equation for the reaction is given.
You will investigate how increasing temperature affects the rate of a reaction
 for your results in the space provided. Read through the whole method before starting any practical work. Where appropriate, prepare a table Quantitative Analysis

	Var	Exp1	Time/s	Exp2	Time/s	Exp3	Time/s	Exp4	Time/s	Exp5	Time/s
$\begin{aligned} & \text { 2018/m/TZ } \\ & \text { 3/Q1 } \end{aligned}$	TEMP (degrees C)	$25^{\circ} \mathrm{C}$	78	$55^{\circ} \mathrm{C}$	12	$47^{\circ} \mathrm{C}$	20	$35^{\circ} \mathrm{C}$	44	$30^{\circ} \mathrm{C}$	61
$\begin{aligned} & \text { 2021/w/TZ } \\ & \text { 4/Q1 } \end{aligned}$	Volume of Sodium thiosulfate	$45 \mathrm{~cm}^{3}$	35	$20 \mathrm{~cm}^{3}$	120	$25 \mathrm{~cm}^{3}$	90	$\begin{gathered} 30 \\ \mathrm{~cm}^{3} \end{gathered}$	67	$35 \mathrm{~cm}^{3}$	52

 Experiments 4 and 5

Rinse and dry the beaker so it is ready for use in Experiments 4 and 5 Empty the contents of the beaker into the quenching bath. Stop timing as soon as the precipitate of sulfur obscures the print on the Insert Swirl the beaker once to mix the solutions and place the beaker on the Insert.
Look down through the beaker and contents onto the Insert. Transfer the contents of boiling tube 1 into the same beaker and start timing immediately

 Experiment 3

Rinse and dry the beaker so it is ready for use in Experiment 3. Stop timing as soon as the precipitate of sulfur obscures the print on the Insert.
Record the reaction time to the nearest second. Swirl the beaker once to mix the solutions and place the beaker on the Insert.
Look down through the beaker and contents onto the Insert.
 Measure

（b）On the grid plot a graph of rate of reaction on the y－axis，starting at zero，against temperature

－无	日	目	乙

Results
The rate of reaction can be calculated as shown．

www.SmashingScience.org

[2]

concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 5 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{FA} 1=\ldots \ldots . ~ m o l d m-3 ~$
(ii) Calculate the concentration of the strong monoprotic acid, HZ , in the solution immediately
after FA 1 was added to FA 2 in the beaker.
(i) Calculate the concentration of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, in FA 1 in
suo!̣ןnoro (o) if you had carried it out at $17.5^{\circ} \mathrm{C}$. Show on the grid how you obtained your answer. Use your graph to calculate the time to the nearest second that the reaction would have taken

Using the observations in (b)(i) suggest what can be deduced from each test about the
(ii)

	Test $1 . \ldots \ldots \ldots \ldots$
	Test $2 \ldots$
	Test 3
	[2]
(iii)	Use your deductions in (b)(ii) to suggest the identity of FA 7.
	FA 7 is [1]
	[Total: 15]
Qo Quali	ative: Organic compounds test Chem 16 Q\# 25/ ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# 3 :o)

Qo Qualitative: Organic compounds test Chem 16 Q\#25/ ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# 3 :o)
Qualitative Analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given.
At each stage of any test you are to record details of the following:
colour changes seen
the formation of any
the formation of any precipitate and its solubility in an excess of
the formation of any gas and its identification by a suitable test.
You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted.
Page 95 of 579
(b) Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to approximately $80^{\circ} \mathrm{C}$. Turn off the Bunsen burner. This will be your hot water bath.
FA 7 is an organic compound with an M_{r} between 40-57.
(i) Carry out Test 2 and Test 3 on FA 7 and record your observations. The result for Test 1 is
shown in the table

test	observations
Test 1 Add a small piece of sodium.	
Test 2 To a 0.5 cm depth of aqueous iodine in a test-tube add aqueous sodium hydroxide dropwise until the yellow colour just disappears. Then add a few drops of FA 7 and shake the test-tube. If no change is seen, warm the test-tube in your hot water bath.	
Test 3 To a 1 cm depth of FA 7 in a test-tube add a few drops of acidified potassium manganate(VII). Warm the test-tube in your hot water bath.	

즌

- 2-methylpropan-2-ol
- propanal
- propanone
Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to about $50^{\circ} \mathrm{C}$. You will use this as a hot water
Turn off the Bunsen burner.
Carry out the following tests and record your observations.

You are provided with the first two reagents. You must prepare the last of these reagents,
Tollens' reagent, immediately before use. Follow the instructions in the box below. - ammoniacal silver nitrate (Tollens' reagent)

 Heat a half-full $250 \mathrm{~cm}^{3}$ beaker of water for use as a hot water-bath. Qi Qualitative: Inorganic ions test Chem 17 Q\# 28/ ALva Chemistry/2010/s/TZ 1/ Paper 3/Q\# 2/:0)
www.SmashingScience.org
Read through the remainder of question 2 before starting further practical work. [عا: 1 :라이] N
$9 \forall J$

旁

www.SmashingScience.org

Page 102 of 579
 Do not heat any tube with a naked flame

 precipitate just dissolves. Do not add an excess of aqueous ammonia.
 To 2 cm depth of aqueous silver nitrate in a boiling-tube add $1 / 2 \mathrm{~cm}$ depth of aqueous
sodium hydroxide. This will produce a brown precipitate of silver(I) oxide.

$$
\pi
$$

$$
\begin{aligned}
& \text { səxoq pepys bul } 10 \text { Ş SłSət ono Kueว fou OG }
\end{aligned}
$$

test	
Test 1 To a 1 cm depth of FA 6 in a boiling tube add aqueous sodium hydroxide，then	
heat gently．	

（i）Carry out the following tests on FA 6 and record your observations．
 in the Qualitative analysis notes．
Rinse and reuse test－tubes and boiling tubes where possible．
For each test you should record all your observations in the spaces provided
Examples of observations include：

added
the formation of any gas and its identification（where appropriate）by a suitable test． www．SmashingScience．org
Qualitative analysis
Qi Qualitative：Inorganic ions test Chem 12 Q\＃29／ALvl Chemistry／2022／w／TZ 1／Paper 3／Q\＃ 3 ：0）
www．SmashingScience．org
Qualitative analysis
Examples of observations include：
－the formation of any gas and its identification（where appropriate）by a suitable test．
You should record clearly at what stage in a test an observation is made．
Where no change is observed you should write＇no change＇．
Where reagents are selected for use in a test，the name or correct formula of the element or compound must be given．

If any solution is warmed，a boiling tube must be used．
No additional tests should be attempted.

Where no change is observed you should write 'no change'.
，
－
12
Sample Data：

reagent	observations			
	FA 7	FA 8	FA 9	FA 10
acidified dichromate	no reaction		no reaction	（colour change to） green／blue－green／ cyan／turquoise （solution not ppt）
2，4－DNPH	no reaction	yellow ppt	yellow ppt	
Tollens＇reagent	no reaction	silver mirror or black／grey solution or ppt		no reaction

（h）State which of the solutions contains a tertiary alcohol．Explain the observations leading
to your conclusion．
FA ．．．．．．．．．．．．．．contains the tertiary alcohol．
explanation
State which of the solutions contains the aldehyde．Explain the observations leading to
your conclusion．
자

1 itm	$6 L$ ¢ 10 SOI ${ }^{\text {ared }}$		
	6LS jo sol ${ }^{\text {ased }}$	כeuuexg＞ग！ı⿺辶	

 N

test．．
Carry out this test，record the result and hence state the identity of the anion Suggest an additional test that could be carried out to confirm the presence of one of the
anions you suggested in（a）（iv）． suoḷue əाq！ssod their formulae．
 The cation present is
result test．．． Suggest a test that would allow you to determine which of the cations you suggested in
（a）（ii）is present in FA 6 ． suo！̣eว ә ә！！！ssod pue
（ii）From your observations suggest two possible identities for the cation in FA 6.

［เ］

рәұеәч s！p！nb！！Kue ！！əqn 6u！！！oq e asn ısnu no人

 м моןәqRecord the tests you carry out and the observations you make，in a table，in the space
（a）（ii）．

Rinse and reuse test－tubes and boiling tubes where possible
If any solution is warmed，a boiling tube must be used Where reagents are selected for use in a test，the name or correct formula of the element or compound
must be given．
 You should record clearly at what stage in a test an observation is made． －the formation of any gas and its identification（where appropriate）by a suitable test．
 ：əpnjou！suoṇenəsqo ıo səןduexヨ For each test you should record all your observations in the spaces provided Qualitative analysis Qi Qualitative：Inorganic ions test Chem 12 Q\＃30／ALvl Chemistry／2022／s／TZ 1／Paper 3／Q\＃ 3 ：o）
www．SmashingScience．org
....... . [3]

[Total: 15] [1] ,

$$
\begin{aligned}
& \text { and } \\
& \begin{array}{l}
\text { (iii) Give the ionic equation for one of the reactions taking place in Test } 1 . \\
\text { Include state symbols. }
\end{array} \\
& \text { FA } 7 \text { contains } \\
& \text { FA } \\
& \text { (iii) } \\
& \text { Include state symbols. } \\
& \text { व }
\end{aligned}
$$ 41

$3(b)(i)$			
	test	FA 6	FA 7
	$\begin{array}{\|l\|} \hline \text { Test 1 } \\ \mathrm{NaOOH} \end{array}$	White ppt/solid (formed) * Solluble in excess *	Decolourises / turns (pale) yellow * (ppt is CON)
	Test $2 \mathrm{Ba}^{-{ }^{-}}$	White ppt	No change/no reaction
	+ HCl	AND ppt insoluble / remains / no change/ ino reaction *	AND no change/no reaction *
	Test 3 starch		Dark blue / blue-black / black (colour formed) (ignore state)
	+ thio		AND colourless solution (forms) ALLOW tums colourless / decolourises *
	Test $4 \mathrm{Ag}{ }^{\text {+ }}$	No change/no reaction/no ppt	Yellow/ brown ppt (forms) *
	+ NaOH	AND ppt (torms) (ignore colour) *	Pale yellow ppt ALLOW ppt turns paler yellow * IGNORE use of excess NaOH
	Test $5+\mathrm{NH}_{3}$	$\begin{aligned} & \begin{array}{l} \text { White ppt AND ppt is insoluble in } \\ \text { excess }\left(\mathrm{NH}_{3}\right)^{\star} \end{array} \\ & \hline \end{aligned}$	

(ii) Give the formulae of the substances in FA 6 and FA 7. " (Ta)

\pm
[z]

(ii) For each observation, state what you can conclude about the chemical properties of FA 8.

> Test 1.
Test 2.

[2]

$\stackrel{\infty}{\mathbb{4}}$			
$\stackrel{N}{4}$			-
	$\begin{array}{r}\text { I } \\ \hline \text { I } \\ \text { O } \\ \text { L } \\ + \\ \hline\end{array}$	E	$\underset{\substack{\text { min } \\++ \\ \hline}}{ }$

!पsems'MMM
еұед ןədures
seuuerg youted
T

			'әриочㅜ unisəuбеш snoanbe Ł๐ чıdəр Ienba ue ppp $\varepsilon 150 \perp$
			әәеиоqıеэ unipos snoanbe Ło чıdəp Ienba ue pp \forall 27501
			рІэe כunnuns әұn!̣p „๐ uldəp fenba ue ppy ${ }^{12501}$
L $\forall 1$	$9 \forall \exists$	$9 \forall \pm$	1s27
suoйеләяqo			

(i) Carry out the following tests and record your observations.
Use a 1 cm depth of solution in a test-tube for each test.

 If any solution is warmed, a boiling tube must be used. You should indicate clearly at what stage in a test a change occurs. the formation of any gas and its identification by a suitable test. colour changes seen
the formation of any pr
the formation of any gas
At each stage of any test you are to record details of the following: must be given.
Where reagents are selected for use in a test, the name or correct formula of the element or compound

[1]

 [1]

[^7] s! $\angle \forall \unlhd$ ul uolue әч
 s! $9 \forall 』$ u! uo!̣eว әपュ

ㄹ

ammonium thiocyanate in Test 2 compared with Test 1.
Your answer should refer to the type of reaction that occurred in Test 2 . (iii) The charge on the thiocyanate ion, SCN^{-}, is -1.
Determine the formula of ammonium thiocyanate.
(iv) A solution containing Fe^{2+} reacts with aqueous ammonia to form a green precipitate.
Write the ionic equation for this reaction.
Include state symbols.

Test 2 +NaOH				$\begin{array}{l}\text { green/dirtty green/pale green/dark green ppt }{ }^{*} \\ \text { ppt turns brown (at surface) * }\end{array}$
$+\mathrm{H}_{2} \mathrm{SO}_{4}$	ppt dissolves or yellow/yellow-brown/ orange-brown solution formed *			

3(a)(i)	Test 1 no change/ (pale) orange/ (pale) red/ (pale) pink solution Allow solution becomes colourtess/paler	
	Test 2	
	$+\mathrm{NaOH}$	green/dirty green/pale green/dark green ppt * ppt turns brown (at surface) *
	$+\mathrm{H}_{2} \mathrm{SO}_{4}$	ppt dissolves or yellow/ yellow-brown / orange-brown solution formed *
	$+\mathrm{SCN}^{-}$	(solution) tums dark(er) orange/blood-red/red/dark (er) red/deep red/red-brown * colour must be more intense than in Test 1

$6 L \mathrm{~s}$ to $9 \tau \mathrm{It}$ 28ed

Qi Qualitative: Inorganic ions test Chem 12 Q\# 34/ ALvl Chemistry/2021/s/TZ 1/Paper 3/Q\# 3 :0)
www.SmashingScience.org
Qualitative analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
At each stage of any test you are to record details of the following:

- colour changes seen
the formation of any precipitate and its solubility in an excess of the reagent added
the formation of any gas and its identification by a suitable test. - the formation of any gas and its identification by a suitable test. You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted
3 (a) Aqueous ammonium thiocyanate reacts with aqueous iron(III) ions to form an orange or red coloured compound. Iron(II) ions do not react in this way. The darker the orange or red colour,
the more iron(III) ions are present in the solution.
(i)

test	observations
Test 1 Add a few drops of aqueous ammonium thiocyanate.	
Test 2	

Test 1
Add a few drops of aqueous
Add a few drops of aqueo
ammonium thiocyanate.
Test 2
two minutes, then
add a few drops of aqueou
ammonium thiocyanate.
Sampel Data:

घ.

Patrick Brannac

（ii）Deduce the chemical formulae of FA 7 and FA 8.
> ［乙］
> （iii）Give the ionic equation for the reaction of FA 8 with sulfuric acid．
Include state symbols．

［zl：라이기］
［1］…．．．．

(b) FA 8 is a solution containing one of the cations listed in the Qualitative Analysis Notes

	әр!холәd uәболркч snoənbe Łо sdoıр мәృ е ppe pue әqnł 6u!!!!oq e ołu! sұuәłuo əપł .nnod
	иәчł ‘əбиецว ләчцท! ou s! əəə૫ł !!!un e!̣uoume snoənbe ppe lisel
suопелияsqo	1sə7

이

(ii) Identify the cation in FA 8 .
(iii) Carry out the following tests and record your observations.
test Test 1 To a 1 cm depth of FA 8 in a test-tube, add a 1 cm depth of aqueous potassium iodide, then add FA 5, aqueous sodium thiosulfate.

즌

www.SmashingScience.org

pue

FA 6 is a hydrated salt. It contains two cations and one anion, all of which are listed in the
Qualitative Analysis Notes.

 If any solution is warmed, a boiling tube must be used.
 the formation of any precipitate and its solubility in an excess of the reagent added
the formation of any gas and its identification by a suitable test.

At each stage of any test you are to record details of the following: must be given.

Where reagents are selected for use in a test, the name or correct formula of the element or compound Qualitative Analysis

Qi Qualitative: Inorganic ions test Chem 12 Q\# 37/ ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# 3 :o)
www.SmashingScience.org
(i) To a 1 cm depth of FA 6 in a boiling tube, add aqueous sodium hydroxide until it is in excess. Then heat the tube, gently and carefully.
Keep the mixture obtained in the boiling tube for the test in (a)(ii).
Record all your observations.
Identify the cations in FA 6 .
Identify the cations in FA 6
observations
No additional tests for ions present should be attempted
3 (a) FA 3 is aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
FA 6 is a solution containing two cations and one anion from those listed in the Qualitative
analysis notes.
Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given.
At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.
Qualitative analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound You should indicate clearly at what stage in a test a change occurs.

> If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(i)
-

test	observations
To a 1 cm depth in a test-tube, add aqueous barium nitrate or aqueous barium chloride, then	
add dilute hydrochloric acid or dilute nitric acid.	

き

[^8]The formula of FA 7 is

3(a)(i)		FA 4	FA 5
	HCl	No (visible) reaction/no change * Allow pale yellow solution/colourless solution	Pale yellow/ cream/white/ off-white ppt *(ignore excess)
	CuSO_{4}	Brown (ppt/ colour / soln) * Do not allow orange/-brown or red-brown	Green soln * allow blue-green / cyan / turquoise ppt is CON
	AgNO_{3}	(pale) Yellow ppt *	Yellow ppt/black ppt/grey ppt/ (allow solid/ particles for ppt) *
	$+\mathrm{NH}_{3}$	Insol in NH_{3} * Allow no change	ignore NH_{3}
	Cl_{2}	Yellow or brown or red-brown/ orangebrown/ yellow-brown soln * Do not allow orange. Ppt is CON	No (visible) reaction/ no change * Allow colourless solution.
	+FA 5	Decolourised * If Cl_{2} reaction is incorrect then allow ecf e.g. colourless solution	
	For every two correct observations (*) award 1 mark (round down) Allow no observation for no (visible) change.		

Ion present in is [1]
(iii) Apart from the reaction with FA 5 suggest a test that could be used to identify the coloured product formed in the reaction between aqueous chlorine and FA 4. You should include
the reagent used and the expected observation.

Do not carry out this test.
reagent .
expected observation
(b) (i) Place the cooled crucible and residue from Question 2 onto a heatproof mat and add approximately $5 \mathrm{~cm}^{3}$ of water.

Test the solution with litmus papers.
Record your observations.
(ii) Using QO as the formula of the residue, write the equation for the reaction with water that [1]

[^9]
\[

$$
\begin{aligned}
& \text { (c }
\end{aligned}
$$
\]

occurs in (b)(i). Include state symbols. $1 \quad 1 \mathrm{~N}$

	әр!хоирKч mn!pos snoənbe ppe
	MOIIV 'əqnt-ısət st! u! $9 \forall \exists$ əપł !o ॥e ol
suопелияsqo	ไsə

	e!̣uoume snoənbe pp \quad
suonpenəsqo	\downarrow วə

즌

 'pəsn əq łsnu əqnı Bu!!!oq e 'pəسлem s! uọ̣n|os Kue fl
 the formation of any precipitate and its solubility in an excess of the reagent added
the formation of any gas and its identification by a suitable test. At each stage of any test you are to record details of the following: Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given Qualitative Analysis
 [91: :
(b) (i) From your observations in (a), suggest the identity of the cation and the anion present in the filtrate produced in (a)(i). cation present in the filtrate
anion present in the filtrate [1]
(ii) Write an ionic equation for one reaction in (a)(ii) where a precipitate was formed. Include
state symbols.
(iii) State the type of reaction that occurred in the first part of (a)(iii).
[1]
Apart from using an indicator, suggest and carry out a chemical test to determine whether the student was correct.
Record the name of the reagent you used, your observations and your conclusion.
⿹ㅣ [si: :|ㅏㅏㅇㅣ] Once you have described the test you intend to carry out and drawn a suitable results table you can find the sample mple data for previous question where you need to suggest a suitable test/s (2019/s/TZ 1/Paper 3/Q\#3)
[Once you have described the test you intend to carry out and drawn a suitable results table you can find the sample
data to fill in your table at the end of the next question.]
Where reagents are selected for use in a test, the full name or correct formula of the element or
At each stage of any test you are to record details of the following:
colour changes seen;
the formation of any precipitate and its solubility in an excess of the reagent added;
the formation of any gas and its identification by a suitable test.
You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used
Rinse and reuse test-tubes and boiling tubes where possible
No additional tests for ions present should be attempted.
2 (a) (i) FA 4 is a sodium compound that was the impurity in the FA 1 and FA 3 that you used in Question 1. The anion in FA 4 is one of those listed in the Qualitative Analysis Notes
Carry out appropriate tests to allow you to positively identify the anion in FA 4.
For the test that gives a positive result, record the test and the results of it.
State the name of the anion in FA 4.
(c) A student suggested that FA 5 is an acid.

I

	e!uoume snoanbe ppe
	u! $9 \forall \pm$ to әunseaw e\|nłeds ॥ews e ol
suogenasqo	1s\%)

[^10]$=\boldsymbol{\nabla} \forall \boldsymbol{\exists}$ ụl uọue
घ.
$$
1
$$

	иәцћ 'шшем рие әріхонрКч шп!̣оs
	unuleq snoznbe до sdoıp мәృ е ppe
	eluoume snoanbe ppe
	әріхолрКч un!pos snoənbe ppe
suоgenәsqo	$1 s$ \%

Carry out the following tests and record your observations in the table.

test	observations
Place a spatula measure of FA 7 in a boiling tube. Add dilute hydrochloric acid until no further reaction occurs, then	
transfer a 1 cm depth of the solution into a test-tube. To this add aqueous sodium hydroxide.	

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted.
(b) FA 6 is a mixture that contains two cations and two anions from the Qualitative Analysis Notes. with the dried residue, FA 7, and the filtrate, FA 8, from this process. (i) Tests on the residue, FA 7 must be given.
colour changes seen;
the formation of any precipitate and its solubility in an excess of the reagent added;
the formation of any gas and its identification by a suitable test.

- the formation of any gas and its identification by a suitable test.
Qi Qualitative: Inorganic
www.SmashingScience.org
Qualitative Analysis
Qi Qualitative: Inorganic ions test Chem 12 Q\# 43/ ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# 3 :0)
www.SmashingScience.org
Qualitative Analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
Atach details of the following

ร.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible
No additional tests for ions present should be attempted
 At each stage of any test you are to record details of the following: Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given. Qualitative Analysis

(c) FA 4 and FA 5 both contain one cation and one anion. The ions present in FA 4 are different rom the ions present in FA 5 . All four ions are listed in the Qualitative Analysis Notes. You are to identify the four different ions.

Carry out the following tests and record your observations.

test	observations
To a small spatula measure of FA 4 in a boiling tube, add a 4 cm depth of FA 3 and shake the tube well. Leave the tube to stand for at least five minutes. Label the solution formed FA 6.	
To a 1 cm depth of FA 5 in a test-tube, add aqueous sodium carbonate.	
To a 1 cm depth of FA 5 in a test-tube, add aqueous sodium hydroxide.	
To a 1 cm depth of FA 5 in a test-tube, add aqueous ammonia.	
To a $\mathbf{1 c m}$ depth of FA 5 in a test-tube, add a few drops of aqueous silver nitrate.	
To a $\mathbf{1 c m}$ depth of FA $\mathbf{5}$ in a test-tube, add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
add a 1 cm depth of a suitable acid.	
To a 1 cm depth of FA 6 in a test-tube, add aqueous sodium hydroxide.	
To a 1 cm depth of FA 6 in a test-tube, add aqueous ammonia.	
To a 1 cm depth of FA 6 in a test-tube, add dilute sulfuric acid.	
To a 1 cm depth of FA 6 in a test-tube, add a 1 cm depth of FA 5 .	

add aqueous sodium carbonate.

To a 1 cm depth of FA $\mathbf{5}$ in a tes
To a 1 cm depth of FA 5 add a few drops of aqueous
barium chloride or aqueous
barium nitrate, then
add a 1 cm depth of a suitable acid
To a 1 cm depth of FA 6 in a test
add aqueous ammonia
To a 1 cm depth of FA
To a 1 cm depth of FA 6 is
add a 1 cm depth of FA 5
®

www.SmashingScience.org data to fill in your table at the end of the next question.]
Patrick Brannac
 [t$]$
$6 \angle S$ fo OSI ə8ied $_{\text {d }}$ \qquad ,
 Use a 1 cm depth of each salt solution in a suitable tube for each test you carry out.
 You will identify the cations present in FA 6, FA 7 and FA 8.
 Where gases are released they should be identified by a test, described in the appropriate place
in your observations. compound must be given.

 3 Qualitative Analysis Qi Qualitative: Inorganic ions test Chem 12 Q\# 45/ ALvl Chemistry/2017/w/TZ 1/Paper 3/Q\#3 :o) wmsmmasinssienceong
Qi Qualitative: Inorganic ions test Chem 12 Q\# 46/ ALvl Chemistry/2017/s/TZ 1/Paper 3/Q\# 3 :od
${ }_{3}$ wWw.Smashingscience.org
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or
compound must be given.
Where gases are released they should be identified by a test, described in the appropriate place
in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(a) FA 6 is another salt of copper. The anion present is one of those listed in the Qualitative
Analysis Notes.
At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added
(i) Transfer a small spatula measure of FA 6 into a hard-glass test-tube. Heat gently at first, then heat strongly, until no further change occurs.
Record all your observations below.

छ	$\stackrel{\omega}{\omega}$

©
घ.

[^11]

The observation you made when aqueous silver nitrate was added to FA 7 does not allow
the anion in FA 7 to be identified with certainty. (v)

(vi) A student suggested that the anion in FA 7 could be identified with more certainty if excess ammonia solution was added after the aqueous silver nitrate

Explain why this suggestion is not correct.

Explain why you cannot be certain about the identity of the anion. ...
\ldots
\ldots

E

(iv) What type of reaction took place when aqueous potassium iodide was added to FA 7?

Test for hydrogen: (gas) "pops" with lighted splint Ther

$$
\begin{aligned}
& \text { With FA 6, (pale) blue precipitate, then } \\
& \text { deep/dark blue (solution) with excess } \\
& \text { With FA 7, red-brown / brown / rust precipitate (forms) }
\end{aligned}
$$

Mg test
Both observations correct
With FA 6, brown / black precipitate / solid formed or blue colour fades / disappears
With FA 7, fizzing / bubbling / effervescence
Test for hydrogen: (gas) "pops" with lighted splint

=xprain your answe

[^12] hydroxide. Include state symbols.
nor

1itonihs was 1434		эeuueıg y	
	6Ls ¢ LS亡		

 You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted. in your observations.

Where gases are released they should be identified by a test, described in the appropriate place

At each stage of any test you are to record details of the following. www.Smashingscience.org
3 Qualitative Analysis

 wih FA \&. white precipitate

- with $F A 8$. . .

- with $F A 6$. frzening bubbling or pale brown gas (formed) or yellow solution (formed) or goes yellow
with $F A$. ne reation

Observations: both must be correct for the reagent selected.

Qi Qualitative: Inorganic ions test Chem 12 Q\# 48/ ALvl Chemistry/2016/w/TZ 1/Paper 3/Q\# 3 :o)
3 Qualitative Analysis
At each stage of any test you are to record details of the following.
colour changes seen

- the formation of any precipitate

You should indicate clearly at what stage in a test a change occurs
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of
the element or compound must be given.

(a) FA 5 and FA 6 are solids each containing one cation and one anion.

Carry out the following tests and record your observations in the table below.

test	observations		
		FA 5	
(i)Place a spatula measure of solid in a hard-glass test-tube and heat gently at first, then			

-

3(a)(i)-(iv) see below					11
	teot	FA 5	FA 6	FA7	
(i) aqueous sodium hydroxide, then		no reaction/no ppt AND	green Ppt AND insol in excess/ turning brown	no reaction/no change/no ppt. AND	
warm gently		solution turns yellow/yellow- brown/brown	gas/ NH_{3} turns (damp red) litmus (paper) blue	no reaction/solution remains colourless	
aluminium foil and warm		effervescence with FA 5 or FA 7	AND	gas/ $/ H_{\text {, turns ((damp red) litmus }}$ (paper) blue	
(ii) acidifed aqueous potassium manganate (VII)		no reaction AND	purple decolourises/solution turns yellow AND	purple decolourises/turns colourless	
warm gently		purple decolourises/tums colourless			
(iii) hydrogen peroxide			solution turns yellow / effervescence AND	no reaction/no change	
			gas relights glowing splint		
(iv) hydrochloric acid, then			no reaction/no change/ no ppt.	brown gas/colourless bubbles/ga turning brown in air/blue solution	
$\mathrm{Ba}^{2{ }^{2}}{ }^{\text {(aq) }}$			$\begin{aligned} & \text { AND } \\ & \text { white ppt } \end{aligned}$	AND no reaction	

(b) (i) Identify as many ions present in FA 5, FA 6 and FA 7 as possible from your observations.

If an ion cannot be identified from the tests, write 'unknown' in the space.

(ii) Describe another test you could carry out to confirm the identity of a cation you have identified in (i). Record the reagent(s) and expected observation(s) in the space below. Do not carry out this test.
(II)
ϱ
(iii) Write an ionic equation for the reaction that would occur in (ii). Include state symbols.
[Total:17]
Page 159 of 579

3(a)(i)	FA5	FA6
	(goes to) collourless or yellow liquid/ solution	(green) powder/solid (tums) black/blach residue
	gas relights glowing splint	or gas turns limewater milky/cloudy white/ chalky/forms white ppt
	gas (turns) brown/brown gas or solution turns blue	(pale) blue solution/liquid formed
${ }^{3(a)(i)}$ (iv)	FA5	effervescence/fizzing/ bubblingand blue solution/liquid formed
	(iii) solid dissolves/ colourless solution allow no reaction/no change change $/$ no effervescences effer and	
	(iv) no reaction/no change/no $\mathrm{ppt} /$ remains colourless blue and inso	blue ppt and insoluble in excess
		(pale) blue ppt and soluble in excess to give deep/dark blue (solution)
www.SmashingScience.org		Patrick Brannac

D
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
0
U
U

 ज

(b) Place the remaining sample of FA 5 in the $100 \mathrm{~cm}^{3}$ beaker. Half fill the beaker with distilled
water and stir until FA 5 has fully dissolved. This may take some time. You will use this solution
in the remaining tests.
(i) Select reagents to identify the other cation present in FA 5. Carry out tests using these
reagents and record your results in the space below.
Identify the cation.

1itonihs was 1434		эeuueıg y	
	6Ls 」o şu		

玉
[Once you have described the test/s you intend to carry out and drawn a suitable results table you can find the
sample data to fill in your table at the end of the next question.]
(v) Identify the anion in FA 6, and state one piece of evidence for your identification.
anion ..

(i) Complete the table below.

test	observations				
	FA 7	FA 8	FA 9	FA 10	
add aqueous ammonia					

(i) Complete the table below

		эeuuedя \% \%ured	

Page $\mathbf{1 7 0}$ of $\mathbf{5 7 9}$

छ			©		
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow

FA 6 is a mixture of two salts, each of which contains a single cation and a single anion from
those listed in the Qualitative Analysis Notes on pages 10 and 11 . those listed in the Qualitative Analysis Notes on pages 10 and 11.
Do the following tests and record your observations in the table below.

test	observations
(i) Place a small spatula measure of FA 6 in a hard-glass test-tube and heat strongly.	
(ii) Place a small spatula measure of FA 6 in a test-tube and carefully add dilute sulfuric acid until the reaction is complete, then	
add aqueous sodium hydroxide.	
(iii) To a 3 cm depth of distilled water in a boiling tube, add the remaining sample of FA 6. Stir and then filter the mixture into a clean boiling tube. You will use this solution for tests (iv)-(vi).	
(iv) To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous sodium hydroxide.	
(v) To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous ammonia.	
(vi) To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous barium chloride or aqueous barium nitrate.	

드
$\stackrel{\rightharpoonup}{\top}$
(a) In Question 1 you used FA 2. This solution was prepared from hydrated ammonium iron(II) sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2}$
To a 1 cm depth of $F A 2$ in a test-tube, add a small spatula measure of sodium carbonate.
Record your observations.

\section*{| 3 (a) | Fizzing |
| :--- | :--- |
 | 3 | (a) |
| :--- | :--- |}

Solutions containing Fe^{2+} ions can quickly be oxidised in air if they are prepared by dissolving
the solid in distilled water.
Use your observations to suggest what other substance was added to solid
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ to prepare FA 2 .
Qi Qualitative: Inorganic ions test Chem 12 Q\# 51/ ALvl Chemistry/2015/s/TZ 1/ Paper 3/Q\# 3/ :o) 3 Qualitative Analysis
At each stage of any test you are to record details of the following.
colour changes seen
the formation of any p
the formation of any precipitate
the solubility of such precipitates
Where gases are released they should be identified by a test, described in the appropriate place in your observations.
You should indicate clearly at what stage in a test a change occurs
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of
the element or compound must be given.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to prepare FA 2.
www.SmashingScience.org

拨
(c) Solid FA 8 contains one cation and one anion from those included in the lists on pages 14 and 15 .
Carry out the following tests on FA 8. For each test record your observations.

Carry out the following tests on FA 8. For each test record your observations.
(i) In a hard-glass test-tube heat approximately half of the FA 8, gently at first and then more strongly. Leave to cool.

[^13]
Keep the solution obtained for tests (iii) and (iv).

(iv) To a 1 cm depth of the solution from (ii) in a test-tube, add aqueous ammonia until no
Sample Data:

(c)	(i)	(Solid is) yellow when heated Goes white/paler on cooling
(ii)	effervescence/fizzing/rapid bubbling and limewater turns milky	1
(iii)	White ppt and soluble in excess NaOH	1
(iv)	White ppt and soluble in excess NH_{3}	1

(v) Use your observations from (i) to (iv) to identify the ions present in FA 8.
www.SmashingScience.org Page 176 of 579

(iii) To a 1 cm depth of the solution from (ii) in a test-tube, add aqueous sodium hydroxide until no further change occurs. -

эeuueגя yग！uted

勾
自名
白
\square
In

If any solution is warmed，a boiling tube MUST be used．

No additional tests for ions present should be attempted． You should indicate clearly at what stage in a test a change occurs．
Marks are not given for chemical equations． in your observations．

Where gases are released they should be identified by a test，described in the appropriate place

 3 Qualitative Analysis
www．SmashingScience．org
Qi Qualitative：Inorganic ions test Chem 12 Q\＃53／ALvl Chemistry／2014／s／TZ 1／Paper 3／Q\＃ 3 ／：o）

\begin{tabular}{|c|c|c|}
\hline 2 (a) \(\begin{array}{ll}\text { (i) } \\ \& \\ \& \text { (ii) }\end{array}\) \& \begin{tabular}{l}
Chooses \(\mathrm{NaOH}(\mathrm{aq})\) (+ heat) (to distinguish \(\mathrm{NH}_{4}^{+} /\)ammonium) \\
Chooses named (allow name from (ii)) dilute acid/(acidified) \(\mathrm{KMnO}_{4}\) (to distinguish between \(\mathrm{NO}_{2}^{-} /\)nitrite and \(\mathrm{NO}_{3}{ }^{-} /\)nitrate) \\
2 ions chosen: \\
\(\mathrm{NH}_{4}{ }^{+} \& \mathrm{NO}_{3}{ }^{-}: \mathrm{NaOH}\) (and warm) \\
\(\mathrm{NO}_{2}{ }^{-} \& \mathrm{NO}_{3}{ }^{-}\): named (dilute) acid \\
\(\mathrm{NH}_{4}^{+} \& \mathrm{NO}_{2}^{-}\): either of the above \\
Correct obs with relevant tests \\
With NaOH and warming/heating: no ammonia/no change/no reaction With acid(aq): no brown fumes/no change/no reaction \\
'No observation' is not credited anywhere in the observations.
\end{tabular} \& 1
1

1
1

\hline
\end{tabular}

Qi Qualitative: Inorganic ions test Chem 12 Q\# 54/ ALvl Chemistry/2013/w/TZ 1/ Paper 3/Q\# 3/ :0)
www.SmashingScience.org
3 Qualitative Analysis
At each stage of any test you are to record details of the following.
colour changes seen
the formation of any precipitate
the solubility of such precipitates
Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the
element or compound must be given.

a) FA 5 is hydrated barium chloride

FA 6 is the same iron(II) salt used in Question 1. It contains one other cation and one anion.
(i) Place a small spatula measure of FA 6 into a test-tube. Dissolve the solid in about a 5 cm depth of distilled water. Use the solution for the following tests.
\varnothing
(b) FA 7 is an acidified solution of iron(II) sulfate, $\mathrm{FeSO}_{4}(\mathrm{aq})$.

Carry out the following tests and record your observations.

test	observations
(i)To a 1 cm depth of FA 7 in a test-tube add aqueous sodium hydroxide and leave for a few minutes.	
(ii)To a 1 cm depth of FA 7 in a boiling tube add a 1 cm depth of dilute sulfuric acid followed by a 1 cm depth of '20 vol' hydrogen peroxide. Stir the mixture, then	
(iii) pour a 1 cm depth of the mixture	
into a clean boiling tube and	
add a 3 cm depth of aqueous	
sodium hydroxide.	

www.SmashingScience.org

\downarrow	 „о омя Kuv	OWW	(A!)

(iii) Give the ionic equation for the reaction of iron(II) ions with hydroxide ions
 (ii) Identify the ions present in FA 6
(iv) Place a small spatula measure of FA 6 into a hard-glass test-tube.
Heat gently, then strongly, until no further change is observed. To a 1 cm depth of aqueous FA 6 in
a boiling tube, add aqueous sodium
hydroxide until no further change To a 1 cm depth of aqueous FA 6 in
www.SmashingScience.org

ω (ㅃ)		
$\begin{aligned} & 83 \\ & \overline{\bar{\Phi}} 3 \\ & \frac{3}{3} \\ & \frac{\square}{3} \end{aligned}$		$\begin{aligned} & \frac{\Omega}{3} \\ & \overline{\bar{\circ}} 0 \\ & \frac{3}{3} \\ & \overline{3} \end{aligned}$
\rightarrow	\sim	\rightarrow

test	observations To a 1 cm depth of aqueous FA 6 in a boiling tube, add aqueous sodium hydroxide until no further change occurs, then
heat the mixture carefully.	
Dissolve a few crystals of FA 5 in a 1 cm depth of distilled water in a test-tube. Add a 1 cm depth of FA 6, then	
add excess dilute hydrochloric acid to the mixture.	

test	observation
To 2 cm depth of the acidified filtrate from FA 3 in a test-tube, add 1 cm depth of aqueous silver nitrate, then	
add an excess of aqueous ammonia.	

b) Filter the mixture from FA 3 from (a) into another boiling tube. Ignore any colour in the
filtered solution.

Add 5 cm depth of dilute nitric acid. This removes any excess of carbonate ions. Carry out the following tests on the acidified filtrate from FA 3.

\section*{| 2 (a) | MMO Collection
 MMO
 Decisions | Records a blue/greenish-blue ppt/solid with FA 3 and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
 Records a brown/rust/orange-brown/red-brown ppt/solid with FA 5 and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
 Records effervescence with FA 5 (or FA 3).
 Tests gas evolved with limewater. Allow from effervescence. | 1 1 1 1 1 |
| :---: | :---: | :---: | :---: |
 ,}

,
-
Ξ

	芯		

$\stackrel{\rightharpoonup}{~}$
Patrick Brannac Page $\mathbf{1 8 4}$ of $\mathbf{5 7 9}$
Patrick Brannac

[9]		
		4) sulpeyuoo $t \forall \pm$
		บा suliequoo $\varepsilon \forall \pm$
		но!ue әчł K!!̣иәр। qD7 ınoर u! II!f of ozpp alduins

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \hline \vdots & \iota & \ddots & \text { 目 } & \text { 日 } & - \\
\hline & & & & & \\
\hline
\end{array}
$$

Qi Qualitative: Inorganic ions test Chem 12 Q\# 57/ ALvl Chemistry/2011/s/TZ 1/ Paper 3/Q\# 3/ :o)
www.SmashingScience.org
3 Qualitative Analysis

At each stage of any test you are to record details of the following.
colour changes seen
the formation of any precipitate
the solubility of such precipitates
When gases are released they should be identified by a test, described in the appropriate
place in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and re-use test-tubes and boiling tubes where possible

Where reagents are selected for use in a test, the full name or correct formula of the reagents must be given.

(a) FA 7 contains one cation and one anion from those listed in the Qualitative Analysis
Notes on pages 10 and 11.
Put two spatula measures of FA 7 into a test-tube.
Add about two-thirds of a test-tube of distilled water and dissolve the solid
(i) Carry out the following tets and complete the table below.

test	observation(s)
Add 5 drops of aqueous barium chloride (or barium nitrate) to your solution of FA 7.	
Add 5 drops of aqueous silver nitrate to your solution of FA 7.	

412 Numbus			

	6LS fo 06I ว8ed	Јeunexa \%ว!	ม.
	6259006 \%sed	गeuwerg ¢!ned	

Solution contains the chloride ion
Explain the evidence that supports your conclusion.
Explain.
(c) From the results of the tests in (b) state which solution contains the chloride ion, Cl^{-}.
E

	/ə6u	!prea ou ou_dd ou	łdd ө!! ${ }^{\text {¢ }}$ ¢	(add әџ! оұ өэиадјв моㅆе) zdd ou		(be) ${ }^{\text {¢ }} \mathrm{HN}+$	
			łdd ө!!	ข๐и6!		(be) $\mathrm{HO} \mathrm{O} \mathrm{N}+$	
c $\forall \pm$			t $\forall \boldsymbol{d}$	$\varepsilon \forall 」$			
[દ]	\downarrow	 			OWW		(p)

(a) Use information from the Qualitative Analysis Notes on page 11 to select a pair of
reagents that, used together, identify the halide ion present. The reagents are
No additional tests for ions present should be attempted
If any solution is warmed directly with a Bunsen burner a boiling-tube MUST be used. Rinse and reuse test-tubes where possible.
Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
At each stage of any test you are to record details of the following.

- colour changes seen
el!d!
You will carry out tests to deduce the following.
- the solution containing the chloride ions
the solution containing barium ions
W.Smashingcience.org

Solution FA 6 contains a potassium salt.
Qi Qualitative: Inorganic ions test Chem 10 Q\# 58/ ALvl Chemistry/2010/s/TZ 1/ Paper 3/Q\# $2 /$: 0)
www.SmashingScience.org
2 Solutions FA 3, FA 4 and FA 5 each contain a Group 2 halide.

- the anion present in FA 6
followed by The reagents are

[^14]

§			ड
-	-	-	-

	 dp Z 이 Z 버 fo ssew s, ад刀 ипаи jsaq ath spapas nauluex 	
\downarrow	 	
\downarrow	 Buipeal әyanq fepuu ue se (00°) 0 g peray 	
\downarrow	 	
\downarrow	 II	
\downarrow	 (pesn) $\tau \forall\lrcorner$ ($\downarrow 0$ ssew) 	(e) 1

2(e)	Question 1 measuring cylinder greater error than burette / pipette - molar gas volume of $24 \mathrm{dm}^{3}$ may not be valid/temperature of the lab may not be known - use gas syringe (if volume $<100 \mathrm{~cm}^{3}$) - too much gas for the measuring cylinder (check that vol $>250 \mathrm{~cm}^{3}$)	1
	Question 2 - dilution introduces extra stage / greater cumulative error - methyl orange end-point can be difficult to see / colour change gradual / difficult to see	1
Q\# 5/ T1 Acid Base Titration ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org		
$2(a)$	1 Initial and fnal readinos and ditre reoorded for a minimum of two accurate itre detais tabulate (minimum 2×3 boxee)	1
All burette readings should be rounded to the nearest $0.05 \mathrm{~cm}^{3}$. Subtractions should be checked. The 'best' titres should be selected using the hierarchy: two (or more) identical; then 2 (or more) within $0.05 \mathrm{~cm}^{3}$; then two (or more) within $0.1 \mathrm{~cm}^{3}$. eto the mean titre calculated and this then compared with the supervisor's value.		
	II and III Award II and III for $\delta<0.20 \mathrm{~cm}^{3}$ Award II for $0.20<\delta<0.40 \mathrm{~cm}$	2
${ }^{\text {2(b)(i) }}$	Correaty calculates moles $\mathrm{HCl}=\frac{\text { vol of } \mathrm{FA} 2 \text { from }(\mathrm{a}) \times 0.100}{1000}$and moles NaOH are the same	1
2(b)(ii)	Correctly calculates moles NaOH added to $\mathrm{W}=0.40 \times 250 \div 1000=0.10$ and moles NaOH remaining $=$ answer to $(\mathbf{b})(\mathbf{i}) \times 10$	1
2(b)(iii)	```Correctly uses moles NaOH reacting with W = 1st answer in (b)(ii) - 2nd answer in (b)(ii) (0.10-2nd answer in (b)(ii)) and moles W = answer + 2```	1
2(b)(iv)	Correaty uses $M_{\text {c of }} \mathbf{W}=4+$ answer to (b)(iii)	1
2 (b)(v)	Expression to show $59+$ A, of $\mathrm{X}=\mathrm{M}_{\text {t }}$ from (b)(iv)	1
	Identification of X as halogen with nearest A to that alalulated	
$2(0)$	Error Mass was given correot to it is fif /nearest o or Error: Hydrolysis of halogeno group may be incomplete Modifration: Use more concentratad NaOH / heat tor longer	,
${ }^{2(d)}$	If F chosen then 87 Cl chosen then 86 or 117 If 162 If Br chosen then 118 or 163	1
Q\# 6/ T1 Acid Base Titration ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# :0) www.SmashingScience.org		
${ }^{1(a)}$	1 Inital and final readings and titre recorded for rough tite and accurate tite details tabulated (minimum 2×2 boxee)	1
	II All three headings and units correct for accurate titrations Headings: initial / final (burette) and reading / volume / vol or reading / volume / vol at start / finish (but not V) and / FA 2 and added/used or titre and Units: $\left(\mathrm{cm}^{3}\right)$ or $/ \mathrm{cm}^{3}$ or in cm^{3} [or cm^{3} by every entry]	1
	III All accurate burette readings are recorded to the nearest $0.05 \mathrm{~cm}^{3}$ Do not award this mark if. - $50(.00)$ is used as an initial burette reading: - more than one final burette reading is $50(.00)$ - any burette reading is greater than $50(.00)$	1
	IV The final acourate itite reocrded is within $0.1 \mathrm{~cm}^{3}$ of any other accurate titre.	1
All burette readings should be rounded to the nearest $0.05 \mathrm{~cm}^{3}$. Subtractions should be checked The 'best' titres should be selected using the hierarchy: two (or more) identical; then 2 (or more) within $0.05 \mathrm{~cm}^{3}$; then two (or more) within $0.1 \mathrm{~cm}^{3}$, etc, the mean titre calculated and this then compared with the supervisor mean titre.		
	V, VI and VII Award V, VI and VII for a difference from supervisor within $0.20 \mathrm{~cm}^{3}$ Award V and VI for $0.20<5<0.40 \mathrm{~cm}^{3}$ Award V for $0.40<5<0.60 \mathrm{~cm}^{3}$	3

Q\# 6/ T1 Acid Base Titration ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org Initial and final readings and titre recorded for rough titre or reading volumetve al starf finish
and

All

I
,

$$
\underline{x}
$$

2 \begin{tabular}{|l|}

\hline $2(b)$

\hline $2(b)$

\hline

\hline 2(b)(iv) \& Correectly uses M_{r} of $\mathrm{W}=4+$ answer to (b)(i)

\hline 2(b)(v) \& Expression to show $59+A_{\text {t }}$ of $\mathrm{X}=M_{r}$ from (b)(iv)

\hline
\end{tabular}

 III Al hree headings and units correct for acourate turation
Heasdings: intial / final (burete) and reasing volume /vol
and

- any burete reading is greater thi

1 (b)	Candidate must average two (or more) titres for which the total spread is not greater than $0.2 \mathrm{~cm}^{3}$. Working must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should normally be quoted to $2 d p$ rounded to the nearest 0.01 . Example: 26.667 must be rounded to 26.67 . Two special cases where the mean may not be to 2 dp : allow mean to 3 dp only for 0.025 or 0.075 e.g. 26.325 ; allow mean to 1 dp if all accurate burette readinge were given to 1 dp and the mean is exactly correct e.g. 26.0 and $26.2=$ 26.1 is correct but 26.0 and $26.1=26.1$ is incorrect. Do not award this mark it: any selected titre is not within $0.20 \mathrm{~cm}^{3}$ of any other selected titre; the rough bitre was used to calculate the mean; the candidate carried out only 1 accurate titration; burette readings were incorrectly subtracted to obtain any of the accurate titre values. All burette readings, excluding initial 0 , (resulting in titre values used in calculation of mean) are integers. Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.	
${ }_{1(0)(0)}$	All answers to (c) correct to 3 or 4 sig figs.	1
${ }^{1(0)(i)}$	Correetly calculates moles $\mathrm{Na} 2 \mathrm{CO}^{\text {a in }} 25.0 \mathrm{~cm}^{3}$ FB $1=\frac{1.30}{100 \times 10}$	1
${ }^{1(c)(i i i)}$	Correcty calculates answer to (c)(ii) $\times 2$	1
${ }^{1(0)(\text { (iv) }}$	Correcty uses $\frac{\text { answer to (iii) } \times 1000}{\text { Volume from (b) }}$	1

	1	 	(1) (p)
[s]	\downarrow		
	1	иодеппюеэ рәноэ 	(A!)
	\downarrow		(!!!)
	\downarrow	$\frac{(\mathbf{q})}{(\mathrm{t})(0) \text { OSZ }} \text {,o esn smous ॥ }$	(!!)
	1		(1) (0)
[เ]	1	 100 	(q)

[\dagger]	\downarrow	 дпо рәшиел иәәq оs/e sеч 'дәцио 		
	\downarrow	иоиеди! әјел wo so 0 		
	\downarrow	 		
	\downarrow	аш	(e)	τ

(b)	ACE interpretation	Calculates the mean to appropriate decimal places. The mean should normally be quoted to 2 dp rounded to the nearest 0.01 . Example: 26.667 must be rounded to 26.67 . Two special cases where the mean may not be to $2 d p$: allow mean to 3 dp only for 0.025 or 0.075 e.g. 26.325 ; allow mean to 1 dp if all accurate burette readings were given to 1 dp and the mean is exactly correct. eg 26.0 and $26.2=26.1$ is correct but 26.0 and $26.1=$ 26.1 is incorrect. Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the Examiner for the purpose of assessing accuracy.	1 [1]
(c)	ACE interpretation PDO display PDO display	All answers correct. (i) $0.15 \times$ (b) $/ 1000$ (ii) (i)/2 (iii) (ii) $\times 400$ Working shown in (i) and (iii) All answers given to 3 or 4 sig figs (minimum 2).	1 1 [3]
(d)	ACE interpretation	Correctly works out \% difference to min 2 sig figs.	[1]
[Total: 10]			

> [Total: 10]

[zı]		12łol	1 uo
[t]		 sZo 0 /(!!) uo!ssendx I 	(1!) (!!!) (!!)(!)(0)
[เ]	1	 $\varepsilon^{\omega ๊} 0 Z^{\prime} 0$ 	(q)
[L]	1	बле лөи! 	

(c)	PDO Display ACE Interpretation ACE Conclusion	I Uses the expression $\frac{0.0200 \times \text { (b) }}{1000}$ in (i) (or answer correct to 3 or 4 sf) II Correctly evaluates $\frac{0.0530 \times 25}{1000}$ in (ii) (to 3 or 4 sf) III $\frac{\text { answer to (ii) }}{\text { answer to (i) }}$ in (iii) and correct answer to 2,3 or 4 sf IV Equation 2 as ratio is $5: 2$ or $21 / 2$ and reference to their answer in (iii) Allow ecf V Oxidation state $=(+) 4$ in (v) from equation 2 Allow ecf ($(+13$)	1 1 1 1 1	[5]
Qn 1	Total			

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} \& \multicolumn{2}{|l|}{}

\hline ［G］ \& L
し

L \& \begin{tabular}{l}

（＇oveds

ᄂ $\forall \mathbf{j}$ ssem／00।

（6ulpuno」

（（！！！）wo» рәмо॥е fəө）uмочs is of

 8GS $\times(!!!)$ ol sue III

sdops ןeиор！ppe ou 4！！м

Ol \times（！！）ol sue

pue

70อио

 \&

Kelds！a OOd

uoṇełəə』dəəృu｜ ヨコナ
\end{tabular} \& （0）

\hline ［乙］ \& \downarrow \& | ＇jeu！uexヨ Kq pesn łeपұ |
| :--- |
| |
| |
| （1）$G \varepsilon^{\prime} \downarrow Z=t^{\prime} \downarrow Z$ pue $\varepsilon^{\prime} \downarrow$ до ueəW |
| |
| |
| |
| |
| |
| |
| |
| |
| se səoe｜d ןеш！ |
| |
| |
| |
| |
| | \& | Ke｜ds！O OOd |
| :--- |
| uo！s！ioo OWW | \& （q）

\hline
\end{tabular}

Examiner rounds any burette readings to the nearest $0.05 \mathrm{~cm}^{3}$ ，checks subtractions and then selects the＂best＂titre using the hierarchy： two identical；titres within $0.05 \mathrm{~cm}^{3}$ ；titres within $0.1 \mathrm{~cm}^{3}$ ；etc to calculate mean（ignore any labelled rough）． Examiner compares［corrected mean titre／corrected mass of FA 1］with Supervisor result．Calculate the ratios to 2 dp ．			
MMO Quality	Award V，VI and VII if $\delta \leq 0.05\left(\mathrm{~cm}^{3} \mathrm{~g}^{-1}\right)$ Award \mathbf{V} and VI if $0.05<\delta \leq 0.10$ Award V only if $0.10<\delta \leq 0.20$ If the＂best＂titres are $\geq 0.60 \mathrm{~cm}^{3}$ apart cancel one of the Q marks．	1 1	7］

［91： ¢еłо1］$^{\text {a }}$				
［乙］	L	$\begin{equation*} 00 L \times\{\text { pesn } \operatorname{ssew} /(!) \times Z\} \tag{!!} \end{equation*}$ 	uo！̣ełృコdıə̨u｜ ヨコナ	（p）

	후	Ξ				준	Ξ	Ξ	Ξ	三	$\bar{\square}$
Ξ	$\Xi \underset{\sim}{\top}$	Ξ	즈	Ξ	苞						
				Working shown in each step attempted							
	$\frac{\stackrel{0}{\circ}}{\stackrel{\circ}{0}}$										
E	ㄹ	a	唇		$\underset{\Xi}{\underline{E}}$	§	ชิ	©	\pm	（6）	

z	$00 \mathrm{~L} \times\left(\frac{\varepsilon 8 \mathrm{~s}}{8 \mathrm{l}}\right)={ }^{2}(\mathrm{HO}) 6 \mathrm{~W}$ woul $\mathrm{ssol} \%$ शd ${ }^{2}$ ． 	（0） 2
\downarrow	（＇əqøy ग！pouəd 	（mil）（q）z
\downarrow		（ l ）（9） C

（a）

命

During the exam, the supervisor (not the invigilator) must do all the experiments and record the
results on a spare copy of the question paper, clearly labelled 'supervisor's results'.
If chemicals are prepared in more than one batch, clearly labelled supervisor's results must be
provided for each batch. The candidates using each batch must be listed on the supervisor's report.

Apparatus

$1 \times 25 \mathrm{~cm}^{3}$ pipette
$1 \times 50 \mathrm{~cm}^{3}$ burette
$1 \times$ burette stand and clamp
$2 \times 100 \mathrm{~cm}^{3}$ beaker
$1 \times$ white tile
$1 \times$ stop-clock to measure to an accuracy of 1 second
$2 \times$ teat/dropping pipette
$1 \times$ stop-clock to measure to an accuracy of 1 second
$2 \times$ teat/dropping pipette
$1 \times$ spatula
$1 \times$ crucible with lid (approximate capacity $15 \mathrm{~cm}^{3}$)
$1 \times$ crucible tongs
$1 \times$ pipe-clay triangle
$1 \times$ tripod
$1 \times$ Bunsen burner
$1 \times$ heat-proof mat
$1 \times$ test-tube holder
$2 \times$ boiling tube
$1 \times$ hard-glass test-tube
$8 \times$ test-tube
$1 \times$ test-tube rack

$1 \times$ wash bottle
$1 \times$ pen for labelling glassware
paper towels
red and blue litmus papers
aluminium foil for testing nitr
aluminium foil for testing nitrate/nitrite
wooden splints
the apparatus normally used in the cent
the apparatus normally used in the centre for use with limewater in testing for carbon dioxide
*Candidates are expected to rinse and re-use test-tubes where possible.
Additional tubes should be available.
Where balance provision is limited, some candidates should be instructed to start the exam with
different questions. See the current syllabus for balance: candidate ratio.
Apparatus
$1 \times 25 \mathrm{~cm}^{3}$ pipette
$1 \times$ pipette filler
$1 \times 50 \mathrm{~cm}^{3}$ burette
$2 \times 150 \mathrm{~cm}^{3}$ or $250 \mathrm{~cm}^{3}$ conical flask
$1 \times$ burette stand and clamp
$2 \times 100 \mathrm{~cm}^{3}$ beaker
$1 \times$ funnel (for filling burette)
$1 \times$ white tile
$1 \times$ glass rod
$1 \times$ stop-clock to measure to an accuracy of 1 second
$2 \times$ teat/dropping pipette
$1 \times$ spatula
$1 \times$ crucible with lid (approximate capacity $15 \mathrm{~cm}^{3}$)
$1 \times$ crucible tongs
$1 \times$ pipe-clay triangle
$1 \times$ tripod
$1 \times$ Bunsen burner
$1 \times$ heat-proof mat
$1 \times$ test-tube holder
$2 \times$ boiling tube
$1 \times$ hard-glass test-tube
$8 \times$ test-tube
$1 \times$ test-tube rack
balance, single-pan, direct reading, minimum accuracy $0.01 \mathrm{~g}(1$ per $8-12$ candidates) weighing to 200 g
$1 \times$ wash bottle
$1 \times$ pen for labelling glassware
paper towels
red and blue litmus papers
aluminium foil for testing nitrate/nitrite
wooden splints
the apparatus normally used in the centre for use with limewater in testing for carbon dioxide
*Candidates are expected to rinse and re-use test-tubes where possible.
Additional tubes should be available.

Materials

$\begin{gathered} \text { per } \\ \text { candidate } \end{gathered}$	identity	notes (hazards given in this column are for the raw materials)
$120 \mathrm{~cm}^{3}$	$0.0700 \mathrm{moldm}^{-3}$ sulfuric acid	Dilute $70.0 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}[\mathrm{MH}]$ to $1 \mathrm{dm}^{3}$.
$120 \mathrm{~cm}^{3}$	$\begin{array}{\|l\|} \hline 0.150 \mathrm{moldm}^{-3} \\ \text { sodium hydroxide } \\ \hline \end{array}$	Dissolve 6.00 g of $\mathrm{NaOH}[\mathrm{C}]$ in each dm^{3} of solution.
$10 \mathrm{~cm}^{3}$	thymolphthalein indicator	See preparation instructions in current syllabus.
1.3 g	magnesium carbonate	Provide $1.3-1.4 \mathrm{~g}$ of MgCO_{3} in a stoppered container.
$20 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ copper(II) chloride	Dissolve 34.1 g of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}[\mathrm{MH}][\mathrm{N}]$ in each dm^{3} of solution.
$20 \mathrm{~cm}^{3}$	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ iron(III) chloride	Dissolve 27.0 g of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}[\mathrm{MH}][\mathrm{C}]$ in approximately $500 \mathrm{~cm}^{3}$ of $2.0 \mathrm{moldm}^{-3} \mathrm{HCl}$, then make up to $1 \mathrm{dm}^{3}$ with distilled water.
2.0 g	ammonium sulfate	Provide 2.0-2.1 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in a stoppered container.
1.0 g	zinc powder	Provide 1.0-1.1 g of zinc powder [F$][\mathrm{N}]$ in a stoppered container.
$5 \mathrm{~cm}^{3}$	$0.5 \mathrm{moldm}^{-3}$ potassium iodide	Dissolve 83.0 g of KI in each dm^{3} of water.
$20 \mathrm{~cm}^{3}$	$\begin{array}{\|l\|} \hline 0.2 \mathrm{moldm}^{-3} \\ \text { sodium thiosulfate } \end{array}$	Dissolve 49.6 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of water.

- An excess of at least 10% of each material must be prepared to cover accidental loss.
- If you are unable to source any of these ch
 Q\# 18/ G1 Gravimetric Thermal Decomposition AS Chemistry/2019/s/TZ 2/Paper 3/ :o) www.SmashingScience.com

2(a)	I: Table / list of data, to include values and correct headings and units: - Mass of crucible (and lid) - Mass of crucible, (lid) + FB 4 (or 'contents before heating') - Mass of crucible, (lid) + residue / CuO / contents after heating - Mass of FB 4 (used) - Mass of residue / CuO (obtained)		
	Accuracy (Q) marks in 2(a) - To assess accuracy, check the masses of FB 4 used and of CuO obtained by the supervisor and by the candidate. - Work out the ratio mase of FB4/mase of cuo for the supervisor (to $2 \mathrm{~d} . \mathrm{p}$.) - Work out ratio (mass FB 4: mass CuO) for the candidate (2 d.p.) - Calculate δ, the difference between these two ratios.		
	Award II and III	if $0<0.05$	1
	Award III	if $0.05<\delta<0.10$	
	IV: Observations made during heating (Solid changes from) green / turquoise / cyan / blue-green to black (both colours required) or black solid / residue (formed)		1

Specific information for this practical exam

】

 snqeu｜fs fueuno əut ul suoppnısul uoperedad əes	＇OS² ${ }^{2}$－mplows＇ 0 u！＂OuWy－－wplow to＇0	${ }^{\text {unool }}$	［HW］（IIN）શəeuéfuew wn！ssełod рәуррре snoenbe
		${ }_{8}{ }^{4} 001$	
	${ }^{2}(\mathrm{HO})$ eo＇eplxo．pк4 unpies snoenbe pejenjues	${ }_{\text {cuor }}$	［Hw］ләемәш！｜
	${ }^{2}$ 10eg－mplow tro	${ }_{\text {enol }}$	әјеции unueq snoenbe әриолир wnueq snoənbe
	HOEN ${ }_{\text {c }}$－mplomo＇z	${ }_{8}{ }^{1}$	［כ］әpixoup 44 unipos snoenbe
	${ }^{\text {¢ }} \mathrm{HN} \mathrm{s}$－mplomoz	${ }_{\text {¢ }} \mathrm{u} 0 \mathrm{OL}$	［ N$][\mathrm{Hw]}$［0］eluoume snoenbe
		${ }_{\text {cuo }}$	［Hw］ploe oungns əŋn！p
	\＆ONH e－wplowoz	${ }_{\text {c }}{ }^{\text {woor }}$	
	15 Ha －mplomo＇z	${ }_{\text {cuor }}$	
sełou	кıйер！	әэер！риеэ 」əd	19 CP

	uoinnos soleoppul iesianun	${ }_{\text {¢ }}$ Woz	
		${ }_{\text {¢ }}$	［нw］［нн］［л］u！ə¢чдчдоохкит
	лөеем рә！l｜sip	${ }_{\text {¢ }}$ Ш000	ләұем рәוIIs！p
		${ }_{\text {¢ }}$ Woz	
	әриоочэ（II）${ }^{\text {esəuebuew }}$ c－uplout＇o	${ }_{\text {¢ }}$ Woz	
 		${ }_{\text {¢ }}$	［HW］9 8s
		$6 \mathrm{~S}^{\prime} \downarrow-\mathrm{E}^{\prime} \downarrow$	［HW］98s
	əjeuoques（II）${ }^{\text {a }}$（doos orseq		［N］［HW］+ 8s
	әpıxолрки un！pos 	$\varepsilon^{\text {moozl }}$	283
 	pixe ग！uoynsop！ue	$61 . \varepsilon-0$ ¢	［HW］เ8」
sełou	Кıииәр！	ฆер！риеэ Jad	｜eqe｜

 ＊Candidates are expected to rinse and reuse test－tubes where possible．
Additional tubes should be available．

 red and blue litmus papers

$$
\begin{aligned}
& 1 \times \text { test-tube holder } \\
& 1 \times \text { stop-clock or sigh } \\
& 1 \times \text { was bottle cont }
\end{aligned}
$$

$1 \times$ test－tube rack
$1 \times$ test－tube holder
$1 \times$ pipe－clay triangle
$1 \times$ hard－－lass
$8 \times$ test－tube

\times crucible tongs
$\times \times$ tripod
\times g lass rod
\times crucible，capacity approximately $15 \mathrm{~cm}^{3}$ ，with lid
\times heatproof mat
$\times \times$ spatuld
\times glass rod
$1 \times$ burette stand and clamp
$1 \times$ funnel（for filling burette）
$1 \times$ white tile
$1 \times$ spatula
$2 \times$ teat $/$ dropping pipette
$\times 250 \mathrm{~cm}^{3}$ beaker
$\times 150 \mathrm{~m}^{3}$ or $250 \mathrm{~cm}^{3}$ conical flask
\times burette stand and clamp
$\times 250 \mathrm{~cm}^{3}$ volumetric flask
\times pipette filler
The apparatus listed must be provided to each candidate． Apparatus

2 （b）（i）	Correctly calculated no．of moles of CuO －No．of moles $\mathrm{CuO}=$ massof residue $/$／9． ． －Answer must be correct and expressed to 2,3 or 4 sig．fig．	1
2（b）（i）	Correct use of mole ratio 1：2 －No．of moles of $\mathrm{FB} 4=\operatorname{anower}(1) / 2$	1
	Correctly uses n to calculate M_{r} of copper hydroxycarbonate， －Answer（for M_{r} ）must be expressed to 2,3 or 4 sig．fig． －Some working must be shown to access the second mark	1
2（b）（ii）	$M_{r}=221$	1
	Appropriate comment on the value of y －II answer 2（b）（ii）is less than 221，candidate should state that y is negative，so the experiment has been inaccurate －If answer 2（b）（iii）is between 213 and 229 ，then（within experimental error）there is no water of crystallisation －If answer 2（b）（ii）is greater than 221，candidate should calculate the value of y and state that it should be an integer	1
2（c）	Heat to constant mass（or description of procedure）	1

Apparatus
The apparatus listed must be provided to each candidate.
Apparatus
The apparatus listed must be provided to each candidate.

$$
1 \times 250 \mathrm{~cm}^{3} \text { measuring cylinder }
$$

$2 \times$ stand, clamp and boss
$1 \times 250 \mathrm{~cm}^{3}$ side-arm conical flask, labelled \mathbf{X}, with bung and approximately 50 cm of plastic/rubber
delivery tube to fit or delivery tube to fit or $1 \times 150 \mathrm{~cm}^{3}$ or $250 \mathrm{~cm}^{3}$ conical flask, labelled \mathbf{X}, with 1 -hole bung connected to approximately 50 cm of plastic/rubber delivery tube to fit $1 \times$ tub suitable for acting as trough, minimum capacity $1 \mathrm{dm}^{3}$
$1 \times$ crucible, capacity approximately $15 \mathrm{~cm}^{3}$, with lid $1 \times$ spatula
$1 \times$ pipe-clay
$1 \times$ tripod
$1 \times$ stop-clock or sight of clock with seconds display
$8 \times$ test-tube ${ }^{*}$
$1 \times$ test-tube rack
$2 \times$ teat/dropping pipette
$1 \times$ Bunsen burner
$1 \times$ heatproof mat
$1 \times$ wash bottle of distilled water
access to balance weighing to a minimum accuracy of 0.1 g
paper towels
red and blue litmus papers
aluminium foil for testing nitrate/nitrite
wooden splints
the apparatus no
*Candidates are expected to rinse and reuse test-tubes where possible.
Additional tubes should be available.
Where balance provision is limited, some candidates should be instructed to start the exam with
different questions. See the current syllabus for balance: candidate ratio.
Materials
Waming: small amounts of $\mathrm{SO}_{2}[\mathrm{C}][\mathrm{T}]$, which can cause respiratory distress in some people, may be produced. The laboratory must be well
ventilated.

label	$\begin{gathered} \text { per } \\ \text { candidate } \end{gathered}$	identity	notes
FA 1 [MH]	$50 \mathrm{~cm}^{3}$	$4.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid	Dilute $340 \mathrm{~cm}^{3}$ of concentrated ($35-37 \%$; approximately $11 \mathrm{~mol} \mathrm{dm}^{-3}$) $\mathrm{HCl}[\mathrm{C}][\mathrm{MH}]$ to $1 \mathrm{dm}^{3}$.
FA 2	$0.6 \pm 0.1 \mathrm{~g}$	small marble chips (approx. $2-4 \mathrm{~mm}$)	Provide $0.6 \pm 0.1 \mathrm{~g}$ of CaCO_{3} (as small marble chips) in a stoppered container.
FA 3	$1.5 \pm 0.1 \mathrm{~g}$	magnesium carbonate	Provide $1.5 \pm 0.1 \mathrm{~g}$ of any powdered form of MgCO_{3} or $\mathrm{MgCO}_{3} \mathrm{Mg}(\mathrm{OH})_{2}$ in a stoppered container.
FA 4	$15 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ potassium iodide	Dissolve 33.2 g of KI in each dm^{3} of solution.
FA 5	$15 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ sodium thiosulfate	Dissolve 49.6 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of solution.
FA 6	$10 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ calcium chloride	Dissolve 22.2 g of $\mathrm{CaCl}_{2}[\mathrm{MH}]$ in each dm^{3} of solution.
FA 7	$10 \mathrm{~cm}^{3}$	$0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ magnesium sulfate	Dissolve 123.2 g of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of solution.
aqueous chlorine $[\mathrm{MH}][\mathrm{N}]$	$5 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ sodium chlorate(I) (may be labelled sodium hypochlorite	Dilute $200 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3} \mathrm{NaClO}[\mathrm{C}][\mathrm{N}]$ to $1 \mathrm{dm}^{3}$. This is approximately $3 \% \mathrm{w} / \mathrm{w}$ available chlorine from chlorine-bleaching solutions (may be labelled sodium hypochlorite). Provide in a stoppered container.
aqueous copper(II) sulfate [C][N]	$5 \mathrm{~cm}^{3}$	$0.2 \mathrm{moldm}^{-3}$ copper(II) sulfate	Dissolve 49.9 g of $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}[\mathrm{C}][\mathrm{MH}][\mathrm{N}]$ in each dm^{3} of solution.

\qquad
Q\# 19/ G1 Gravimetric Thermal Decomposition Mark Scheme and Confidential Instructions

2(a)	I Correct headings and units shown. Mass of crucible (+ lid) (Use of lid must be consistent) Mass of crucible (+ lid) + FA 3 Mass of crucible (+ lid) + residue / contents after heating Mass of FA 3 (used) Mass of residue	
	II All balance readings to same dp and recorded mass QCO_{3} between 1.30 g and 1.50 g AND Mass QCO_{3} and residue correctly calculated	
	Award III and IV if 5 < 0.10	
	Award IV if $\delta<0.20$ Do not allow any Q marks if mass of residue $>$ mass of FA 3 .	
2(b)(i)	Correctly calculates moles $=$ candidate's mass lost $/ 44$ and answer to 2-4 sf	
2(b)(ii)	$\text { Correct use of } M_{t}=\frac{\text { candidate's mass of } \mathrm{QCO}_{3}}{\text { (b)(i) }}$	
	Use of 60	
	Use of 3-4 sf for Mr and correct A_{r} If no subtraction at step 2 then step 3 cannot be awarded. Identification of Q as Group 2 metal with nearest A_{r} Do not allow ecf if no evidence to support conclusion.	
	Be < 16.65; 16.65 < Mg < 32.10; $32.10<\mathrm{Ca}<63.85$; $63.85<\mathrm{Sr}<112.45$; $112.45<\mathrm{Ba}$	
2(c)	So that water vapour/ carbon dioxide (from air) not absorbed.	
2(d)(i)	Heat to constant mass.	
2(d)(ii)	Add an acid and it will fizz / bubble / effervesce or Add named acid and pass gas through limewater which turns milky / cloudy white / chalky / forms white ppt	
2(e)(i)	(Mass lost too low \rightarrow) moles CO_{2} too low (\rightarrow moles QCO_{3} (or residue) too low $\rightarrow M_{\text {r }}$ too high \rightarrow) $A_{\text {r }}$ too high	
2(e)(ii)	Method is valid since $1 \mathrm{~mol}_{\mathrm{QCO}}^{3}$ gives 1 mol QO . OR moles QO : $\mathrm{CO}_{2}=1: 1$	

 $8 \times$ test-tube
$1 \times$ test-tube rack
$1 \times$ test-tube holder $1 \times$ pipe-clays test-tube
$1 \times$ hard-glass
$3 \times$ boiling tube
$8 \times$ test-tube
$1 \times$ test-tube rack $1 \times$ pipe-clay triangle podul $\times 1$

 әјр!риеэ чэеә лэ」 ع Pipette fillers (or equivalent safety devices), suitable eye protection and disposable gloves should
be used where necessary. 1 In addition to the fittings ordinarily contained in a chemical laboratory, the apparatus and materials
specified below will be necessary.

ゅ	:\|e201		
$\stackrel{1}{ }$			(1)())
\downarrow		 	
\downarrow		pouəd ләбио이 доㅣㄴ Криәб әлош јеәи 	(1) 02
$\stackrel{ }{ }$		 pinous әұер!pueว	(A)(9)z
$\stackrel{ }{ }$			(M)(9)
$\stackrel{1}{ }$			(m)(9)
$\stackrel{ }{ }$			(1)(9)

	II Masses recorded - Mass of FB 4 used was claimed to be between 1.1-1.3g - All balance readings recorded to same number of decimal places (at least one dp)	1	
	III Mass of FB 4 and of residue - Mass of FB 4 used, correctly subtracted - Mass of residue, correctly subtracted	1	
	IV and V - Use corrected values - Examiner used corrected values and works out the ratio mass of $\mathrm{FB} / \mathrm{m}_{\text {mass of } \mathrm{M}_{9} \mathrm{O}}$ to 1 dp for the candidate Accuracy marks are awarded as shown. Award IV if ratio between 1.4-2.5 Award Vif ratio between 1.7-2.3	2	[5]
(b) (i)	Correctly calculates $\mathrm{n}(\mathrm{MgO})$ \quad mass of residive $/ 40.3$ - Answer must be expressed to 2,3 or 4 significant figures	1	
(ii)	Correct use of (i) and mass of FB 4 - $n\left(\right.$ FB 4) $={ }^{\text {answer (i) }} / 2$ - $M_{r}=$ mass of FB 4 used $/$ no of moles of FB 4 - An answer for M_{r} must be quoted to 2 or more significant figures	1	
(iii)	M_{r} calculated from A_{r} values in Periodic Table $=178.6$	1	
(iv)		1	
	Makes a correct statement (support/does not support/yes/no) about the accuracy of the possible formula, explained by whether the experimental M_{t} value is close to the answer in (iii). Numbers must be quoted or reference made to (ii) and (iii)	1	[5]

			于	$\stackrel{\text { F }}{ \pm}$
-	\checkmark	-	-	
$\begin{aligned} & \mathrm{E} \\ & \hat{0} \end{aligned}$	€	丰		

घम० כЈ Where the provision of balances is limited, some candidates should be instructed to start the
examination with Question 2 . See page 58 of the current syllabus for balance: candidate ratio. * Candidates are expected to rinse and re-use test-tubes where possible
Additional tubes should be available.

 $8 \times$ test-tube*
$1 \times$ test-tube rack
\times test-tube holder
 pod!ll \times $1 \times$ crucible tongs
$1 \times$ heat-proof mat \times teat/dropping pipette
\times crucible with lid, capacity approximately $15 \mathrm{~cm}^{3}$ \times funnel (for filling burette)
\times white tile
\times spatula $1 \times 250 \mathrm{~cm}^{3}$ volumetric (graduated) flask
$1 \times$ burette stand and clamp
$1 \times$ funnel (for filling burette)
 3 For each candidate
Pipette fillers (or equivalent safety devices), safety goggles and disposable gloves should be used
where necessary. In addition to the filtings ordinarily contained in a chemical laboratory, the apparatus and materials
specified below will be necessary.

－	－	－	－	－	－
$\stackrel{\underset{E}{\stackrel{E}{9}}}{\stackrel{y}{*}}$		奋	$\underset{\text { E }}{\text { E }}$	©	

Apparatus

In addition to the fittings ordinarily contained in a chemical laboratory，the apparatus and materials specified below will be necessary
2 Pipette fillers（or equivalent safety devices），suitable eye protection and disposable gloves should be used where necessary．
$1 \times 25 \mathrm{~cm}^{3}$ measuring cylinder
$1 \times 250 \mathrm{~cm}^{3}$ beaker
$1 \times$ thermometer $\left(-10^{\circ} \mathrm{C}\right.$ to $+110^{\circ} \mathrm{C}$ at $1^{\circ} \mathrm{C}$ graduations）
$1 \times$ boiling tube labelled
$8 \times$ test－tube ${ }^{*}$

$1 \times$ spatula
$1 \times$ Bunsen burner
$1 \times$ tripod
$1 \times$ gauze
$1 \times$ heatproof mat
$1 \times$ wash bottle containing distilled water
paper towels

1（b）	1	Rate on y axis and volume of FB 1 on the x axis With correct labels and units． Do not penalise missing／incorrect unit if penalised in 1 （a）II（ecf）	1
	II	Linear scales chosen so that the graph occupies more than half the available length for both axes（ 7×5 big squares）	1
	III	All points recorded plotted correctly to within half a small square and in the correct square or on the line if it should be on the line and not on the line if it shouldn＇t．	1
	IV	Draws a line of best fit． This can be a straight line or smooth curve．	1
1（c）		Fate is proportional to concentration of thiosulfate	1
1（d）（i）		（Carbonate／quenching bath）removes $\mathrm{H}^{+} /$neutralises acidic solution（so reaction stops）．	1
1（d）（i）		know when the carbonate has been neutralised／no more carbonate（solution）remains／more carbonate needs to be added R xture becomes acidic／pH drops below $7 / \mathrm{pH}$ is no longer $\geqslant 7$	1
1（e）（i）		```1: moles of H}\mp@subsup{\textrm{H}}{}{+}=2(.00)\times1\mp@subsup{0}{}{-2 ND oles of S2O}\mp@subsup{\textrm{O}}{3}{-}=4.5(0)\times1\mp@subsup{0}{}{-3 2:}2(.00)\times1\mp@subsup{0}{}{-2}>2\times4.5(0)\times1\mp@subsup{0}{}{-3}/9(.0)\times1\mp@subsup{0}{}{-3 her valid methods exist (e.g., comparison of volume of acid required to react and volume used).```	2
1（e）（i）		acid concentration remains（almost）constant throughout the experiment aly the conc of thiosulfate affects the rate．	1

1（a）	I Single table to show temperature of FA 2 ／reactant（s），time and rate for 5 experiments．（not all experiments need have been done－minimum 2）	1
	11 Headings unambiguous and units correet－displays：（ ${ }^{\circ} \mathrm{C}$ ）．／ s ，in s^{-1}（ignore factor of 1000 in rate unit）	1
	III All temperatures recorded to .0 or -5 ，all times as integers． （minimum 4 experiments carried out）	1
	IV Selects temperatures in experiments 4 and 5 that are $>4^{\circ} \mathrm{C}$ apart from all others and none above $60^{\circ} \mathrm{C}$ ． （Paper states $55^{\circ} \mathrm{C}$ but T for Expt 2 may be slighty higher．）	1
	V Rates correctly caliculated to 2－4 sf （ minimum 3 resulta）	1
	Award VI if candidate for expt 1 is within 10% of supervisor （If expts have been renumbered by candidate then compare time for the expt carried out at the lowest temperature．）	1
	Award VII if all times decrease with increasing temperature．	1
	Award VIII if all results give an increasing gradient graph （Allow if 4 out of the 5 points show an increasing gradient line．） （Do not award if no graph drawn or fewer than 5 points plotted．）	1
${ }^{1(b)}$	I Axes labelled（name or unit）and linear scales chosen so graph occupies more than half the available length for both axes including $15^{\circ} \mathrm{C}$ on x－axis and 0 on y－axis．	1
	II All points recorded（minimum 4 recorded）accurately plotted Any point which should be on a line must be on that line． Any point not on a line must be in the correct part of the small square If blobs shown then they must be correctly centred and be less than $1 / 2$ a small square across．	1
	III Line of best fit drawn（smooth curve expected but allow suitable straight line） Ignore any obviously anomalous points．	1
	IV Anomalous points indicated and line extrapolated to $15^{\circ} \mathrm{C}$ If no points anomalous then smooth line very close to all points	1
${ }^{1(0)}$	Both construction lines at $17.5^{\circ} \mathrm{C}$ shown Allow other clear indication linking $17.5^{\circ} \mathrm{C}$ with rate	1
	Correctly calculates time from rate reading（ignore of） Rate must be correctly read from the graph（to within $0.5 \mathrm{~s}^{-1}$ of examiner value） If no construction lines are drawn examiner infers rate and checks rate and time given by candidate． If construction lines／＇point＇drawn in wrong place then allow as ecf（i．e．wrong temp selected）	1
${ }^{1(d)}$	Rate of reaction increases with／is proportional to increase in temperature because it／graph line curves upwards／has a positive gradient or figures from table． Directly proportional is CON	1
	Rate of rate of reaction increases because gradient increases with temperature／rate of reaction increases more／at a greater rate than increase in temperature as gradient increases（or from relevant figures from graph or results table）	1
${ }^{1(e)(1)}$	Correctly calculates initial concentration of thio to 2－4 sf． $18.1 / 248.2=0.073 / 0.0729 / 0.07293 \mathrm{~mol} \mathrm{dm}^{-3}$ （Penalise incorrect of only once in this section．）	1
${ }^{\text {1（e）（ii）}}$	Correctly calculates concentration of acid in the mixture to $2-4 \mathrm{sf}$ $0.05 \square^{2} / 3=0.033(3) \mathrm{mol} \mathrm{dm}^{-3}$	1

若

iLs fo cz arsed $_{\text {d }}$
Patrick Brannac

Q\# 25/ Qo Qualitative: Organic compounds test ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# :o)

Q\# 24/ Qo Qualitative: Organic compounds test ALva Chemistry/2022/w/TZ 1/Paper 3/Q\# :o)
NOTE: Small amounts of $\mathrm{SO}_{2}[\mathrm{C}][\mathrm{T}]$, which can cause respiratory distress in some people, may be produced. The laboratory must be well
ventilated.
 sчиешอย!! It should be noted that descriptions of substances given in the Question Paper may not correspond with the specifications in these Confidential
Instructions. рац!nbes sıеэ!шәчэ
more 5% sodium carbonate solution to the quenching bath. The Supervisor must monitor the colour of the Universal Indicator in each quenching bath to check
that the solution has not become acidic. If the solution becomes acidic, the Supervisor must add

 3(a)(ii) Ionic equation

эеииеля »วиュед
Page 226 of 579

$$
7
$$

$$
-2
$$

Q\# 28/ Qi Qualitative: Inorganic ions test ALvl Chemistry/2010/s/TZ 1/ Paper 3/Q\# $2 /$:o)

Abstract

ww.SmashingScience.org FA 7 is a tertiary alcohol; FA 8 is an aldehyde; FA 9 is a ketone; FA 10 is a primary alcohol | (h) | ACE Conclusions | No ecf from (g)
 FA 7 contains the tertiary alcohol from no reaction with all three reagents
 or
 no reaction with dichromate and 2,4-DNPH provided there
 is no CON in the observation with Tollens'
 FA 8 contains the aldehyde from the silver (mirror), black or grey precipitate or solution with ammoniacal silver nitrate
 Allow from brown ppt if it is the only positive result with Tollens'. | 1 | [2] |
| :--- | :--- | :--- | :--- | :--- |
| | Total | | | [14] |

Q\# 29/ Qi Qualitative: Inorganic ions test ALvl Chemistry/2022/w/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org | FA 6 is aqueous $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)$ a and $\mathrm{KI;}$; FA 7 gives results for ethanal but is actuall butan-2-01 | | |
| :---: | :---: | :---: |
| 3(a)(i) | observations
 Test 1
 M1: NaOH : white ppt and soluble in excess
 M2: Heat: no change / no (visible) reaction / litmus stays red
 Test 2
 M3: AZ: fizz and NH_{3} / gas turns (damp red) litmus blue Test 3
 M4: $\mathrm{H}_{2} \mathrm{O}_{2}$: brown / (darker) yellow/yellow-brown / orange-brown/red-brown (solution) | 4 |
| 3(a)(i) | possible cations: aluminium / A$]^{3}$ and zinc $/ \mathrm{Z} \mathrm{n}^{2+}$ | 1 |
| 3(a)(ii) | identifying the cation
 M1: cation test: add (aqueous) ammonia
 M2: white ppt soluble in excess $\mathrm{NH}_{3}(\mathrm{aq})$ shows Zn^{2-} | 2 |
| 3(a)(iv) | possible anions: any two from $\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{2}, \mathrm{I}$ | 1 |
| 3(a)(v) | identifying the anion
 if iodide in (iv)
 M1: test. add (aqueous) silver nitrate / AgNO_{3}
 M2: yellow ppt (insol in NH_{3}) shows I^{-}
 if nitrite and nitrate (no iodide) in (iv)
 M1: test: add (acidified aqueous) potassium manganate(VII) $/ \mathrm{KMnO}_{4}$
 M2: purple / KMnO_{4} solution turns (dark) yellow / yellow-brown / orange-brown / red-brown / brown / decolourised shows nitrite
 OR
 M1: add named (dilute) acid
 M2: no fizzing/ no brown gas shows nitrate | 2 | suogenasgo (10)(e)

2	pipe ue s! $(8 \mathrm{\forall t}): \mathrm{ZW}$	(m)(0)
z	 	

3(a)(i)	Reagents used are NaOH and NH_{3}	1
	FA 6 dissolved in (distilled) water (before carrying out tests)	1
	Observations with both cold alkalis - With NaOH : green ppt, insoluble in excess - With NH_{3} : green ppt, insoluble in excess OR If only one of NaOH or NH_{3} was selected, award this mark if the observation is correct, but it must include 'ppt turns brown'.	1
	Observation when heated with NaOH Fizinglububbing and daasNHt tums (moist red) litrus to blue	1
	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Both ions correctly identified } \\ \text { Iron(II) and ammonium } \\ \left(\mathrm{Fe}^{*} \text { and } \mathrm{NH}_{4}{ }^{*}\right) \\ \hline \end{array} \\ \hline \end{array}$	1
3(a)(i)	Anion test and first observation - Add barium nitrate/chloride - White precipitate	1
	Observation with acid and conclusion: - white ppt is insoluble in specified mineral acid (not $\mathrm{H}_{2} \mathrm{SO}_{4}$) - sulfate/ $\mathrm{SO}_{4}{ }^{2}$ - present	1
3(a)(iii)	Ionic equation Any one of the following equations, provided that the appropriate test was carried out. - $\mathrm{Fe}^{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ - $\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$ * $\mathrm{NH}_{4}{ }^{*}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}$ or g)	1
3(a)(iv)	Correct use of M_{r} to calculate no of moles water. Mass of water $=(392)-55.8-192.2-36$	1
	- $\mathrm{n}\left(\mathrm{H}_{3} \mathrm{O}\right)=32 \mathrm{mem} / 18$ (expressed as integer)	1

Q\# 38/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2020/m/TZ 3/Paper 3/Q\# :0) www.SmashingScience.org

${ }^{3(a)(i)}$	Green precipitate and insoluble / no change in excess (NaOH)				1
	(Green) preeipitate darkens and/or goes brown				1
	(When mixture heated) gas /ammonia tums (red) lituus blue				1
	Both cations in FA 6 identified - $\mathrm{Fe}^{2{ }^{2}}$ ions $/$ iron(II) - Ammonium/ $\mathrm{NH}_{4}{ }^{+}$				1
${ }^{3(a)(i)}$	Goes brown / rust/red-brown / orange-brown AND bubbles/fizzing/effervescence				1
3(a)(ii)	$\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{3}+\mathrm{e}^{-} / \mathrm{Fe}^{3+-}-\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{3+}$				1
(b)(i)	Award one mark for every two correct obseevations (") as shown in table below				
test		observations			
		FA7	FA 8		
$\begin{aligned} & \text { Test } 1 \\ & +\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \end{aligned}$		no (visible) reaction / no change / no precipitate/ solid (carbonate) dssolves /no effervescence *	effervescence / fizzing / bubbles * gas/ CO_{2} gives a white ppt with limewater/turns limewater milky/ cloudy white / chalky *		
Test 2 $+\mathrm{H}^{+} / \mathrm{KMnO}_{4}(\mathrm{aq})$		solution turns yellow / brown / orange-brown / red-brown / yellow-brown *	no (visible) reaction/ no change / KMnO / solution stays purple/ colourless solution turns purple / purple solution formed *		
+ starch(aq)		(tums) dark blue/deeep blue /blue-black/ black *	ignore		
$\begin{aligned} & \text { Test } 3 \\ & +\mathrm{AgNO}_{3}(\mathrm{aq}) \end{aligned}$		(pale) yellow pot (formed) *	white ppt (fomed) *		
$+\mathrm{NH}_{2}(\mathrm{aq})$		(ppt) insoluble / does not dissolve /no change *	(ppt) dissolves / soluble/gives a colouress solution *		
3(b)(ii)	Anion in FA 7 is isodide (ion)/I- must be concluded from a (pale) yellow precipitate				
3(b)(iii)	FA 8 is hydrochloric acid/HCl				
3(b)(iv)	One suitable test for H^{+}(reagent and observation) in any acid identified in (b)(iii) $\stackrel{\circ}{\mathrm{OR}}$ named pH indicator and correct final colour - add magnesium and fizzes or gas $/ \mathrm{H}_{2}$ pops with a lighted splint				

,

test	reagent	fa7	FA8
1	kMO\%	Solution / turns and Reject ppt / orange-brown / brown *	Ignore
	starch	black / dark blue / blue-black / black-purple * Reject purple on its own	Igore
2	agNo_{5}	(pale) yellow precipitate (formed) * Reject creamish-yellow	
	NH,	ppot does not dissolve / insoluble /no change.	ppt (mostly) dissolves or partially dissolves or (slightly) cloudy mixture forms
${ }^{3}$	Noot (cold)		
	NaOH (hol)	$9{ }^{\text {ama } / \mathrm{NH}_{2} \text { tums }}$	
	Al	Ignore obserevaton(s) with Al	fizzing / bubbling / effervescence or gas $/ \mathrm{H}_{2}$ pops with lighted spill *
4	H.SO。	no change/no reaction or solution remains colourless * Reject 'no ppt	ned)

3(b)(i)	 If both are named correctly award one mark (out of 2), if both cations are correct, award one mark (out of 2).	2
3(b)(i)		

3(a)(i)	+ AgNO , gives a white ppt	1
	soluble in both $\mathrm{NH}_{3}($ (aq) and $\mathrm{FA} 5 /$ thio	1
3(a)(ii)	CI//chloride	1
3(a)(ii)	Selects $\mathrm{BaCl}_{2} \mathrm{OR} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{HCl} \mathrm{OR} \mathrm{HNO}_{3}$ OR selects acidified (aqueous) KMnO_{4} OR add named mineral acid and test for SO_{2} (e.g. blue litmus turns red; acidified aqueous manganate(VII) paper turns colourless)	1
	Clear display of results to show: white ppt and (partially) soluble in acid OR KMnO4 decolourises OR positive result for SO_{2} AND FA 6 = sodium sulfite	1
3(a)(iv)	$2 \mathrm{Ag}^{*}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{3}(\mathrm{~s})$ Allow sulfate if ppt seen in (iii): $2 \mathrm{Ag}^{*}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})($ sic $)$	1
${ }^{3(b)(1)}$	(Pale) blue ppt dissolves in excess to give a dark blue solution.	1
	+H,OZ ANO AND Effervescence / fizzing / bubbling	1
	gas / oxygen relights a glowing splint	1
3(b)(ii)	$\mathrm{Cu}^{*} /$ / copper(II)	1
3(b)(ii)	$+\mathrm{KI}(\mathrm{aq})$ (turns) brown/yellow-brown/orange-brown/grey-brown Ignore state Allow mustard (brown) Reject red-brown	1
	+FA 5 then (brown solution becomes paler) ppt is off-white / white Allow cream/ pale grey ppt. Ignore effect of excess thio/FA 5.	1
3(b)(iv)	Any 2 of: - (mixture) tums brown owing to the procuction of lodine - ppt tomed is copper(I) iodide (allow copper(II) iodide) I_{2} is reduced (by $\mathrm{S}_{2} \mathrm{O}_{3}^{2}$) $O R \mathrm{~S}$ is oxidised (by I_{2}) (ignore oxidation state of S)	2

эeuueגя >ग!дед

6LS fo 七\&Z ə8ed $_{\text {d }}$

\downarrow				(0) ε
\downarrow	 			
\downarrow				
\downarrow				
\downarrow	(s) /(be) $\mathrm{I}_{\mathrm{I}}+(\mathrm{s}) \mathrm{I} \mathrm{I} \supset z \leftarrow(\mathrm{be})-\mathrm{Ib}+(\mathrm{be})=\mathrm{z}^{\mathrm{n}} \mathrm{Jz}$ yo (s) $z(\mathrm{HO}) \mathrm{nj} \leftarrow$ (be) $-\mathrm{HOZ}+$ (be) $)_{\text {t }} \mathrm{nJ}$ yo (s)roseg - (be) $z^{2} \mathrm{OS}+(\mathrm{be}) \varepsilon^{\mathrm{e}} \mathrm{E}$			(1)(9) ε
\downarrow				(1)(9) ε
\downarrow	2dd aniq (ə\|ed) :HOEN + uәun			
\downarrow				(W)(e)
9	1	Idd әџим	чәц ' ${ }^{\prime} \mathrm{ONH} / 10 \mathrm{H}+$	(${ }^{(1)(\mathrm{P}) \varepsilon}$
	\downarrow		${ }^{\circ} \mathrm{ONOV}+$ uәu '\%ONH +	
	1	Jdd әuपм	$\operatorname{cosc}_{\text {cen }}+$	
	\downarrow		บәप 'ix +	
	\downarrow		${ }^{\text {¢ }} \mathrm{HN}+$	
	งхјеш	suogenesqo	1591	
\downarrow	plos / anpises anv umouq-pay /umorq/ צuld			
\downarrow	 			(1)(e) ε

 Q\# 45/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2017/w/TZ 1/Paper 3/Q\# :o) www.Smashin

2
 <
Q\# 44/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2018/m/TZ 3/Paper 3/Q\# :o) www.SmashingScience.org

2(a)	Tests seleets $\mathrm{AgNO}^{\text {O }}$, and NH_{3} and test-wbe or boiling tube used	1
	Observation: no reaction / no change / no ppt / (solution) remains colourless This mark may be awarded without NH_{3} being specified in test.	1
	Test: selects $\mathrm{NaOH}+\mathrm{Al}$ (and warm) and boiling tube used Penalise lack of test-tube/boiling tube only once	1
	Obseration: efferessenco/ /gas/ $/ \mathrm{NH}$, tums (damp) red lituus blue	1
	If the Devarda's test has been carried out first then allow Test: selects (aqueous acidified) KMnO_{4} and test-tube or boiling tube used (1) Observation: stays purple / does not decolourise (1) Allow the observation: no reaction/no ppt/no change if $\mathrm{BaC} / 2$ or $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ selected as a test.	
$2(b)$		1

2(b)(ii)	$2^{\prime}=1$ mark			5
		NaOH	White ppt . sol in excess ${ }^{\text {. }}$	
		NH_{3}	White ppt ${ }^{\text {. }}$ sol in excess.	
		AgNO_{3}	No reaction/no ppt ${ }^{\text {] }}$	
		Ba($\left.\mathrm{NO}_{3}\right)_{2}$	White ppt *	
		HNO_{3}	Ppt remains/no change*	
		NaOH and warm	No gas/no reaction .	
		+Al	Gas / NH_{3} /effervescence / fizzing / bubbles' turns litmus blue '	
2(b)(iii)	Cations: $\mathrm{Cu}^{\text {2*}}$ and $\mathrm{Zn}^{2+} /$ copper(II) and zinc			1
2(b)(iv)	Anions: any two of $\mathrm{CO}_{3}{ }^{-2} . \mathrm{NO}_{3}^{-} . \mathrm{NO}_{2}^{-} . \mathrm{SO}_{4}{ }^{--} /$carbonate, nitrate, nitrite, sulfate			1
2(b)(v)	NO_{3}^{-}- $\mathrm{NO}_{2}^{-} /$nitrate and nitrite / nitrate(V) and nitrate(III)			1

Q\# 43/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2018/s/TZ 1/Paper 3/Q\# :o) www.Smashing
FA 5 is $\mathrm{HCOOH}:$ FA7 is Zncos: FA^{2} is Cu(NO)

\[

\]

か	:\|ŋ๐¢	
\bullet	10 	$(1)(9) \varepsilon$
\downarrow	 	(A)(9) ε
$\stackrel{1}{6}$	(suol əpipol woul) pəonpoud sem әuipol əsneวəq xopəy	(A1)(9) $^{\text {(1) }}$
\downarrow		($(\ldots)(\mathrm{q}) \varepsilon$
\downarrow		(1)(9) ε
\downarrow		
$\stackrel{1}{ }$	 ${ }^{75} \mathrm{~s}, \mathrm{O}_{\mathrm{W}}$	
$\stackrel{1}{ }$	 	
$\stackrel{ }{ }$	 	
\checkmark	 	
\downarrow	 	(1)(9) ε
\downarrow	z(ton)nosi $9 \forall 8$	(b)K(e) $¢$
τ		(0)(e) ε

(iii)	$\mathrm{M}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{M}(\mathrm{OH})_{2}$ (for any divalent cation) or $\mathrm{M}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{M}(\mathrm{OH})_{3}$ (for any trivalent cation)	1	
(iv)	Use higher concentration	1	[9]
Qn 3			[Total: 16]
Q\# 51/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2015/s/TZ 1/ Paper 3/Q\# 3/ :o) www.SmashingScience.org			
FA 5 is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{aq}) ; ~ \mathrm{FA} 6$ is $\mathrm{CuCO}_{3}+\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$			
3 (a)	Fizzing Acid or any named acid		[2]
(b)(i)-(vi)	In (i) (solid goes from green) to black/ grey In (i) condensation/water/water vapour/steam/steamy fumes In (ii) fizzing and forms a (light) blue solution . Cloudy with limewater in (i) or (ii) or (a) In (ii) blue ppt with sodium hydroxide and insoluble in excess. Any 2 from: In (iv) white ppt insoluble in excess In (v) white ppt insoluble in excess In (vi) white ppt Cation: Cu^{2+} Cation: Mg^{2+} Anions: $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
(viii)	Selects acid/ named acid to add to test (vi) (not $\mathrm{H}_{2} \mathrm{SO}_{4}$) or Selects named acid to add to FA 6 and tests with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or $\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}$ and $\mathrm{SO}_{4}{ }^{2-}$ insoluble and $\mathrm{SO}_{3}{ }^{2-}$ soluble or $\mathrm{SO}_{4}{ }^{2-}$ no change and $\mathrm{SO}_{3}{ }^{2-}$ (orange) turns green or (purple) turns colourless	1	[11]
Qn 3	Total		
Q\# 52/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2014/w/TZ 1/ Paper 3/Q\# 2 /:o) www.SmashingScience.org			
	FA 6 is $\mathrm{NaNO}_{3}(\mathrm{~s})$; FA 7 is $\mathrm{AgNO}_{3}(\mathrm{aq}) ; \mathrm{FA} 8$ is $\mathrm{ZnCO}_{3}(\mathrm{~s})$		
	Chooses $\mathrm{NaOH}(\mathrm{aq})$ (+ heat) (to distinguish $\mathrm{NH}_{4}{ }^{+}$/ammonium) Chooses named (allow name from (ii)) dilute acid/(acidified) KMnO_{4} (to distinguish between $\mathrm{NO}_{2}^{-} /$nitrite and $\mathrm{NO}_{3}^{-} /$nitrate) 2 ions chosen: $\mathrm{NH}_{4}{ }^{+} \& \mathrm{NO}_{3}{ }^{-}: \mathrm{NaOH}$ (and warm) $\mathrm{NO}_{2}^{-} \& \mathrm{NO}_{3}^{-}$: named (dilute) acid $\mathrm{NH}_{4}{ }^{+} \& \mathrm{NO}_{2}^{-}$: either of the above Correct obs with relevant tests With NaOH and warming/heating: no ammonia/no change/no reaction With acid(aq): no brown fumes/no change/no reaction 'No observation' is not credited anywhere in the observations. FA 6 contains $\mathrm{NO}_{3}{ }^{-}$(with sufficient obs to eliminate other ion(s) given in (i))		[5]

 www.SmashingScience.org

FA 6 is $\mathrm{Na}_{2} \mathrm{SO}_{3}$; FA 7 is $\mathrm{CaCl}_{2} ; \mathrm{FA} 8$ is $\mathrm{MgSO}_{4} ; \mathrm{FA}_{9}$ is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} ;$ FA 10 is MnSO_{4}			
3 (a) (i)	Both observations required - white precipitate with Ba^{2+} ion - Precipitate dissolves/partially dissolves in (excess) HCl	1	
(ii)	Both observations required - white precipitate with Ba^{2+} ion - precipitate insoluble/no change with HCl	1	
(iii)	When heated, gas produced decolourises KMnO_{4} paper.	1	
(iv)	No change (when NaOH added)/no ppt/no reaction and green (solution) formed when KMnO_{4} added	1	
	Colourless solution(with acid)	1	

ร．

Q\＃53／Qi Qualitative：Inorganic ions test ALvI Chemistry／2014／s／TZ 1／Paper 3／O\＃3／：0）
www．SmashingScience．org．

$\stackrel{0}{\sim}$	ふ §	트즤
－	－－－－	－${ }^{\text {－}}$
了	훈	I

［z］	1 1	 	own	（0）	
［L］	1		บо！рอ⿻二⿰丿丨贝刂 own	（9）	
［ H$]$	1 1 1 1	 $\mathrm{EOJ}_{\mathrm{z}}^{\mathrm{en}}$ 	suoisioeg OWW ио！̣ю॥ంల OWW	（e）	

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (b) (i) \& \begin{tabular}{l}
MMO Collection \\
ACE \\
Conclusions \\
MMO Collection \\
ACE Conclusions
\end{tabular} \& \begin{tabular}{l}
With KI, goes (blue-black or No reference to \\
Brown/yellow/ \\
KI is the reduc is formed or \(2 \mathrm{I}^{-}-2 \mathrm{e}^{-} \rightarrow\) Ignore state sy Blue (do not a which does not
\[
\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-}
\]
\end{tabular} \& ellow/orange/bro urple or black) the state is requ hite/off- white pre g agent (or it is \(\mathrm{I}_{2}\) or \(2 \mathrm{Cu}^{2+}+\) mbols. w dark blue) pre dissolve in exces \(\mathrm{Cu}(\mathrm{OH})_{2}\) \& \begin{tabular}{l}
ves a blue starch. he colours. \\
rms. \\
as iodine \\
\(+2 \mathrm{Cu}^{+}\) \\
tained,
\end{tabular} \& 1
1
1
1

1
1
1 \& \& [5]

\hline \& \& \& \& \& \& \& 14]

\hline \multicolumn{8}{|l|}{| Q\# 58/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2010/s/TZ 1/ Paper 3/Q\# 2/ :o) www.SmashingScience.org |
| :--- |
| Question 2 |}

\hline Question \& Sections \& \multicolumn{4}{|l|}{Indicative material} \& Mark \&

\hline \multicolumn{8}{|l|}{FA 3 is BaCl_{2} (aq); FA 4 is $\mathrm{MgBr}_{2}(\mathrm{aq})\left[\mathrm{MgCl}_{2}+\mathrm{NaBr}\right]$; FA 5 is $\mathrm{CaI}_{2}(\mathrm{aq})\left[\mathrm{CaCl}_{2}+\mathrm{NaI}\right]$; FA 6 is $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$}

\hline 2 (a) | N |
| :--- | \& | MMO |
| :--- |
| Decisions | \& \multicolumn{4}{|l|}{Chooses silver nitrate $/ \mathrm{Ag}^{+}(\mathrm{aq}) /$ solution containing Ag^{+}ions followed by (aqueous) ammonia.} \& 1 \& [1]

\hline (b) $\begin{aligned} & \text { P } \\ & \mathrm{R} \\ & \\ & \mathrm{N} \\ & \mathrm{C}\end{aligned}$ \& | PDO |
| :--- |
| Recording |
| MMO |
| Collection | \& \multicolumn{4}{|l|}{| Results for three solutions and the two reagents from (a) (or three reagents if (a): ' $\mathrm{Ag}^{+}+\mathrm{NH}_{3}{ }^{\prime}, \mathrm{Pb}^{2+}$) if recorded in a single table (no repetition of solutions or reagents) |
| :--- |
| Give one mark for correct observations with |
| FA 3, FA 4 and FA 5. |
| FA 3 - white ppt with Ag^{+}, soluble in $\mathrm{NH} 3(\mathrm{aq})$ |
| FA 4 - cream ppt with Ag^{+}, partially soluble or insoluble in |
| $\mathrm{NH}_{3}(\mathrm{aq})$ (allow "creamy" not "creamy white") |
| FA 5 - yellow ppt with Ag^{+}, insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$ If Ag^{+}and Pb^{2+} in (a), all observations must be correct (ignore any 'extra' NH_{3} if not in (a)) $\left(\mathrm{Pb}^{2+}\right.$: white, white, yellow ppts respectively) |} \& 1 \& [2]

\hline (c) A \& ACE Conclusion \& \multicolumn{3}{|l|}{| Mark consequentially on observations in (b) |
| :--- |
| Expected conclusion |
| Identifies FA 3 as solution containing Cl^{-}from "white ppt with Ag^{+}(soluble in $\mathrm{NH}_{3}(\mathrm{aq})$) given as evidence. |
| Mark consequentially - ecf allowed here. |
| (No retrospective to observations) |} \& \& 1 \& [1]

\hline (d) N \& MMO Collection \& \multicolumn{4}{|l|}{Mark each of the boxes and see whether correct columns or rows give the better mark. Award the better mark. See table below for the expected observations} \& 1
1
1 \& [3]

\hline \& \multicolumn{2}{|l|}{FA 3} \& FA 4 \& \multicolumn{4}{|l|}{FA 5}

\hline + $\mathrm{NaOH}(\mathrm{aq})$ \& \multicolumn{2}{|l|}{) ignore} \& white ppt \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \text { white ppt } \\
& \text { or } \\
& \text { "cloudiness" }
\end{aligned}
$$}

\hline + $\mathrm{NH}_{3}(\mathrm{aq})$ \& \multicolumn{2}{|l|}{| no ppt |
| :--- |
| (allow reference to "cloudiness"/"slight white ppt") |} \& white ppt \& \multicolumn{4}{|l|}{no ppt/no change/ no reaction}

\hline
\end{tabular}

Q\# 56/ Qi Qualitative: Inorganic ions test ALvI Chemistry/2011/w/TZ 1/ Paper 3/Q\# 2/ :0)
www.SmashingScience.org

FA 3 is $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (s); FA 4 is $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$; FA 5 is $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$; FA 6 is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$ and (aq)				
2 (a)	MMO Decisions PDO Recording MMO Collection MMO Decisions ACE Conclusions	(i) I Any named mineral acid or formula or (acidified) potassium dichromate Do not allow any reagent suitable for testing cations or more than one reagent. (ii) II Tabulates evidence of 3 tests carried out with no repeat headings. Only consider observations with acid or dichromate. III Bubbles/effervescence in FA 4. IV Slower effervescence in FA 3 than FA 4 or FA 3 turns green and FA 5 stays orange if dichromate used. V Appropriate test with positive result used to test for either gas. VI All three ions correct from suitable observations. FA3 is a sulfite. FA4 is a carbonate. FA5 is a sulfate. (or correct formulae)	1 1 1 1 1	[6]
Q\# 57/ Qi Qualitative: Inorganic ions test ALvl Chemistry/2011/s/TZ 1/ Paper 3/Q\#3/ :o) www.SmashingScience.org				
FA 7 is $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) ;$ FA 8 is $\mathrm{CuSO}_{4}(\mathrm{~s})$				
3 (a) (i) (ii) (iii) (iv) (v)	MMO Collection MMO Collection ACE Conclusions MMO Decisions MMO Collection MMO Decisions ACE Conclusions	No change (or no precipitate or no reaction) both with barium chloride and silver nitrate. Gentle heat: solid melts or dissolves or gives a colourless liquid Brown fumes/gas produced (allow 'qualified' brown e.g. red/brown, do not allow orange). (Gas produced) that relights a glowing splint or yellow solid, goes white on cooling. (Allow precipitate). FA 7 is a nitrate/nitrite (from some evidence) (Heat) FA 7 with Al foil and $\mathrm{NaOH} /$ ecf from anion given. Gas/vapour/NH3 produced and it turns red litmus to blue and confirms that FA 7 contains nitrate/nitrite ions. Adds ammonia. (This mark is not awarded if a second test is also used) Zinc ions are present. (No ecf) (Deduction must be consistent with observations recorded - white ppt soluble in excess).	1 1 1 1 1 1 1 1 1 1	[9]

［t］		

	әp！̣оләd uә6олрイч Łо sdoıp мәృ е ppe әqпı－ヶรə e u！ $9 \forall \pm$ ！o પłdəp wo Ł e ol $\varepsilon 2501$
	е pue әр！холркч wn！̣pos snoənbe Z 2 Sə
	－К1ヵ
	uәцł＇әрıхолрки wnịos snoənbe ppe əqnł 6u！！！oq e
suonenesqo	7521

（i）Carry out the following tests on FA 6 and record your observations．
 No additional tests should be attempted． Rinse and reuse test－tubes and boiling tubes where possible． If any solution is warmed，a boiling tube must be used． Where reagents are selected for use in a test，the name or correct formula of the element or compound
must be given． Where no change is observed you should write＇no change＇． You should record clearly at what stage in a test an observation is made． －the formation of any gas and its identification（where appropriate）by a suitable test．
 Examples of observations include：
For each test you should record all your observations in the spaces provided． www．SmashingScience．org
Qualitative analysis
Qi Qualitative inorganic ions tests Chem 12 Q\＃1／ALvl Chemistry／2022／w／TZ 1／Paper 3／Q\＃3 ：o
www．SmashingScience．org SECTION 2 Unedited Exam questions ordered by Experiment SubType
(i) Carry out the following tests. Complete the table below. Table 3.1

test	observations	
	FA 6	FA 7

Add aqueous sodium hydroxide.

Test 2
Add aqueous barium chloride or
aqueous barium nitrate, then aqueous barium nitrate, then
add dilute hydrochloric acid. Test

Test 3 drop
Add a few drops of aqueous
starch, then
starch, then
-add aque---
thiosulfate
add aqueous sodium
thiosulfate.
Test 4
silver nitrate, then
silver nitrate, then
sodium hydroxide.

Add aqueous ammonia
Add aqueous ammonia
(ii) Give the formulae of the substances in FA 6 and FA 7.

FA 6 is
FA 7 contains .. and ... [3]
(iii) Give the ionic equation for one of the reactions taking place in Test 1.
Include state symbols.
[Total: 15]
nclude state symbols.

Page 247 of 579

Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.
If any solution is warmed, a boiling tube must be used.

FA 7 is an aqueous mixture of two substances. FA 7 contains one potassium-containing compound and one other substance. All substances are listed in the Qualitative analysis notes.

于
3 (a) FA 5 is an ionic solid containing two ions. It contains one or more ions that contain nitrogen.

below.

Ξ Heat a small spatula measure of FA 5 in a hard-glass test-tube.
When no further change occurs, allow the tube and its contents to cool completely. When no further change occurs, allow the tube and its contents to cool completely.
Record all the observations you make and any subsequent conclusions.

$$
\begin{aligned}
& \text { below. } \\
& \text { You must use a boiling tube if any liquid is heated. }
\end{aligned}
$$ anion in FA 5 = [4] Reme -..

?
(i)

[7]
(b) FA 6 is a solution of a compound containing one cation and one anion, both of which are in the Qualitative analysis notes.

test	observations		
	FA 5	FA 6	FA 7
Test 1 Add an equal depth of dilute sulfuric acid.			
Test 2 Add an equal depth of aqueous sodium carbonate.			
Test 3 Add an equal depth of aqueous magnesium chloride.			

No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube must be used. must be given.
colour changes seen

- the formation of any precipitate and its solubility in an excess of the reagent added

You should indicate clearly at what stage in a test a change occurs.
Rinse and reuse test-tubes and boiling tubes where possible. (i) Carry out the following tests and record your observations.
Use a 1 cm depth of solution in a test-tube for each test.
 3(b)(i).
(a) FA 5, FA 6 and FA 7 are solutions. Each solution contains one cation and one anion.
Carbonate, $\mathrm{CO}_{3}{ }^{2-}$, is not present in any of the solutions.

Carbonate, $\mathrm{CO}_{3}{ }^{2-}$, is not present in any of the solutions
Carbonate, $\mathrm{CO}_{3}{ }^{2-}$, is not present in any of the solutions.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Qualitative inorganic ions tests Chem 12 Q\# 5/ ALvl Chemistry/2021/w/TZ 1/Paper 3/Q\# 3 :o)
www.SmashingScience.org
Qualitative inorganic ions tests Chem 12 Q\# 5/ ALvi Chemistry/2021/w/TZ 1/Paper 3/Q\# $3: 0$)
www.SmashingScience.org
Qualitative analysis
Qualitative inorganic ions tests Chem 12 Q\# 5/ ALvi Chemistry/2021/w/TZ 1/Paper 3/Q\# $3: 0$)
www.SmashingScience.org
Qualitative analysis

- colour changes seen
- the formation of any gas and its identification by a suitable test. 3(b)(i).
(a) FA 5, FA 6 and FA 7 are solutions. Each solution contains one cation and one anion.
Carbonate, $\mathrm{CO}_{3}{ }^{2-}$, is not present in any of the solutions. test
\qquad -

๓
Qualitative inorganic ions tests Chem 18 Q\# 4/ ALvl Chemistry/2021/w/TZ 1/Paper 3/Q\# 3 :o)
www.SmashingScience.org www.SmashingScience.org
Qualitative analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
-

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted.
(b) FA 8 is an aqueous solution.

test	observations
Test 1 To a 1 cm depth of FA 8 in a test-tube, add a few drops of acidified potassium manganate(VII). Place the tube in the hot water-bath.	
Test 2 To a 1 cm depth of FA 8 in a test-tube, add a 1 cm length of magnesium ribbon.	

$\stackrel{\rightharpoonup}{ }$
(ii) For each observation, state what you can conclude about the chemical properties of FA 8.
Test 1
[2]
[Total: 14] \square
llat

www．SmashingScience．org
эеииеля яว！иュед
J

Rinse and reuse test－tubes and boiling tubes where possible．
$\begin{aligned} & \text { You should indicate clearly at what stage in a test a change occurs．} \\ & \text { If any solution is warmed，a boiling tube must be used．}\end{aligned}$
－the formation of any gas and its identification by a suitable test．
At each stage of any test you are to record details of the following
must be given．
Where reagents are selected for use in a test，the name or correct formula of the element or compound
Qualitative analysis
Qualitative inorganic ions tests Chem 12 Q\＃6／ALvl Chemistry／2021／s／TZ 1／Paper 3／Q\＃\＃ 3 ：o）

$$
\begin{aligned}
& \begin{array}{l}
\text { (iv) Did the result of your test in (a)(iii) confirm the identity of the anion in FA 7? } \\
\text { Explain your answer. }
\end{array}
\end{aligned}
$$

> The cation in FA 5 is
> (ii) Use your observations in (a)(i) to suggest a possible formula for each of the following: "
［1］
th
位
colour changes seen
：相

[1]
(ii) Identify the ion that must be present in FA 6.
[2]

)

Σ

[Tota: 16]
(b) FA 4 contains one cation and one anion, both of which are listed in the Qualitative Analysis Notes. The anion in FA 4 contains sulfur.
(i) Carry out appropriate tests to allow you to identify the cation and anion in FA 4.

Record each test and your observations in a suitable form below.
(ii) Give the formula of the ions present in FA 4.
cation
\equiv

Heat FA 6 gently for one minute in the hard-glass test-tube in which it is supplied
Then heat strongly until no further change occurs.
Ξ
Qualitative inorganic ions tests Chem 12 Q\# 7/ ALvl Chemistry/2021/m/TZ 3/Paper 3/Q\#3 :0)
www.SmashingScience.org
Qualitative analysis
Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given.
At each stage of any test you are to record details of the following

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests for ions present should be attempted.
FA 6
notes.
3 (a) FA 6 contains one cation and one anion both of which are listed in the Qualitative analysis

[^15]| 4. | 6Ls fo Lsz ${ }^{\text {ased }}$ | эеииеяя צว！иед | ¢． |
| :---: | :---: | :---: | :---: |
| | | | |

ヨ 저

 pasn әq łsnm әqn Bu！！！ You should indicate clearly at what stage in a test a change occurs． －the formation of any precipitate and its solubility in an excess of the reagent added At each stage of any test you are to record details of the following： must be given．

Where reagents are selected for use in a test，the name or correct formula of the element or compound Qualitative Analysis www．Smashingscience．org Qualitative inorganic ions tests Chem 12 Q\＃8／ALvI Chemistry／2020／w／TZ 1／Paper 3／Q\＃ 3 ：o）
（iii）Carry out the following tests and record your observations．

test	observations
Test 1	
To a 1 cm depth of FA 8 in a test－tube，	
add a 1 cm depth of aqueous	
potassium iodide，then	

2

$\stackrel{\rightharpoonup}{~}$

Where reagents are selected for use in a test，the name or correct formula of the element or compound
－the formation of any precipitate and its solubility in an excess of
You should indicate clearly at what stage in a test a change occurs．
If any solution is warmed，a boiling tube must be used．
Rinse and reuse test－tubes and boiling tubes where possible．
No additional tests for ions present should be attempted．
3 （a）FA 6 is a hydrated salt．It contains two cations and one anion，all of which are listed in the
Qualitative Analysis Notes．
Qualitative inorganic ions tests Chem 12 Q\＃9／ALv
www．SmashingScience．org
Qualitative Analysis

$$
\begin{aligned}
& \text { must be given. } \\
& \text { At each stage of any test you are to record details of the following: } \\
& \text { - colour changes seen } \\
& \text { the formation of any precipitate and its solubility in an excess of the reagent added }
\end{aligned}
$$

－the formation of any gas and its identification by a suitable test．
3 （a）FA 6 in
Qualitative Analysis Notes．
Qualitative inorganic ions tests Chem 12 Q\＃9／ALvI Chemistry／2020／s／TZ 1／Paper 3／Q\＃ 3 ：o）
Whalitative Analysis

（iii）It is suggested that FA 6 could be sodium sulfite， $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ，or sodium sulfate， $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ．
［z］…．．．．．．．．．．．．．．．．．．．．．．．．．．．un！pos s！ 9 $\forall \mathbf{J}$
（iv）Using your conclusion from（a）（iii），write an ionic equation for the reaction between
silver nitrate and FA 7 ． Include state symbols．
Ξ （b）FA 8 is a solution containing one of the cations listed in the Qualitative Analysis Notes．

test	
Test 1 To a 1 cm depth of FA 8 in a test－tube， add aqueous ammonia until there is no further change，then	
pour the contents into a boiling tube and add a few drops of aqueous hydrogen peroxide．	

른
cation $=$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．［1］
（ii）Identify the cation in FA 8 ．

\[
\square

\] （i）Carry out the following tests and record your observations．	Test 1
To a 1 cm depth of FA 8 in a test－tube，	
add aqueous ammonia until there is no	
further change，then	
:---	:---
To a 1 cm depth of FA 8 in a test－tube，	
add aqueous ammonia until there is no	
further change，then	
:---	:---
To a 1 cm depth of FA 8 in a test－tube，	
add aqueous ammonia until there is no	
further change，then	pour the contents into a boiling tube

and add a few drops of aqueous
hydrogen peroxide．
．

元
 ．．．．．．．．．．

[^16]

저
www.SmashingScience.org

 pəsn əq \ddagger snu əqnł Bu!!!oq e 'pəسuem s! uọnnjos Kue „l You should indicate clearly at what stage in a test a change occurs.

- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.
You should indicate clearly at what stage in a test a change occurs.

At each stage of any test you are to record details of the following:
Where reagents are selected for use in a test, the name or correct formula of the element or compound
must be given.
Qualitative analysis
Qualitative inorganic ions tests Chem 12 Q\# 10/ ALvl Chemistry/2020/m/TZ 3/Paper 3/Q\# 3 :o)
www.SmashingScience.org

sloquis әұels әpnou
(!!!)
[1]
l

응
Record all your observations.
Identify the cations in FA 6 .
observations

test	observations	
	FA 7	FA 8
Test 1 To a 1 cm depth of solution in a test-tube, add a small spatula measure of solid sodium carbonate.		
Test 2 To a 1 cm depth of solution in a test-tube, add an equal volume of FA 2 and a few drops of FA 1, then		
add a few drops of aqueous starch.		
Test 3 To a 1 cm depth of solution in a test-tube, add a few drops of aqueous silver nitrate, then		
add aqueous ammonia.		

$\sqrt{2}$
Page 263 of 579

эeuue»я yว!ıłed
Page 265 of 579

- N

[91:
[เ]
[ı] s! u! tuesedd uo|

 the reagent used and the expected observation.

Do not carry out this test.

$\stackrel{\rightharpoonup}{5}$
あ
©

expected observation

Test the solution with litmus papers.
Record your observations.
E
(ii) Using QO as the formula of the residue, write the equation for the reaction with water that
Ξ

(ii) Using QO as the formula of the residue, write the equation for the reaction with water th
occurs in (b)(i). Include state symbols.
(ii) From your observations in (a)(i) identify one of the ions present in either FA 4 or FA 5.

	$6 L 5$ fo 697 28ed		

(c) In Questions $\mathbf{1}$ and $\mathbf{2}$ you identified the Group 2 metals present in $\mathbf{M C O}_{3}$ and $\mathbf{Q C O}_{3}$

$$
\text { Qualitative inorganic ions tests Chem } 12 \text { Q\# 14/ ALvl Chemistry/2018/w/TZ 1/Paper 3/Q\# } 2 \text { :o) }
$$

2 (a) (i) FA 4 is a sodium compound that was the impurity in the FA 1 and FA 3 that you used in
Question 1. The anion in FA 4 is one of those listed in the Qualitative Analysis Notes. Carry out appropriate tests to allow you to positively identify the anion in FA 4. For the test that gives a positive result, record the test and the results of it.
State the name of the anion in FA 4.

Rinse and reuse test-tubes and boiling tubes where possible.

If any solution is warmed, a boiling tube must be used.
No additional tests for ions present should be attempted. Where reagents are select
Where reagents are selected for use in a test, the full name or correct formula of the element or
Where reagents are selected for use in a test, the full name or correct formula of the element or

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

Qualitative inorganic ions tests Chem 12 Q\# 14/ ALvl Chemistry/2018/w/TZ 1/Paper 3/Q\# 2 :o)
Qualitative Analysis

路 If any solution is warmed, a boiling tube must be used. (a)

$$
\text { State the name of the anion in FA } 4 .
$$

> At each stage of any test you are to record details of the following:
> colour changes seen; 1-
[2]
(1

$=\downarrow \forall \triangleleft$ u! uolue

Record the name of the reagent you used, your observations and your conclusion.
(iii) FA 6 is a dry sample of the residue obtained by filtration in (i).

test	observations
Add a 1 cm depth of dilute nitric acid to all of the FA 6 in its test-tube. Allow the mixture to stand for about 1 minute, then	
add aqueous sodium hydroxide.	

the filtrate produced in (a)(i). the filtrate produced in (a)(i). cation present in the filtrate . anion present in the filtrate
[1]
(ii) Write an ionic equation for one reaction in (a)(ii) where a precipitate was formed. Include state symbols.
(iii) State the type of reaction that occurred in the first part of (a)(iii).
(c) A student suggested that FA 5 is an acid.

Apart from using an indicator, suggest and carry out a chemical test to determine whether the student was correct.

	$6 L S$ fo $\varepsilon \angle 2$ ə88 ${ }_{\text {d }}$		

	иәчт 'шием рие әріхолркч шпи̣роs
	иәчұ 'әриоㅣч unueq snoənbe ло әұеции unueq snoənbe Łо sdoup мәృ е ppe
	eluoume snoanbe ppe
	әріхолркч wn!pos snoənbe ppe
suopenəsqo	7səl

	eluoume snoanbe ppe
suопеләзqo	1sə

(i) Carry out the following tests on FA 6 and record your observations.

A sample of FA 5 was added to water and the water stirred. The mixture produced was filtered
to give a solid residue, FA 6 , and a filtrate, FA 7 .
(b) FA 5 is a mixture that contains two cations and three anions from those listed in the Qualitative
（ii）Tests on the filtrate，FA 8

Carry out the following tests and record your observations in the table．
test observations To a 1cm depth of FA 8 in a boiling tube add a 1 cm depth of aqueous sodium hydroxide，then warm gently．
To a 1cm depth of FA 8 in a boiling tube add a piece of aluminium foil and a 1 cm depth of aqueous sodium hydroxide． Warm gently．

Carry out the following tests and record your observations in the table． To a 1 cm depth of FA add a 1 cm dep
hydroxide，then

지
（iii）Conclusions about cations
State one cation that is definitely present in FA 6 ．
（iii）Conclusions about cations
State one cation that is definitely present in FA 6 ．
or
State two possible identities for the other cation present in FA 6.
Suggest how you could determine which of these two possible cations is present．
Do not carry out this test．
（iv）Conclusions about anions

[^17]

．．

State two possible identities for the other anion present in FA 6
State one anion that is definitely present in FA 6.
or
$$
3
$$

르
ㄴ

Qualitative inorganic ions tests Chem 12 Q\＃16／ALvl Chemistry／2018／m／TZ 3／Paper 3／Q\＃ 2 ：o） www．SmashingScience．org
Qualitative Analysis

Where reagents are selected for use in a test，the name or correct formula of the element or compound
must be given．
At each stage of any test you are to record details of the following：
colour changes seen；
－colour changes seen；
－the formation of any precipitate and its solubility in an excess of the reagent added；
－the formation of any gas and its identification by a suitable test．
You should indicate clearly at what stage in a test a change occurs．
If any solution is warmed，a boiling tube must be used．
Rinse and reuse test－tubes and boiling tubes where possible．
No additional tests for ions present should be attempted．
2 （a）FA 3 is a more concentrated solution of the strong monoprotic acid， HZ ，used for Question 1.
Select two sets of reagents and suitable apparatus to use in two separate tests，Test 1 and
Test 2 ，to investigate the identity of the anion， \mathbf{Z}^{-}，present in FA 3．The anion is one of those
listed in the Qualitative Analysis Notes．
Complete the＇test＇boxes in the table before starting any practical work by circling whether

Carry out your tests and record your observations．You must carry out both Test 1 and Test 2.

test	observations
Test 1	
To a 1 cm depth of FA 3 in a test－tube／boiling tube add \qquad	
（reagent（s））	
Test 2	
To a 1 cm depth of FA $\mathbf{3}$ in a	
test－tube／boiling tube	
add ．．	
（reagent（s））	

ㄷ
든
른
Page 275 of 579

 (a) You will identify the cations present in FA 6, FA 7 and FA 8.

 - Each salt contains a different nitrogen-containing ion. One of the ions is sodium; the other five ions are listed in the Qualitative
Analysis Notes.
 FA 6, FA 7 and FA 8 are solutions of salts. Rinse and reuse test-tubes and boiling tubes where possible. 'pasn aq ISNW әqnı Bu!!!oq e 'pauıem s! uo!nnos Kue मl You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted. in your observations. Where gases are released they should be identified by a test, described in the appropriate place compound must be given.

 3 Qualitative Analysis www.SmashingScience.org Qualitative inorganic ions tests Chem 12 Q\# 17/ ALvI Chemistry/2017/w/TZ 1/Paper 3/Q\# $3: 0$)

[^18](p)
(c) (i) Name the reagents you would use to confirm the presence of the nitrogen-containing anions in the two solutions that do not contain a halide ion. Test both solutions with these
reagents and record your observations. reagents and record your observations
reagents used
reagents and record your observations.
reagents used ..

unknown		observations
FA		
FA		

(ii) Name the reagent you would use to positively identify one of the nitrogen-containing anions in the two solutions tested in (i). Test both solutions with this reagent. Record all
your observations. your observations.
reagent used
응

reagent used ...

unknown		
FA.......		
FA		

(d) Use the information given in (a) and your observations in all tests to deduce the chemical
formulae of the three salts.
FA 6 is FA 7 is FA 8 is

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates
At each stage of any test you are to record details of the following.
compound must be given.
Where reagents are selected for use in a test, the name or correct formula of the element or
Where gases are released they should be identified by a test, described in the appropriate place in your observations.
You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
Qualitative inorganic ions tests Chem 12 Q\# 18/ ALvl Chemistry/2017/s/TZ 1/Paper 3/Q\# 3 :o)
www.SmashingScience.org
3 Qualitative Analysis
- the solubility of such precipitates in an excess of the reagent added
in your observations.

지
モ
Name the reagents you would use to identify the halide ion present in either FA 7 or FA 8.
Test FA 7 and FA 8 with these reagents and record your observations.
$6 L \mathrm{~S} 706 \angle \mathrm{za} 2 \mathrm{~d}$
Record all of your observations in a table in the space below.

Record all your observations below.
(i) Transfer a small spatula measure of FA 6 into a hard-glass test-tube
(a) FA 6 is another salt of copper. The anion present is one of those listed in the Qualitative
Analysis Notes.

If any solution is warmed, a boiling tube MUST be used. Rinse and reuse test-tubes and boiling tubes where possible.

 www.SmashingScience.org3 Qualitative Analysis
At each stage of any test you are to record details of the following.

- colour changes seen
Qualitative inorganic ions tests Chem 12 Q\# 19/ ALvl Chemistry/2017/m/TZ 3/Paper 3/Q\# 3 :o) www.SmashingScience.org
3 Qualitative Analysis
At each stage of any test you are to record details of the following.
- colour changes seen www.SmashingScience.org
3 Qualitative Analysis
At each stage of any test you are to record details of the following.
- colour changes seen
the formation of any precipitate
the solubility of suc precipitates in an excess of the reagent added
,
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place \begin{tabular}{l}
in your observations.

You should indicate clearly at what stage in a test a change occurs.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

$\begin{array}{l}\text { Where reagents are selected for use in a test, the name or correct formula of } \\
\text { the element or compound must be given. }\end{array}$

\hline

in your observations.

You should indicate clearly at what stage in a test a change occurs.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

$\begin{array}{l}\text { Where reagents are selected for use in a test, the name or correct formula of } \\
\text { the element or compound must be given. }\end{array}$

\hline

in your observations.

You should indicate clearly at what stage in a test a change occurs.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

$\begin{array}{l}\text { Where reagents are selected for use in a test, the name or correct formula of } \\
\text { the element or compound must be given. }\end{array}$

\hline

in your observations.

You should indicate clearly at what stage in a test a change occurs.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

$\begin{array}{l}\text { Where reagents are selected for use in a test, the name or correct formula of } \\
\text { the element or compound must be given. }\end{array}$

\hline
\end{tabular}

Where reagents are selected for use in a test, the name or correct formula of
the element or compound must be given. R

```
1
```

(iii) Give the ionic equation for the reaction of the metal cation in FA 7 with aqueous sodium
hydroxide. Include state symbols.
(iv) What type of reaction took place when aqueous potassium iodide was added to FA 7?
Use your observations to help you explain your answer.
(v) The observation you made when aqueous silver nitrate was added to FA 7 does not allow
the anion in FA 7 to be identified with certainty.
the anion in FA 7 to be identified with certainty.
Explain why you cannot be certain about the identity of the anion.
(vi) Astudent suggested that the anion in FA 7 could be id itrate.

文

E
[Total: 14]

Explain why this suggestion is not correct.
\qquad

[LL]

[LL:라ํ이]
σ
 (

test	observations	
	FA 5	FA 6
(ii) Place a spatula measure of solid in a boiling tube and add a 2 cm depth of dilute sulfuric acid.		
Keep the solutions formed in (ii) for tests (iii) and (iv).		
(iii) To a 1 cm depth of solution from (ii) in a test-tube, add aqueous sodium hydroxide.		
(iv) To a 1 cm depth of solution from (ii) in a test-tube, add aqueous ammonia.		

(v) Identify as many ions as you can from your observations. Write 'unknown' where you have not been able to identify an ion.
FA 5: cation ... anion.

즐

Qualitative inorganic ions tests Chem 12 Q\# 20/ ALvl Chemistry/2016/w/TZ 1/Paper 3/Q\# 3 :o)
www.SmashingScience.org
3 Qualitative Analysis
At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate

Where gases are released they should be identified by a test, described in the appropriate place

in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.

(a) FA 5 and FA 6 are solids each containing one cation and one anion.
Carry out the following tests and record your observations in the table below.

test	observations	
		FA 5
(i)Place a spatula measure of solid in a hard-glass test-tube and heat gently at first, then		FA 6

www.SmashingScience.org

Patrick Brannac

0
0
0
0
0
0
0
0
0
0
18
흘
$\stackrel{\rightharpoonup}{3}$
$\overrightarrow{3}$
저

(b) Place the remaining sample of FA 5 in the $100 \mathrm{~cm}^{3}$ beaker. Half fill the beaker with distilled water and stir until FA 5 has fully dissolved. This may take some time. You will use this solution
in the remaining tests.
(i) Select reagents to identify the other cation present in FA 5. Carry out tests using these reagents and record your results in the space below.
Identify the cation.

The other cation in FA 5 is
(ii) Carry out the following tests and record your observations.

Identify one of the anions in FA 5.

test	observations
To a 1 cm depth of the solution of FA 5 in a test-tube add aqueous barium chloride or aqueous barium nitrate, then	
add dilute hydrochloric acid.	

One of the anions in FA 5 is ..

The other cation in FA 5 is
(ii) Carry out the following tests and record your observations.
Identify one of the anions in FA 5 .
test To a 1 cm depth of the solution of FA 5 in a test-tube add aqueous barium chloride or aqueous barium nitrate, then add dilute hydrochloric acid.

One of the anions in FA 5 is
Carry out the following tests and re
Identify one of the anions in FA 5 .
(ii) Carry out the following tests and record your observations reagents and record your results in the space below.
Identify the cation.
The other cation in FA 5 is
uo!̣n|os si!
(i) Select reagents to identify the other cation present in FA 5. Carry out tests using these
(b) Place the remaining sample of FA 5 in the $100 \mathrm{~cm}^{3}$ beaker. Half fill the beaker with distille

ฐ
the solid in distilled water.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ to prepare FA 2.
Solutions containing Fe^{2+} ions can quickly be oxidised in air if they are prepared by dissolving
(iv) The precipitates obtained when alkalis are added to solutions of certain cations are
sometimes difficult to see. Suggest how, using no additional apparatus, the experiment
could be repeated in a way that would make these precipitates more visible.
a

[^19]
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Qualitative inorganic ions tests Chem 12 Q\# 23/ ALvl Chemistry/2015/s/TZ 1/ Paper 3/Q\# 3/:0)
www.SmashingScience.org
At each stage of any test you are to record details of the following.
colour changes seen
colour changes seen
the formation of any precipitate
the solubility of such precipitates in
Where gases are released they should be identified by a test, described
place in your observations.

- the solubility of such precipitates in an excess of the reagent added
You should indicate clearly at what stage in a test a change occurs.

Give the ionic equation for the reaction of one of your cations with a few drops of sodium
hydroxide. State symbols are not required.
(iii)

\square
those listed in the Qualitative Analysis Notes on pages the table below.
Do the following tests and record your observations in the
(b) FA 6 is a mixture of two salts, each of which contains a single cation and a single anion from

seuueдя >э!ıед

0 0 00 0 0 0 0 0 0 0 0
 0 0 0 0

12

FA 6 is a solid that contains one cation and one anion. One of the ions present is included in
the lists on pages 14 and 15 . This ion contains the element nitrogen.

 No additional tests for ions present should be attempted. You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations. in your observations.

 At each stage of any test you are to record details of the following. www.SmashingScience.org
2 Qualitative Analysis Qualitative inorganic ions tests Chem 12 Q\# 24/ ALvl Chemistry/2014/w/TZ 1/ Paper 3/Q\# 2/:0) Qualitative inorganc ions

흘
$\stackrel{\rightharpoonup}{\dot{W}}$
$\stackrel{\rightharpoonup}{\omega}$
[เ1]
(viii) Describe a further test that would allow you to determine exactly which anions are suolue suoneo (vii) Suggest possible identities for the ions present in FA 6

(c) Solid FA 8 contains one cation and one anion from those included in the lists on pages 14 and 15. Carry out the following tests on FA 8. For each test record your observations.
(i) In a hard-glass test-tube heat approximately half of the FA 8, gently at first and then more strongly. Leave to cool.
(ii) To a 2 cm depth of dilute nitric acid in a boiling tube, add the remaining FA 8

Keep the solution obtained for tests (iii) and (iv).
 \section*{Keep the solution obtained for tests (iii) and (iv)}

(iii) To a 1 cm depth of the solution from (ii) in a test-tube, add aqueous sodium hydroxide until
no further change occurs. no further change occurs.
(iv) To a 1 cm depth of the solution from (ii) in a test-tube, add aqueous ammonia until no
further change occurs.
$[6]$
[Total: 15]
> (v) Use your observations from (i) to (iv) to identify the ions present in FA 8.

6LS fo tot ased	
Λ	
AI	
III	
II	
I	

Qualitative inorganic ions tests Chem 12 Q\＃26／ALvl Chemistry／2013／w／TZ 1／Paper 3／Q\＃3／：o）
www．SmashingScience．org
www．SmashingScience．org
3 Qualitative Analysis
Where gases are released they should be identified by a test，described in the appropriate
place in your observations．
You should indicate clearly at what stage in a test a change occurs．
No additional tests for ions present should be attempted．
If any solution is warmed，a boiling tube MUST be used．
Rinse and reuse test－tubes and boiling tubes where possible．
$\begin{aligned} & \text { Where reagents are selected for use in a test，the name or correct formula of the } \\ & \text { element or compound must be given．} \\ & \text {（a）FA } 5 \text { is hydrated barium chloride．} \\ & \text { FA } 6 \text { is the same iron（II）salt used in Question } 1 \text { ．It contains one other cation and one } \\ & \text { anion．} \\ & \text {（i）Place a small spatula measure of FA } 6 \text { into a test－tube．Dissolve the solid in about a } \\ & 5 \mathrm{~cm} \text { depth of distilled water．Use the solution for the following tests．} \\ & \text {（ }\end{aligned}$（

Where gases are released they should be identified by a test，described in the appropriate
place in your observations．
You should indicate clearly at what stage in a test a change occurs．
No additional tests for ions present should be attempted．
If any solution is warmed，a boiling tube MUST be used．
Rinse and reuse test－tubes and boiling tubes where possible．
$\begin{aligned} & \text { Where reagents are selected for use in a test，the name or correct formula of the } \\ & \text { element or compound must be given．} \\ & \text {（a）FA } 5 \text { is hydrated barium chloride．} \\ & \text { FA } 6 \text { is the same iron（II）salt used in Question } 1 \text { ．It contains one other cation and one } \\ & \text { anion．} \\ & \text {（i）Place a small spatula measure of FA } 6 \text { into a test－tube．Dissolve the solid in about a } \\ & 5 \mathrm{~cm} \text { depth of distilled water．Use the solution for the following tests．} \\ & \text {（ }\end{aligned}$（

test	observations
To a 1 cm depth of aqueous FA 6 in a boiling tube，add aqueous sodium hydroxide until no further change occurs，then	
	heat the mixture carefully．
Dissolve a few crystals of FA 5 in a 1 cm depth of distilled water in a test－tube．Add a 1 cm depth of FA 6， then	
add excess dilute hydrochloric acid to the mixture．	

colour changes seen
the formation of any p
the solubility of such p
the formation of any precipitate
the solubility of such precipitates
－the solubility of such precipitates in an excess of the reagent added
At each stage of any test you are to record details of the following．
都

At each stage of any test you are to record details of the following．
－colour changes seen
－the formation of any precipitate
－the solubility of such precipitates in an excess of the reagent added
－
$+$
$f(1)$
R

FA 7 is an acidified solution of iron（II）sulfate， $\mathrm{FeSO}_{4}(\mathrm{aq})$ ．
Carry out the following tests and record your observations．
test observations （i）To a 1 cm depth of FA 7 in a test－tube add aqueous sodium hydroxide and leave for a few minutes． （ii）To a 1 cm depth of FA 7 in a boiling tube add a 1 cm depth of dilute sulfuric acid followed by a 1 cm depth of＇20 oll＇hydrogen peroxide．Stir the mixture，then （iii）pour a 1 cm depth of the mixture into a clean boiling tube and add a 3 cm depth of aqueous sodium hydroxide．

（iv）What type of reaction takes place in（ii）？
（v）Explain your observations in（iii）．

ー	日	目	B	$>$	S

（v）Explain your observaions in（ii）

 No additional tests for ions present should be attempted. You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations. place in your observations. Where gases are released they should be identified by a test, described in the appropriate
 At each stage of any test you are to record details of the following. 2 Qualitative Analysis

Qualitative inorganic ions tests Chem 12 Q\# 27/ ALvl Chemistry/2012/w/TZ 1/Paper 3/Q\# $2 /: 0$:
ww.SmashingScience.org (iv) Place a small spatula measure of FA 6 into a hard-glass test-tube
Heat gently, then strongly, until no further change is observed.
Record your observations in the space below.
(iii) Give the ionic equation for the reaction of iron(II) ions with hydroxide ions.
pue ${ }_{2} z^{2} \mathrm{H}$: suoṇeว
(-2
> [7]
(iii) Give the ionic equation for the reaction of iron(II) ions with hydroxide ions.
(iv) Place a small spatula measure of FA 6 into a hard-glass test-tube.
Heat gently, then strongly, until no further change is observed.
Record your observations in the space below.
[เ]

 before the tests for anions present can be performed. One way in which

(6)
14)

 a boiling tube, add
sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$,

$$
\text { Add } 5 \mathrm{~cm} \text { depth of dilute nitric acid. This removes any excess of carbonate ions. }
$$

$$
\begin{aligned}
& \text { Filter the mixture from FA } 3 \text { from (a) into another boiling tube. Ignore any colour in the }
\end{aligned}
$$

[^20]

Qualitative inorganic ions tests Chem 12 Q\#28/ ALvI Chemistry/2011/w/TZ 1/ Paper 3/Q\# 2/ :o) www.SmashingScience.org
2 Qualitative Analysis

[^21]
Carry out suitable tests on a small amount of each solid and record the results of
your experiments in an appropriate form in the space below.
Identify the anions in FA 3, FA 4 and FA 5.
FA 3 contains the FA 5 contains the ion. FA 4 contains the ion.

$\begin{aligned} & \text { Tirpursyws } \\ & 412 \times 1 \end{aligned}$		эеииеля хว!иед	
			-

 Marks are not given for chemical equations.
No additional tests for ions should be attempted. You should indicate clearly at what stage in a test a change occurs.

When gases are released they should be identified by a test, described in the appropriate
place in your observations.

At each stage of any test you are to record details of the following.
o.lour changes seen
the formation of any precipitate
Qualitative Analysis
www.SmashingScience.org
3 Qualitative Analysis Qualitative inorganic ions tests Chem 12 Q\# 29/ ALvI Chemistry/2011/s/TZ 1/Paper 3/Q\#3/:o)

$$
\begin{aligned}
& \text { eagents are } \\
& \text { followed by }
\end{aligned}
$$

No additional tests for ions present should be attempted．
f any solution is warmed directly with a Bunsen burner a boiling－tube MUST be used． Rinse and reuse test－tubes where possible．
（a）Use information from the Qualitative Analysis Notes on page 11 to select a pair of
reagents that，used together，identify the halide ion present． reagents that，used together，identify the halide ion present．

$$
\Xi
$$ The reagents are

followed by
（b）Use your chosen reagents to carry out tests on FA 3，FA 4 and FA 5.
Record your results in an approprin．．．in the space below． The reagents are
followed by
（b）Use your chosen reagents to carry out tests on FA 3，FA 4 and FA 5.
Record your results in an approprin．．．in the space below．

ㄴ
 －

 Solution ．．．．．．．．．．．．．．contains the chloride ion．

Explain the evidence that supports your conclusion．

Where gases are released they should be identified by a test，described in the appropriate place in your observations．

You should indicate clearly at what stage in a test a change occurs．
Qualitative inorganic ions tests Chem 10 Q\＃30／ALvl Chemistry／2010／s／TZ 1／Paper 3／Q\＃ 2 ／：o）
2 Solutions FA 3，FA 4 and FA 5 each contain a Group 2 halide．
You will carry out tests to deduce the following．
－the solution containing the chloride ions
the solution containing barium ions
At each stage of any test you are to record details of the following．
－colour changes seen
the formation of any precipitate and the colour of the precipitate
n

Solution FA 6 contains a potassium salt．

R
（a）

\section*{| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| H | 日 | 日 | Z | 万 |}

For
Exaniners
（i）To 1 cm depth of the solution of FA 8 in a test－tube，add aqueous potassium iodide
Put all of the FA 8 into a test－tube．
Half fill the test－tube with distilled water and dissolve the solid．
（b）FA 8 contains one cation from those listed on page 10 and 11.
FA 8 contains one cation from those listed on page 10 and 11.
Put all of the FA 8 into a test－tube．
Half fill the test－tube with distilled water and dissolve the solid．
（i）To 1 cm depth of the solution of FA 8 in a test－tube，add aqueous potassium iodide
until the test－tube is half full．Allow the mixture to stand for two minutes．
Use a dropping pipette to transfer about $1 \mathrm{~cm}^{3}$ of the mixture from the top of the
test－tube to another test－tube．Add 5 drops of starch solution．
Record all of your observations．
（ii）State what type of chemical behaviour has been shown by potassium iodide in this
reaction．Give an ionic equation to justify your answer．
．．
．．．
www.SmashingScience.org

test	observations		
	FA 3	FA 4	FA 5
$\begin{array}{l}\text { To 1 cm depth of } \\ \text { solution in a test- } \\ \text { tube, add 2 cm depth } \\ \text { of aqueous sodium } \\ \text { hydroxide. }\end{array}$			
$\begin{array}{l}\text { To 1 cm depth of } \\ \text { solution in a test-tube, } \\ \text { add 2 cm depth of } \\ \text { aqueous ammonia. }\end{array}$			

$\begin{aligned} & \text { Qualitative inorganic ions tests Chem 12 Q\# 31/ ALvl Chemistry/2009/s/TZ 1/ Paper 3/Q\#3/:0) } \\
& \text { www.SmashingScience.org }\end{aligned}$
(d) Carry out the following tests on each of the solutions FA 3, FA 4 and FA 5 .
Record your observations below.
Ti1 Acid／base titrations Chem 7 Q\＃32／ALvl Chemistry／2022／s／Tz 1／Paper 3／Q\＃ 1 ：o） www．SmashingScience．org
Quantitative analysis
Read through the whole method before starting any practical work．Where appropriate，prepare a table for your results in the space provided．
Show the precision of the apparatus you used in the data you record．
Show your working and appropriate significant figures in the final answer to each step of your
calculations． calculations．
1 In this experiment you will identify a straight－chain carboxylic acid by titrating an aqueous solution sodium hydroxide．The carboxylic acid contains C, H and O atoms only and has no $\mathrm{C}=\mathrm{C}$ bonds． FA 1 is an aqueous solution of the carboxylic acid，containing $10.50 \mathrm{gdm}^{-3}$ ．
FA 2 is $0.110 \mathrm{~mol}^{-3} \mathrm{dm}^{-3}$ sodium hydroxide， NaOH ． FA 3 is thymolphthalein indicator．
（a）Method
－Fill the burette with FA 2 ．
－Pipette a $5.0 \mathrm{~cm}^{3}$ of $F A 1$ into a conical flask．
－Add approximately 8 drops of $F A 3$ ．
－Add approximately 8 drops of FA 3 ．
－Perform a rough titration and record your burette readings in the space below． The rough titre is

[^22]－Carry out as many accurate titrations as you think necessary to obtain consistent results． －Make sure any recorded results show the precision of your practical work．
\square ［7］
（b）From your accurate titration results，calculate a suitable mean value to use in your calculations．
Show clearly how you obtain the mean value． Show clearly how you obtain the mean value．

Use these observations to identify the cation or anion present in each solution and
complete the table below．

solution	anion／cation present	reason for selecting the ion

き （d）FA 5 and FA 7 can be mixed to confirm the identity of one ion in each of the two solutions．

test	observation
$\begin{array}{l}\text { To } 1 \mathrm{~cm} \text { depth of } \text { FA } 5 \text { in a } \\ \text { tetst－tue add } 1 \mathrm{~cm} \text { depth } \\ \text { of FA } 7 .\end{array}$	

in FA 7.
［2］
［Total：12］
in FA 5 and

This observation confirms the presence of in $F A 5$ and

\section*{| | | | |
| :---: | :---: | :---: | :---: |
| - | $:=$ | \equiv | \geq |
 }

（c）Carry out the following tests．

	FA 5	FA 6	FA 7	FA 8
To 1 cm depth of solution in a test－tube add 1 cm depth of dilute hydrochloric acid．				

\square FA 2 is $26.3 \mathrm{gdm}^{-3}$ aqueous hydroxide of metal $\mathbf{Z ,} \mathbf{Z O H}$ ．
FA 3 is $0.0500 \mathrm{~mol}^{-1}$ im sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ．
bromophenol blue indicator

$$
\mathbf{Z} \text { may or may not be the same as } \mathbf{X} \text {. }
$$

$$
\begin{gathered}
\text { (a) Method } \\
\text { - Pipe } \\
\text { - Add } \\
\text { ensi }
\end{gathered}
$$

 2 In this experiment you will titrate a solution of the hydroxide of a Group 1 element， \mathbf{Z} ，with sulfuric acid．
The equation for the reaction is shown． Acid／base titrations Chem 7 Q\＃33／ALvl Chemistry／2021／w／TZ 1／Paper 3／Q\＃ 2 ：0）www．SmashingScience．org

$$
\text { e } 25.0
$$

［2］

$$
\begin{aligned}
& \text { - Rinse the pipette with a little distilled water and then a little FA } 4 .
\end{aligned}
$$

- Add a few drops of bromophenol blue indicator to the conical flask.
- Perform a rough titration and record your burette readings in the space below.
Acid/base titrations Chem 7 Q\# 34/ ALvl Chemistry/2021/m/TZ 3/Paper 3/Q\#\# :o) www.SmashingScience.org Quantitative analysis
Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.
Show your working and appropriate significant figures in the final answer to each step of your calculations.
1 In this experiment you will carry out a titration to identify the Group 1 metal, \mathbf{M}, present in a metal
hydrogencarbonate, $\mathbf{M H C O}_{3}$
FA 1 is $0.0550 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(a) Method

Preparing a solution of FA 2

- Fill

bromophenol blue indicator
(a) Method
-

Weigh the stoppered container
Tip all the FA 2 into the beaker.

> Reweigh the container with its stopper. Record the mass. Calculate and record the mass of FA 2 used.

Add approximately $100 \mathrm{~cm}^{3}$ of distilled water to FA 2 in the beaker.
Stir the mixture with a glass rod until all the FA 2 has dissolved.
Transfer this solution into the $250 \mathrm{~cm}^{3}$ volumetric flask.
Transfer this solution into the $250 \mathrm{~cm}^{3}$ volumetric flask.
Wash the beaker with distilled water and transfer the wa
 Make up the solution in the volumetric flask to the mark using distilled water.

- This solution of $\mathbf{M H C O} \mathbf{H}_{3}$ is FA 3. Label the flask FA 3.
Titration
- Fill the burette with FA 1.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add a few drops of bromophenol blue indicator to the conical flask.
- Perform a rough titration and record your burette readings in the space below号 (Thery
(c) Calculations
(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to the appropriate number of significant
figures.
[1]
(ii) Calculate the number of moles of sulfuric acid present in the volume of FA 3 you calculated
in (b).
moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\ldots \ldots \ldots . ~[1] ~$ (iii) Use your answer to (c)(ii) and the information on page 4 to calculate the concentration, in

(v) Use your answer to (c)(iv) and the information on page 4 to calculate the relative atomic
mass, A_{r} of \mathbf{Z}. Hence identify \mathbf{Z}. Show your working.

$\stackrel{n}{N}$
 ®

(d) Using the value for the relative atomic mass of \boldsymbol{Z} that you calculated in (c)(v), calculate the
percentage difference of your value from that shown in the Periodic Table.
(If you did not obtain a value for the A_{r} of \mathbf{Z}, assume it is 32.0 . Note, this is not the correct
value.)
[Total: 15] [1]
\qquad
Hoal: 1 a)
val.

$(-2+2$

效

www.SmashingScience.org

R
(b) From your accurate titration results, obtain a value for the volume of FA 4 to be used in your calculations. Show clearly how you obtained this value.

(ii) Calculate the number of moles of hydrochloric acid that reacted with $25.0 \mathrm{~cm}^{3}$ of FA 3 .
(c) Calculations

ஃ⽟

Calculate the concentration of hydrochloric acid in FA 4.

	6LS fo SZE ied $^{\text {d }}$		
III			
II			
I			

1 In this experiment you will use a solution of sodium carbonate， $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ，to determine the
concentration of a solution of hydrochloric acid， HCl ，by carrying out a titration． FA 1 is a solution of sodium carbonate containing $1.30 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in each $250 \mathrm{~cm}^{3}$ ． FA 2 is hydrochloric acid， HCl ．
［เ］$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \operatorname{znje\wedge }^{1} W$
［Total：11］
Acid／base titrations Chem 7 Q\＃37／ALvl Chemistry／2018／s／TZ 1／Paper 3／Q\＃ 1 ：o）www．SmashingScience．org Quantitative Analysis
Read through the whole method before starting any practical work．Where appropriate，prepare a table
for your results in the space provided．
Show your working and appropriate significant figures in the final answer to each step of your calculations．
（a）Method
－Fill a burette with FA 2 ．
－Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask．
－Add a few drops of methyl orange indicator．
－Perform a rough titration and record your burette readings in the space below．

Hence calculate the number of moles of \mathbf{W} that reacted with this number of moles of sodium hydroxide．

（iv）Use your answer to（iii），and the mass of W used to make FA 3，to calculate the M_{r} of \mathbf{W} ．
Ξ
（v） \mathbf{w} is a halogenoethanoic acid， $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$ ．Use your answer to（iv）to determine the

［ı］ןош－．．．．．．．．．．．．．．．．．．．．．	әош	

[^23]（b）From your accurate titration results，obtain a suitable value for the volume of FA 2 to be used
in your calculations．Show clearly how you obtained this value．
Ξ

ఏ	ఏ	く	乙	目	ヨ	ー

$$
\begin{aligned}
& 6 \text { …........................ }={ }^{\varepsilon} \text { Oכeว 〕о ssem }
\end{aligned}
$$

(d) You have carried out two different methods to find the percentage purity of industrial grade
A source of error in Question 1 is that some carbon dioxide escapes before the bung can be inserted. your answers.
Question 1

Question 2

From your accurate titration results, obtain a suitable value for the volume of FA $\mathbf{3}$ to be used
in your calculations. Show clearly how you obtained this value.
으
your calculaions. Show clealy how you obla

[^24]ןош …......................... $=$ HOeN ıо səom
(ii) Use your answer to (i) and the equation on page 4 to determine the number of moles of hydrochloric acid, HCl , present in the $25.0 \mathrm{~cm}^{3}$ of FA 4 pipetted in (a).

(iii) Use your answer to (ii) to calculate the number of moles of hydrochloric acid, HCl , remaining in flask \mathbf{X} after the reaction in 1(a).

acid, HCl , pipetted into flask \mathbf{X} in $\mathbf{1}$ (a).
moles of HCl pipetted into flask $\mathbf{X}=$.
moles of HCl remaining $=\ldots \ldots . ~ m o l ~$
(iv) Use the relevant information on page 2 to calculate the number of moles of hydrochloric -
mol
(v) Use your answers to (iii) and (iv) to calculate the number of moles of hydrochloric acid,
HCl , which reacted with the marble chips in flask \mathbf{X}

		reuueng rouled	
［t］			
LI			
III			
II			
I			

पूо＇วЈиว！ग马马u！पsems＇MMM
Patrick Brannac

0
0
0
0

\square

(d) (i) One of the sources of error in determining the concentration of FA 2 involves measuring
State which volume of solution that you have measured has the greatest percentage error.
How could you have reduced this error?
(ii) A student suggested that a greater mass of XCO_{3} should be used so that the average titre
You should perform a rough titration.
In the space below record your burette readings for this rough titration.
(b) From your titration results obtain a suitable value to be used in your calculation. Show
clearly how you have obtained this value.

（1） $\mathrm{O}^{2} \mathrm{HZ}+(\mathrm{be})^{\downarrow} \mathrm{OS}^{2} \mathrm{e} \mathrm{N} \leftarrow(\mathrm{be}) \mathrm{HOenz}+(\mathrm{be})^{\downarrow} \mathrm{OS}{ }^{2} \mathrm{H}$
FA 1 is sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ，of approximate concentrati
FA 2 is $0.150 \mathrm{moldm}{ }^{-3}$ sodium hydroxide．
You are also provided with phenolphthalein（indicator）．
You will determine the exact concentration of FA 1 by tit Acid／base titrations Chem 7 Q\＃41／ALvl Chemistry／2011／s／TZ 1／Paper 3／Q\＃1／：0） percentage difference＝
Acid／base titrations Chem 7 Q\＃41／ALvl Chemistry／2011／s／TZ $1 /$ Paper 3／

0
0
0
0
3
3
0
0
0
0
7
N
11
ع－wp
－

目	日	－

эеииеля »эинед

Patrick Brannac

窝要

[^25]\square
（b）From your accurate titration results，calculate a suitable mean value to be used in your
Show clearly how you obtained this value．

（ii）Calculate the amount，in mol，of manganate（VII）ions， MnO_{4}^{-}，in the volume of FA 2 calculated in（b）．

[^26]（－00）Ł๐ ұunoue

維睑
v) Calculate the mass of iron(II) sulfate present in $1.00 \mathrm{dm}^{3}$ of FA 1.
Redox titrations with KMNO_{4} Chem 6 Q\# 44/ ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# 1 :o)
Quantitative Analysis
Read through the whole method before starting any practical work. Where appropriate, prepare a table
for your results in the space provided
Show your working and appropriate significant figures in the final answer to each step of your calculations.
1 In this experiment you will carry out a titration to determine the relative formula mass of a hydrated
salt, FA 1.

> FA 1 is a hydrated salt. FA 2 is dilute sulfuric ag
FA 3 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII)
Preparing a solution of FA 1

(a) Method

$$
\begin{aligned}
& \text { Weigh the stoppered container of FA 1. Record the mass in the space below. } \\
& \text { Tip all the FA } 1 \text { into the beaker. } \\
& \text { Reweigh the container with its stopper. Record the mass. } \\
& \text { Calculate and record the mass of FA } 1 \text { used. } \\
& \text { Add approximately } 100 \mathrm{~cm}^{3} \text { of FA } 2 \text { to the FA } 1 \text { in the beaker. } \\
& \text { Stir the mixture until all the FA } 1 \text { has dissolved. } \\
& \text { Transfer this solution into the } 250 \mathrm{~cm}^{3} \text { volumetric flask. } \\
& \text { Rinse the beaker and glass rod with distilled water and transfer the washings to the } \\
& \text { volumetric flask. } \\
& \text { Make up the solution in the volumetric flask to the mark using distilled water. } \\
& \text { - Shake the flask thoroughly. } \\
& \text { This solution of the hydrated salt is FA 4. Label the flask FA } 4 \text {. }
\end{aligned}
$$

Titration
Fill the burette with FA 3 .
Pipette $25.0 \mathrm{~cm}^{3}$ of FA 4 in

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 4 into a conical flask.
Use the $25.0 \mathrm{~cm}^{3}$ measuring cylinder to add $10 \mathrm{~cm}^{3}$ of FA 2 to the FA 4 in the conical flask.
Perform a rough titration and record your burette readings in the space below.

E 둗

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

[Total: 15]

Calculate the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 3 , in moldm^{-3}.
 (!)

(v) When hydrogen peroxide decomposes in the presence of a catalyst, oxygen is produced.
 produced under room conditions, when $1.00 \mathrm{dm}^{3}$ of the solution decomposes.
Use your answer to (c)(iv) and the equation above to calculate the volume, in dm^{3}, of oxygen produced when $1.00 \mathrm{dm}^{3}$ of FA 3 decomposes. This is the 'volume strength', in vol,
of FA 3.
If you were unable to calculate the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 3 , assume that it is

(d) The maximum error in reading a $25.0 \mathrm{~cm}^{3}$ pipette is $\pm 0.06 \mathrm{~cm}^{3}$.

Show by calculation that the pipette is more accurate than a burette for measuring $25.0 \mathrm{~cm}^{3}$ of
solution. solution.
calculated in (b)
(c) Calculations
(i) Give your answers to (ii), (iii), (iv) and (v) to the appropriate number of significant figures.
(ii) Calculate the number of moles of potassium manganate(VII) present in the volume

(i) Give your
(ii)
(iii) The equation for the reaction of potassium manganate(VII) with hydrogen peroxide is shown.
$2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+5 \mathrm{O}_{2}(\mathrm{~g})$
Use your answer to (c)(ii) to calculate the number of moles of hydrogen peroxide used in each titration.

moles of $\mathrm{KMnO}_{4}=$
 [เ] ןou

ach itration.

Hence calculate the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 4 , in $\mathrm{mol} \mathrm{dm}^{-3}$.
ןow
\square

\section*{$\mathrm{moldm}_{[1]}^{-3}$
 concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA $4=$

(b) From your accurate titration results, obtain a suitable value for the volume of FA 1 to be used
in your calculations.
in your calculations.

$$
\begin{aligned}
& \text { [1] } \text {-uplow }
\end{aligned}
$$

\exists

（b）From your accurate titration results，obtain a suitable value for the volume of FA 3 to be used
in your calculations．Show clearly how you obtained this value．

	ILI
	II
	Λ
	Λ II
	III
	II
	I

flask．
Pipette $25.0 \mathrm{~cm}^{3}$ of
Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to add approximately $20 \mathrm{~cm}^{3}$ of FA 4 to the conical
Fill the burette with FA 3
ipette $25.0 \mathrm{~cm}^{3}$ of FA 1 （a）Method FA 3 is $0.03000 \mathrm{moldm}^{-3}$ potassium manganate（VII）， KMnO_{4}
FA 4 is dilute sulfuric acid． FA 1 is a solution of hydrogen peroxide， $\mathrm{H}_{2} \mathrm{O}_{2}$ ．

in $\mathrm{mol}^{\mathrm{dm}^{-3}}$ ，by titration with acidified aqueous potassium manganate（VII）．The equation for the
reaction is given below．
N www．SmashingScience．org Redox titrations with KMNO_{4} Chem 6 Q\＃46／ALvl Chemistry／2017／m／Tz 3／Paper 3／Q\＃ 2 ：o）

$2 \mathrm{MnO}_{4}^{-}+2 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{Mn}^{6+}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}^{-}+4 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{I}_{2}+2 \mathrm{Mn}^{5+}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+2 \mathrm{Mn}^{4+}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}^{-}+8 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 4 \mathrm{I}_{2}+2 \mathrm{Mn}^{3+}+8 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{MnO}_{4}^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 5 \mathrm{I}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{MnO}_{4}^{-}+12 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 6 \mathrm{I}_{2}+2 \mathrm{Mn}^{+}+8 \mathrm{H}_{2} \mathrm{O}$
（vi）Prove that the iodide ion has been oxidised in the equation that you selected in（v）．

State and explain whether you agree with the student．
（d）（i）The error in calibration of the pipette you used is $\pm 0.06 \mathrm{~cm}^{3}$ ．
Calculate the percentage error when measuring FA 1，using the pipette．
（d）（i）The error in calibration of the pipette you used is $\pm 0.06 \mathrm{~cm}^{3}$ ．
Calculate the percentage error when measuring FA 1，using the pipette．
［5］

－

D
［si：：letol］
（ii）Use the equation below to calculate the number of moles of iodine that reacted with the
$\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
 （iii）Use information on page 2 to calculate the number of moles of potassium manganate（VII）
in FA 1 used in the titration．
moles of $\mathrm{I}_{2}=$
เow
－ 1 FA 1 used in the titation． \square
E

$$
\begin{aligned}
& \text { mol }
\end{aligned}
$$

$$
\begin{aligned}
& \text { in your calculations. } \\
& \text { Show clearly how you have obtained this value. }
\end{aligned}
$$

Show your working and appropriate significant figures in the final answer to each step of your
calculations．
calculations．
（i）Calculate the number of moles of sodium thiosulfate in the volume of FA 4 calculated
in（b）．
in（b）．
（c）Calculations （b）From your accurate titration results，obtain a suitable value for the volume of FA 4 to be used
in your calculations．
Show clearly how you have obtained this value
$=$
Carry out as many accurate titrations as you think necessary to obtain consistent results．
Make sure any recorded results show the precision of your practical work．
Record in a suitable form below all of your burette readings and the volume of FA 4 added
Keep FA 1 and FA 2 for use in Question 3 and FA 4 for use in Question 2.
\square
－

			I
			II
			III
			Iv
			v
			vi
			VII
www．SmashingScience．org	Patrick Brannac	Page 353 of 579	

1
 さ

子	日	日	－

(b) From your accurate titration results obtain a suitable value to be used in your calculations.

Show clearly how you obtained this value.
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Calculate the number of moles of potassium manganate(VII) present in the volume of FA 1 calculated in (b).

 hydrogen peroxide used in each titration
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

our
 (iii) Calculate the concentration, in moldm^{-3}, of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 2.

\oplus

-	日	目	2		>	5

Redox titrations with KMNO_{4} Chem 6 Q\# 49/ ALvl Chemistry/2014/s/TZ 1/ Paper 3/Q\# 1/:0)
www.SmashingScience.org
Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is unstable and decomposes to give water and oxygen. In addition to the usual units of concentration, moldm-3, the concentration of a solution of hydrogen peroxide of ' $20 \mathrm{vol}^{\prime} \mathrm{H}_{2} \mathrm{O}_{2}$. This term means that when $1 \mathrm{dm}^{3}$ of this solution is completely decomposed it generates $20 \mathrm{dm}^{3}$ of oxygen at room temperature and pressure.

The aim of the following titration is to determine the volume strength of a solution of hydrogen peroxide. To do this you will titrate an acidified solution of hydrogen peroxide with potassium
manganate(VII) solution.

FA 1 is $0.0200 \mathrm{moldm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 2 is aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$
FA 3 is $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

a) Method
 (a)

Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into the conical flask.
Use the measuring cylinder to add $25 \mathrm{~cm}^{3}$ of FA 3 to the conical flask.
Run FA 1 from the burette into the conical flask until the pink colour remains.
Perform a rough titration and record your burette readings in the space below
The rough titre is
cm^{3}.
 Make certain any recorded results show the precision of your practical work.
Record, in a suitable form below, all of your burette readings and the volu - Record, in a suitable form below, all of your burette readings and the volume of FA 1 added in each accurate titration.

$$
+2
$$

Fill the burette with FA 1

D
总
W
0
0
0
H
急

\square ［7］
－Pipette $10.0 \mathrm{~cm}^{3}$ of FA $\mathbf{3}$ into a conical flask．
－Pipette $\mathbf{2 5 . 0} \mathrm{cm}^{3}$ of FA $\mathbf{4}$ into the same flask．
－Swirl the flask to mix the contents．
－Fill the second burette with FA 5 ．
－Add FA 5 to the flask until the mixture is yellow．
－Add approximately 10 drops of FA $\mathbf{6}$ ．
－Remplete the rough titration by adding FA $\mathbf{5}$ until
－Record your burette readings in the space below．

ce below．

The rough titre is
 cm^{3} ．

 －Carry out as many accurate titrations as you think necessary to obtain consistent results．－Make sure any recorded results show the precision of your practical work．
－Record，in a suitable form below，all of your burette readings and the volume of FA 5 added in each accurate titration
Ti3 Titrations with thiosulfate and iodine Chem 7 Q\＃51／ALvl Chemistry／2022／m／TZ 3／Paper 3／Q\＃ 2 ：o）www．SmashingScience．org
2 Solid sodium sulfite is often provided as the hydrated salt， $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ ，where x is an integer．
You will determine x by using a solution of this sodium sulfite and reacting it with an excess of Na
$\mathrm{Na}_{2} \mathrm{~S}$
$\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$
The amount of iodine remaining will be determined by titration using a known concentration of $\mathrm{I}_{2}(\mathrm{aq})$
FA 3 is a solution containing $31.50 \mathrm{gdm}^{-3}$ of hydrated sodium sulfite， $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ ．
FA 5 is 0.100 moldm $^{-3}$ sodium thiosulfate， $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ．
FA 6 is starch indicator．
（a）Method

\section*{| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| ー | 日 | 日 | 己 | $ゝ$ |}

［2］
［Total：
［2］
（d）（i）A $25 \mathrm{~cm}^{3}$ pipette is accurate to $\pm 0.06 \mathrm{~cm}^{3}$ ．
Calculate the maximum percentage error when the pipette was used to measure
solution FA 4．

（iv）Calculate the number of moles of iron（II）ions present in $250 \mathrm{~cm}^{3}$ of solution FA 4.

（v）In 1 mole of the iron（II）salt，FA 1，there is 1 mole of iron（II）ions．
Use the mass of FA 1 you weighed out to calculate the relative formula mass of the
iron（II）salt．
iron（II）salt．
relative formula mass $=\ldots \ldots \ldots \ldots \ldots .$.

，

（d）
\square

 poчæə (()

 Read through the whole method before starting any practical work. Where appropriate, prepare a table
for your results in the space provided. Quantitative Analysis

[^27]
?
©
$\sqrt{2}$

(iv) Calculate the value for x in the formula of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times \mathrm{H}_{2} \mathrm{O}$
 (iv)

Show your working

\qquad
\qquad

$$
=\mathrm{O}^{{ }^{2}} \mathrm{HX} \cdot{ }^{\varepsilon} \mathrm{O}^{{ }^{2}} \mathrm{~S}^{z_{\mathrm{e}}} \mathrm{~N} \text { to sə }
$$

(c) Calculations

(i) Give your answers to (c)(ii) and (c)(iii) to the appropriate number of significant figures.
(ii] Calculate the number of moles of iodine in $25.0 \mathrm{~cm}^{3}$ of FA 3.
moles of $\mathrm{I}_{2}=\ldots \ldots .$. mol [1]

(iii) Calculate the number of moles of thiosulfate ions in the volume recorded in (b).

ou ….........

ou ….........

ou ….........

ecorded in (b)

ecorded in (b)

ecorded in (b)
(ii) Calculate the number of moles of iodine in $25.0 \mathrm{~cm}^{3}$ of FA
(ii) Calculate the number of moles of iodine in $25.0 \mathrm{~cm}^{3}$ of FA

\qquad

$\stackrel{\rightharpoonup}{9}$ ヨ

\vdots	G	4	ব	目	日	－

[^28]
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of sodium thiosulfate in the volume of FA 4 calculated

(ii) The equation for the reaction of iodine with sodium thiosulfate is shown.
$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})+2 \mathrm{NaI}(\mathrm{aq})$
Calculate the number of moles of iodine that reacted with the sodium thiosulfate calculated
moles of $\mathrm{I}_{2}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots ~ m o l ~$
(iii) Use the information on page 2 to calculate the number of moles of iodine-containing
compound in the $25 \mathrm{~cm}^{3}$ of FA 1 used in each titration.

 when 1 mole of the iodine-containing compound in FA 1 reacts with excess FA 3. Give
your answer as an integer.

$$
\overline{\underline{E}}
$$

(v) The anion in FA 1 is $\mathrm{IO}_{\mathbf{x}}^{-}$where \mathbf{x} is the number of oxygen atoms present in the formula. Use your answer to (iv) to balance the ionic equation for the reaction between FA 1 and FA 3 under acidic conditions.
Hence deduce the value of x

$\mathrm{IO}^{-}+\ldots \ldots \mathrm{I}^{-}+\ldots \ldots \mathrm{H}^{+} \rightarrow \ldots \ldots \mathrm{I}_{2}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}$
(vi) Calculate the oxidation state of iodine in FA 1.
(If you were unable to calculate x in part (v), assume that $x=4$.)
Titrations with thiosulfate and iodine Chem 6 Q\# 54/ ALvI Chemistry/2017/s/TZ 1/Paper 3/Q\# 1 :o) www.SmashingScience.org
A sotion of with excess acidied potassium iodide, producing iodine. This

FA 1 is an aqueotion
$1.00 \mathrm{dm}^{3}$ of solution
FA 3 is aqueous potassium iodide, KI .
FA 4 is 0.110 moldm $^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

The rough titre is cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain con
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume
[7]
From your accurate titration results, obtain a suitable value for the volume of FA 4 to be used
in your calculations.
Show clearly how you obtained this value.

Calculate the concentration，in moldm^{-3} ，of HCl in FA 1.
（ 1 ）

Each reading with a burette has a maximum error of $\pm 0.05 \mathrm{~cm}^{3}$ ．
Grade B volumetric（bulb）pipettes are calibrated to $\pm 0.06 \mathrm{~cm}^{3}$ ．

（i）Calculate the maximum error in the volume run from the burette recorded in any
titration．

calculated in（b）

The maximum error is ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\％．
（iii）Calculate the percentage error when $25.0 \mathrm{~cm}^{3}$ of FA 1 was pipetted into the conical
flask．

［Gı ：｜ełol］
［Z］
$\%$
$\%$
$(\mathrm{be})^{2} \mathrm{I} \varepsilon+(\mathrm{I}) \mathrm{O}^{2} \mathrm{H} \varepsilon \leftarrow(\mathrm{be})_{+} \mathrm{H} 9+(\mathrm{be})_{-} \mathrm{IG}+(\mathrm{be})_{-}^{\varepsilon} \mathrm{OI}$

-	$=$	\equiv	\geq	$>$

（iv）Calculate how many moles of hydrochloric acid， HCl ，reacted with an excess of

		эеииедя \% ¢	

Perform sufficient further titrations to obtain reliable results.
Record your titration results in the space below. Make certain that your recorded results
show the precision of your working.
Exanerers
Use
누 (b) (i) On the grid opposite, plot the temperature (y-axis) against the time (x-axis). The scale for the maximum temperature you recorded
\square
モ the temperature axis must allow you to plot a point with a temperature $5^{\circ} \mathrm{C}$ greater than
2 In this experiment you will measure the heat given out by the reaction of excess zinc with
copper(II) sulfate solution and use this to estimate the concentration of the copper(II) sulfate. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

A 4 is zinc powder.
 a) Method

starting any practical work

Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker

$$
\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})
$$

FA 4 is zinc powder.
FA 5 is aqueous copper(II) sulfate, CuSO_{4}.
(a) Method

[^29][^30]

Determining the enthalpy change for Reaction 1

$\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
（a）Method
FA 1 is 1.00 moldm $^{-3}$ sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ．
FA 2 is magnesium powder， Mg ．
Read through the method before you start any practical work and prepare a suitable table for
your results．
Weigh the stoppered tube containing FA 2．
Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker．
Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FA 1 into the plastic cup．
Measure the temperature of FA 1 in the plastic cup and start the stop clock．Record this
temperature as being the temperature at time $=0$ ．

At time $=2 \frac{1}{2}$ minutes add the FA 2 to the acid and stir carefully to reduce acid spray．
Measure the temperature of the mixture in the cup at time $=3$ minutes and then every half
Measure the temperature of the
Continue stirring occasionally throughout this time．
Weigh the stoppered tube that had contained FA 2 ．Record the mass．
Calculate and record the mass of FA 2 added to the sulfuric acid
Rinse the plastic cup with water and shake to dry．

ー	日	日	之	$>$	S

Φ

-																						
-																						
-																						
-																						
																						,
-																						
-																						
$\#$																						-
-																						
,																						-
-																						
-																						-
,																						-
																						-
																						-
																						-
																						-
																						-
-																						-
-																						-
																						\rightarrow
-																						-
																						-
-																						\bigcirc
\#																		,	,			\#

ร.

Determining the enthalpy change for Reaction 2
Reaction 2
d) Method
FA 3 is $1.00 \mathrm{moldm}^{-3}$ copper(II) sulfate, CuSO_{4}.
FA 4 and FA 5 are magnesium powder, Mg.
Read through the method before you start any practical work and prepare a suitable table for
your results.
Weigh the stoppered tube containing FA 4. Record the mass.
Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FA 3 into the plastic cup.
(s)n $\mathrm{j}+(\mathrm{be})^{\natural} \mathrm{OS}{ }^{6} \mathrm{~W} \leftarrow$ (be) ${ }^{\dagger} \mathrm{OS} \mathrm{n} \supset+$ (s) 6 W
Add the FA 4 to the FA 3 in the cup and stir the mixture constantly.
Measure and record the maximum temperature reached during the
Calculate and record the maximum temperature change that occurred during the reaction
Weigh the stoppered tube that had contained FA 4. Record the mass.
Calculate and record the mass of FA 4 added to the copper(II) sulfate.
Empty the contents of the plase to dry.
Repeat this experiment using FA 5 in place of FA 4.

	 ［६］ 		
\qquad \qquad ［乙］ 			
 ләмsue ıno久 рәи！еңqо noк моч Киеәр мочS			
	z ио！prey	$)^{*} \mathrm{OS}^{6} \mathrm{~W}$ L ${ }^{\text {be }}$	
	ı บolprey	$)^{7} \mathrm{OS}{ }^{6} \mathrm{~W} \leftarrow$（be	
	кдјецциә әцł әұеппэןэ ε ио！！วeey	 $)^{\text {º }}$ OSn $) \leftarrow$（be	опргеәу лоң әбиечว
			 доң әКиечэ Кдןкцзиョ

Calculation
Show your working and express your answers to three significant figures.
(i) Calculate the heat energy produced in the reaction.
(You may assume that 4.3 J are required to raise the temperature of $1.0 \mathrm{~cm}^{3}$ of any solution by $1.0^{\circ} \mathrm{C}$.)

unit
 heat energy produced $=$.................
 (ii) Calculate the enthalpy change, $\Delta \mathrm{H}_{3}$, in kJmol^{-1}, for the following reaction.
 (l) $\mathrm{O}^{2} \mathrm{H}+(\mathrm{be})^{\natural} \mathrm{O} \mathrm{S}^{6} \mathrm{~W} \leftarrow(\mathrm{be})^{\natural} \mathrm{OS}^{2} \mathrm{H}+(\mathrm{s}) \mathrm{O}^{6} \mathrm{~W}$

Total: ${ }^{\text {T..... }}$ [1]
$6 L$ fo 88ε ә88.

could have been reduced.
the acid reaches $45^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$.

- Using a measuring cylinder, transfer $50 \mathrm{~cm}^{3}$ of FA 4 into a $250 \mathrm{~cm}^{3}$ beaker.
Supprt reaches $45^{\circ}-60^{\circ} \mathrm{Cm}{ }^{3}$ beaker.
Transfer all the solution of hot FA 4 into the plastic cup.
Immediately add all the FA 6 to the FA 4 in the plastic cup.
Stir the mixture constantly with the thermometer.
Record the highest temperature obtained.
In the space below, record all your readings in an appropriate form.

\square																															T	T	T	\square	IT	I	T	T		I	T	T	T	IT	TI	\#10
																																														,
																																														-
																																														-
																																														,
																																														-
																																														-
																																														-
																																														1

	6LS fo t6e ə8ed $_{\text {d }}$	seuneag yplated	

c) (i) Calculate the energy released in the reaction.
(Assume 4.2 J of heat energy changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.)

d) In your calculation in (c), what assumption have you made about the impurity present in FA 1?
[1]

www.SmashingScience.org
Patrick Brannac

(ii) The student also suggested that Experiments $\mathbf{1}$ and 2 should give the same temperature

State and explain whether you agree with the student's suggestion

(c) (i) A student suggested that the experiment would be more accurate if the same mass of

 hydrogen peroxide into water and oxygen

(i) Calculate the energy released in Experiment 1.
[Assume that 4.2 J changes the temperature of $1.0 \mathrm{~cm}^{3}$ of solution by $1.0^{\circ} \mathrm{C}$.]

(d) Calculations
(i) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the enthalpy change of solution of anhydrous
copper(II) sulfate. copper(II) sulfate.

[^31]
(e) In the experiments in (a) and (c) you used the same method to determine the enthalpy change of solution of two solids
Tick the box to indicate which statement is correct.
lgnore the effect of differences in mass used.

The percentage error in (b)(iii) is less than the percentage error in (d)(i).	
The percentage errors in (b)(iii) and (d)(i) are equal.	
The percentage error in (b)(iii) is greater than the percentage error in (d)(i).	

Explain your choice
Thermometric (enthalpies of solution) experiments Chem 5 Q\# 64/ ALvl Chemistry/2020/s/TZ 1/Paper 3/Q\# 2 :o) www.SmashingScience.org
In this experiment you will determine the enthalpy change of solution for anhydrous
sodium carbonate.
FA 5 is anhydrous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. (You are given approximately 11 g .)

(a) Method

Experiment 1

Transfer $4.0-4.2 \mathrm{~g}$ of FA 5 from the container into the cup.
Reweigh and record the mass of the cup wis
Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
Pour $30 \mathrm{~cm}^{3}$ of distilled water into the $50 \mathrm{~cm}^{3}$ measuring cylinder.
Measure and record the temperature of the distilled water in the measuring cylinder,
Add the $30 \mathrm{~cm}^{3}$ of distilled water to the FA 5 in the cup.
Measure and record the maximum temperature
-
Experimeat Experiment 1 but this time use $5.0-5.2 \mathrm{~g}$ of FA 5 and the other cup.
Reper Record all data from both experiments in one table.
(b) Calculations

(i) Calculate the energy produced during Experiment 1.

Results

Calculate the mass of residue obtained. Record the mass
Replace the lid and leave the crucible to cool for at least 5 minutes.
When the crucible has cooled, reweigh the crucible with its lid and contents. Record the Heat strongly, without the lid, for a further 2 minutes.
Replace the lid and leave the crucible to cool for at least 5 minutes.

Place the crucible and contents on a pipe-clay triangle.
Weigh the crucible, lid and FA 4. Record the mass.
Calculate the mass of FA 4. Record the mass.
Weigh the empty crucible with its lid. Record the mass.
Transfer all the FA 4 from the container into the crucible
Weigh the crucible, lid and FA 4. Record the mass. (a) Method

FA 4 is the magnesium compound.

heated this compound decomposes to give magnesium oxide
2 In this experiment you will identify a magnesium compo
G1 Gravimetric (thermal decomposition) experiments Chem 10 Q\# 65/ ALvl
Chemistry/2022/s/TZ 1/Paper 3/Q\# 2 :o) www.SmashingScience.org

Gravimetric (thermal decomposition) experiments Chem 10 Q\# 66/ ALvl Chemistry/2021/w/TZ 1/Paper 3/Q\# Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table
for your results in the space provided. for your results in the space provided

Show your working and appropriate significant figures in the final answer to each step of your calculations.
1 You will investigate a compound of a Group 1 element to determine which element is present.
Group 1 carbonates decompose to give carbon dioxide when heated to high temperatures. $\mathrm{X}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{X}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

FA 1 is the carbonate of the element, $\mathbf{X}_{2} \mathrm{CO}_{3}$.

(a) Method

- Weigh a crucible with its lid and record the mass.
- Add $1.40-1.60 \mathrm{~g}$ of FA 1 to the crucible.

Weigh the crucible and its lid with FA 1 and record the mass.

斯

- Carefully remove the lid. Heat the crucible strongly for 4 minutes.

While the crucible is cooling you may wish to begin work on Question 2.
Reweigh the crucible and contents with its lid. Record the mass.

- Remove the lid. Heat the crucible and contents strongly for a further 2 minutes.

Calculate and record the mass of FA 1 added to the crucible. Calculate the mass of residue Results
[5]
(ii) 1 mole of FA 4 decomposes on heating to produce 1 mole of MgO and 1 mole of gas \mathbf{X}.

Calculate the relative formula mass, M_{r}, of \mathbf{X}.

$$
\begin{aligned}
& \text { (iii) } \mathbf{X} \text { contains one or more oxygen atoms. } \\
& \text { Suggest the identity of } \mathbf{X} \text {. } \\
& \text { (iv) Deduce the name of FA } 4 \text {. } \\
& \text { FA } 4 \text { is ... [1] } \\
& \text { (c) A student suggests that this experiment will be more accurate if FA } 4 \text { is heated throughout the } \\
& \text { experiment with a lid on the crucible. } \\
& \text { State whether the student is correct. Explain your answer. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) State the uncertainty in a single reading of your balance. } \\
& \text { [1] } \\
& \text { [1] } \\
& 6^{\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots} \mp=\text { Кұи!ешәวии } \\
& 6^{\cdots} \\
& \begin{array}{l}
\text { Calculate the maximum percentage error in the mass of residue that you obtained } \\
\text { Show your working. }
\end{array}
\end{aligned}
$$

www.SmashingScience.org

Gravimetric (thermal decomposition) experiments Chem 10 Q\# 68/ ALvl Chemistry/2019/s/TZ 1/Paper 3/Q\# 2 :o) www.SmashingScience.org
2 In Question 1 you measured the volume of carbon dioxide produced by a metal carbonate, MCO_{3} 2 In Question 1 you measured the volume of carbon dioxide produced by a metal carbonate, MCO_{3}, method $\mathrm{QCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{QO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
FA $\mathbf{3}$ is the metal carbonate, QCO $_{3}$.
-

- Weigh the crucible with its lid and record the mass.
Add between 1.30 g and 1.50 g of FA 3 into the crucible. Record the mass of crucible, lid

- Place the crucible on the pipe-clay triangle on the tripod. Put the lid on the crucible and - Use tongs to remove the lid and heat the crucible strongly for approximately 5 minutes.
While the crucible is cooling, begin work on Question 3
- When cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of FA 3 placed in the crucible.
Keep the crucible and its contents for use in Question 3(b).

When Group 2 carbonates are heated they decompose.

(ii) Use your observations in (b)(i) to identify the anion in FA 5. Assume all the $\mathbf{M H C O}_{3}$ has
Ξ
(iii) Steam is produced when the metal hydrogencarbonate, FA 4, is thermally decomposed.
Use your answer in (b)(ii) to complete the equation for the thermal decomposition of $\mathbf{M H C O}_{3}$. Include state symbols.
.... $\mathrm{MHCO}{3}(\mathrm{~s}) \rightarrow \ldots . . \mathrm{CO}_{2}(\mathrm{~g})+\ldots \ldots \ldots$ [1] $\begin{aligned} & \text { The number of moles of carbon dioxide given off during the thermal decomposition is } \\ & \text { (iv) } \\ & \text { given by the formula below. }\end{aligned}$
(iv) The number of moles of carbon dioxide given off during the thermal decomposition is
moles of $\mathrm{CO}_{2}=\frac{\text { mass lost during heating }}{\left(M_{\mathrm{r}} \text { of } \mathrm{CO}_{2}+M_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{O}\right)}$
Calculate the number of moles of carbon dioxide given off.
(v) Calculate the relative formula mass, M_{r} of MHCO_{3}.
Show how you obtained your answer using your data from Question 2.

mol [1]

M_{r} of $\mathrm{MHCO}_{3}=\ldots \ldots{ }^{[1]}$

(vi) You have obtained two values for the M_{r} of $\mathbf{M H C O}_{3}$; one in $\mathbf{1}$ (c)(iv) and another in $\mathbf{2 (b)}$ (v).

 State which value is likely to be more accurate. Explain your answer in terms of the practical procedures usedThe M_{r} obtained in Question is more accurate.
reason
[1]
$\stackrel{\square}{\square}$

[^32]| iimNHSVWS $4 \sqrt{3}$ | | | |
| :---: | :---: | :---: | :---: |
| | 6LS 」o としかっか」 | | － |

ร．
［1］

[^33]
(iii) Use your answers to (i) and (ii) and the equation on page 5 to calculate the number of
moles of copper(II) hydroxide in FA 3 .
moles of $\mathrm{Cu}(\mathrm{OH})_{2}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$...................... [1]
(iv) Use your answer to (i) to calculate the mass of carbon dioxide produced by the thermal
decomposition of the copper(II) carbonate in FA 3.

decomposition of the copper(II) hydroxide in FA 3
(vi) Deduce whether water of crystallisation is present in basic copper(II) carbonate FA 3.

(ii) Using the same apparatus, suggest an improvement to the method to increase the
accuracy of your results.
(iii) A student carried out the method in (a) and obtained inaccurate results.
The student suggested that not all of the copper(II) carbonate in the sample of basic
The student suggested that not all of the copper(II) carbonate in the sample of basic
copper(II) carbonate FA 3 had thermally decomposed.
Suggest a chemical test to determine whether the student was correct. Give the expected observations
Do not carry out this test.

эеииедя >ว!ułed

(a) Method

Gravimetric（thermal decomposition）experiments Chem 10 Q\＃71／ALvl Chemistry／2017／s／TZ 1／Paper 3／Q\＃ 2 ：o）www．SmashingScience．org
Malachite is a basic form of copper carbonate in which copper hydroxide is also present．
The accepted chemical formula of malachite is $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ．
When malachite is heated，it decomposes as shown．
$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
In this experiment，you will heat malachite to decompose it and use your results to obtain evidence about the accepted formula of malachite
FA 5 is malachite， $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ．
（a）Method
Read through the method before starting any practical work．
In the space below prepare a single table for your results of Experiments 1 and 2.
Experiment 1
Weigh a crucible with its lid and record the mass．
Add between 2.5 g and 3.0 g of FA 5 to the crucible．Weigh the crucible with FA 5 and lid
ssew әчt pıoวəı pue
Heat the crucible and contents gently for about two minutes，with the lid on
Remove the lid and continue heating gently for about three minutes．
Replace the lid and leave the crucible and residue to cool for at least five minutes．Then
reweigh the crucible and contents with the lid on Record the mass．
reweigh the crucible and contents with the lid on．Record the mass． While the crucible is cooling，you may wish to begin work on Question 3.
Calculate and record the mass of FA 5 used and the mass of residue obtained．

[^34]［6］
\square

\square

2 Malachite is a basic form of copper carbonate in which copper hydroxide is also present． ．

－••••••

（iv）Using your answer to（iii）and the equation below，write an expression，in terms of \mathbf{y} ，for

0
（c）（i）Apart from altering the balance or the masses of FA 5 used，state one improvement you
（ii）Which experiment should be more accurate，Experiment 1 or Experiment 2？
［2］
［Total：14］
Page 419 of 579

(d) Add to the diagram below additional standard laboratory apparatus that would enable Ensure that your apparatus does not also collect and measure any of the water vapour evolved.

 [乙] [Total: 10] G2 Gravimetric (water of crystallisation) experiments Chem 2 Q\# 73/ ALvl Chemistry/2021/s/TZ 1/Paper 3/Q\# 2 :o) www.SmashingScience.org
 the water of crystallisation.

You will carry out this method on a different hydrated compound, FA 4, with formula $\mathrm{MZ} \cdot \mathrm{yH}_{2} \mathrm{O}$. In
FA 4 the value of y is an integer. MZ
$\mathrm{MZ} \cdot \mathrm{yH}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{MZ}(\mathrm{s})+y \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
FA 4 is a hydrated compound, $\mathrm{MZ} \cdot \mathrm{yH}_{2} \mathrm{O}$.
(a) Method

Weigh the crucible with its lid. Record the mass.
Weigh the crucible with its lid. Record the mass.
Place between 2.40 g and 2.60 g of FA 4 in the crucible and record its appearance below.
Weigh the crucible, its lid and contents and record the mass
 suoṇenəasqo ınoर pıoวaı pue əұnu!̣ әuo

- Then heat more strongly for approximately four minutes

Place the lid on the crucible and leave it to cool.
You may wish to start Question 3 while you are waiting for the crucible to cool.
Weigh the crucible, its lid and contents and record the mass.
Calculate and record the mass of FA 4, the mass of residue

- Calculate and record the mass of FA 4, the mass of residue after heating and the mass of

Keep FA 4 for use in Question 3.

water lost.

[1]

-	$=$	\equiv	\geq	$>$	$>$

[เ]

The proportions of CuCO_{3} and $\mathrm{Cu}(\mathrm{OH})_{2}$ in the basic carbonate can vary from the
1:1 ratio given in the formula.
Make use of the following information to account for the difference between the value you have calculated in (b) and the theoretical percentage loss in mass.

$1 \mathrm{~mol} \mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow 1 \mathrm{molCO}_{2}(\mathrm{~g})$
$1 \mathrm{~mol} \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow 1 \mathrm{molH}_{2} \mathrm{O}(\mathrm{g})$
Assume that 1 mol of any sample of the solid basic carbonate contains $1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
$\left[M_{\mathrm{r}}: \mathrm{CO}_{2}, 44.0 ; \mathrm{H}_{2} \mathrm{O}, 18.0\right]$

[$\left.M_{\mathrm{r}}: \mathrm{CO}_{2}, 44.0 ; \mathrm{H}_{2} \mathrm{O}, 18.0\right]$
(c) The theoretical loss in mass is 33.5%.

Calculations
(b) Calculate the loss in mass during the experiment as a percentage of the mass of solid heated.
In an appropriate form, in the space below, record all of your balance readings, the mass of
basic copper(II) carbonate and the mass of residual copper oxide.

0
0
0
0
N
N
0
0
U
0

 Use a pipe-clay triangle to support the crucible and contents on a tripod.

Gravimetric (water of crystallisation) experiments Chem 2 Q\# 74/ ALvl Chemistry/2013/w/TZ 1/ Paper 3/Q\#
2/:0) www.SmashingScience.org
[Total: 8]
Gravimetric (water of crystallisation) experiments Chem $2 \mathrm{Q} \mathrm{\#}$ 74/ ALv/ Chemistry/2013/w/TZ 1/ Paper 3/Q\#

State and explain whether you agree with the student.

G3 Gravimetric（mass of gas lost）experiments Chem 10 Q\＃75／ALvl Chemistry／2016／s／TZ
1／Paper 3／Q\＃ 1 ：o）www．SmashingScience．org
1 In this experiment you will determine the identity of the Group 2 metal， \mathbf{X} ，in the carbonate， $\mathbf{X C O}$ ．
To do this you will react a known mass of $\mathbf{X C O} \mathrm{C}_{3}$ with excess hydrochloric acid， HCl ，and measure the mass of carbon dioxide that is given off．
FA 1 is XCO
FA 2 is hydrochloric acid， HCl ．
FA 2 is hydrochloric acid， HC 2
（a）Method
FA 1 is XCO_{3} ．
FA 2 is hydrochloric acid， HCl ．
（a）Method
－Weigh the stoppered tube containing FA 1 and record its mass．
－Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FA 2 into the $250 \mathrm{~cm}^{3}$ beaker．
Weigh the beaker containing the acid and record the mass．
Carefully add all the sample of FA 1 to the acid in the beaker．
－Reweigh the beaker and its contents and record the mass．
KEEP THE CONTENTS OF THE BEAKER FOR USE IN QUESTION $\mathbf{2}$ ．
－Reweigh the stoppered tube containing any residual FA 1 and record its mass．
－Calculate the mass of FA 1 added to the acid and record this value．
－Calculate the mass of carbon dioxide given off and record this value．

\section*{| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ー | 日 | 日 | Д | D | S | F |}

［7］

（ii）Write the equation for the reaction of $\mathrm{FA} 1, \mathrm{XCO}_{3}$ ，with hydrochloric acid， HCl ．Include
state symbols．
Show your wo
calculations．

（i）Calculat
Calculate the number of moles of carbon dioxide given off when XCO_{3} reacted with
acid．
Use the data in the Periodic Table on page 16 ．
－
？

Page $\mathbf{4 3 0}$ of 579

$$
\text { ع uo!̣seno u! esn } \operatorname{lot} \mathrm{g} \forall \exists \text { dәәy }
$$ (a) Method FA 5 is a solution of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

distilled water FA 4 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FA 5 is a solution of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ Throughout these experiments care must be taken to avoid inhaling the SO_{2} that is produced
It is very important that as soon as each experiment is complete the contents of the beake
are emptied into the quenching bath. Throughout these experiments care must be taken to avoid inhaling the SO_{2} that is produced.
 The solid sulfur that is formed makes the mixture become cloudy. The rate of reaction can then be
measured by timing how long it takes for the mixture to become too cloudy to see through.

2 When a solution containing thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, is acidified the following reaction occurs. R1 Rate (thiosulfate and acid) experiments Chem 8 Q\# 76/ ALvl Chemistry/2020/w/TZ 1/Paper
3/Q\# 2 :o) www.SmashingScience.org

Rate (thiosulfate and acid) experiments Chem 8 Q\# 77/ ALvl Chemistry/2018/m/TZ 3/Paper 3/Q\# 1 :o)
Quantitative Analysis
Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer toeach step of your calculations.
You will investigate how increasing temperature affects the rate of a reaction Sodium thiosulfate reacts with acid to form a pale yellow precipitate of sulfur.
The ionic equation for the reaction is given.
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
You will measure the time it takes for the sulfur formed in the reaction to obscure the print on the insert supplied.

Record your results in a table on page 4. Your table should include the rate of reaction for each
FA_{1} is $18.1 \mathrm{gdm}^{-3}$ solution thiosulfate $\mathrm{Na}_{2} \mathrm{~S}_{2} 5 \mathrm{H}_{2} \mathrm{O}$.
FA 1 is an $18.1 \mathrm{gdm}^{-3}$ solution of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
FA 2 is a $0.050 \mathrm{moldm}^{-3}$ solution of a strong monoprotic acid, HZ .
(a) Method

- Approximately half fill the $250 \mathrm{~cm}^{3}$ beaker with tap water and place it on the tripod and - Heat the water in the beaker to about $55^{\circ} \mathrm{C}$ and then switch off the Bunsen burner. This - Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into boiling tube 1. Place - Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA $\mathbf{2}$ into boiling tube 2. Place Leave boiling tubes $\mathbf{1}$ and $\mathbf{2}$ in the hot water bath to heat up for use in Experiment $\mathbf{2}$. Experiment 1

Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA 2 into the $100 \mathrm{~cm}^{3}$ beaker. Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into the same beaker and start timing immerately.

Look down through the beaker and contents onto the Insert.
Stop timing as soon as the precipitate of sulfur obscures the
Look down through the beaker and contents onto the Insert.
Stop timing as soon as the precipitate of sulfur obscures the print on the Insert.
Record the reaction time to the nearest second.

- Empty the contents of the beaker into the quenching bath.
$\stackrel{\bullet}{\bullet}$
\qquad
\square

Rinse and dry the beaker so it is ready for use in Experiments 4 and 5 Record the reaction time to the nearest second．
Empty the contents of the beaker into the quenching bath Stop timing as soon as the precipitate of sulfur obscures the print on the Insert Swirl the beaker once to mix the solutions and place the beaker on the Insert．
Look down through the beaker and contents onto the Insert． Transfer the contents of boiling tube 1 into the same beaker and start timing immediately than that for Experiment 2 record the temperature．Remove the thermometer and transfer
the contents of boiling tube 2 into the $100 \mathrm{~cm}^{3}$ beaker．
 Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA $\mathbf{2}$ into boiling tube 2．Place
boiling tube $\mathbf{2}$ into your hot water bath．
Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of FA 1 into boiling tube 1 ．Place
boiling tube 1 into your hot water bath． Experiment 3
Rinse and dry the beaker so it is ready for use in Experiment 3.
Empty the contents of the beaker into the quenching bath．
Stop timing as soon as the precipitate of sulfur obscures the print on the Insert
Swirl the beaker once to mix the solutions and place the beaker on the Insert．
Look down through the beaker and contents onto the Insert．
Carefully transfer the hot contents of boiling tube 2 into the $100 \mathrm{~cm}^{3}$ beaker．
Carefully transfer the hot contents of boiling tube 1 into the same beaker and start timing
immediately．
Measure and record the temperature of FA $\mathbf{2}$ in boiling tube $\mathbf{2}$ ．
Carefully transfer the hot contents of boiling tube $\mathbf{2}$ into the $100 \mathrm{~cm}^{3}$ beaker．

The rate of reaction can be calculated as shown．

自	白	ら	く	を	目	日	ー

(b) On the grid plot a graph of rate of reaction on the y-axis, starting at zero, against temperature

 роцъәผ（ ${ }^{\text {（ })}$ FA 4 is $0.10 \mathrm{moldm}^{-3}$ sodium thiosulfate， $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
FA 5 is $0.20 \mathrm{~mol}^{-1} \mathrm{dm}^{-3}$ hydrochloric acid， HCl ．
The rate of the reaction can be determined by measuring the time taken to produce a fixed quantity
of sulfur． （） $\mathrm{O}^{2} \mathrm{H}+(\mathrm{be})^{2} \mathrm{OS}+(\mathrm{s}) \mathrm{S} \leftarrow(\mathrm{be})_{+\mathrm{HZ}}+(\mathrm{be})_{-} \varepsilon^{\varepsilon} \mathrm{O}^{2} \mathrm{~S}$
When aqueous thiosulfate ions react with hydrogen ions， H^{+}，in any acid，a pale yellow precipitate
of sulfur is formed．The ionic equation for this reaction is given below．
N Rate（thiosulfate and acid）experiments Chem 8 Q\＃78／ALvl Chemistry／2015／w／TZ 1／Paper 3／Q\＃2／：0）
www．SmashingScience．org ［ t Z：：｜etoll
N

I \square

How is the 'rate of reaction' affected by the concentration of hydrochloric acid in the
mixture?
(iii)
(iv) Predict how the reaction time measured in Experiment 1 would have been affected if the
\geq
experiment had been carried out using $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid instead of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$

.

Ξ

\qquad
(f) When viewing the insert through the solution it is difficult to judge the exact moment when the printed material just disappears.
This uncertainty is different for each experiment and is greater for longer reaction times when the printed material disappears slowly.
Complete the table below, assuming the uncertainties given.

	Experiment 1	Experiment 5
recorded reaction time/s		
uncertainty/s	± 2	± 8
percentage uncertainty		$\%$

[1]
(g) Complete the headings in the table below to record the volume of FA 1 (aqueous sodium thiosulfate), the volume of distilled water and the volume of FA 2 (hydrochloric acid).
In the second row copy the volumes used in Experiment 3 from your table of results on page 4.
In the following two rows suggest volumes of each of the reagents that could be used in two further experiments, Experiment 7 and Experiment 8 , to investigate how the rate of reaction varies with a change in the concentration of the acid.
Do not carry out these experiments.

Experiment			
3			
7			
8			

A text book states that the rate of reaction between aqueous sodium thiosulfate and hydrochloric acid is directly proportional to the concentration of sodium thiosulfate. hydrochloric acid is directly proportional to the concentration of sodium thiosulfate.
Use your graph to decide whether the statement in the text book is correct or not. Explain your answer.

The initial concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in Experiment $5=\ldots \ldots . . . \mathrm{moldm}^{-3}$

[2]

[^35](c) A student carried out the experiments in a $100 \mathrm{~cm}^{3}$ beaker instead of a $250 \mathrm{~cm}^{3}$ beaker.
State and explain what effect this would have on the times recorded.
(c) A student carried out the experiments in a $100 \mathrm{~cm}^{3}$ beaker instead of a $250 \mathrm{~cm}^{3}$ beaker.
State and explain what effect this would have on the times recorded.

(d) FA 1 is 0.150 mol $\mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
Calculate the initial concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the reaction mixture in Experiment 5 .
Show your working.

[^36]
घ.
seuuesg ro!ured

D
0
0
0
0
0
H

Φ \qquad

 Ser 1 . 1 and distiled water for one further experiment to
 Empty and rinse the beaker. Shake out as much of the rinse water as possible and
dry the outside of the beaker.
 Tip the FA 4 into the FA 1 in the beaker and immediately start timing.
Swirl the beaker to mix the solution and place it on top of the printed insert. Using the larger measuring cylinder transfer $50 \mathrm{~cm}^{3}$ of FA 1 into a $250 \mathrm{~cm}^{3}$ beaker
Measure $5 \mathrm{~cm}^{\text {of of }} \mathrm{FA} 4$ in the smaller measuring cylinder (or marked tube).
Page 446 of 579

	ε
	乙
	\downarrow
	диәш!

its concentration in the reaction mixture. The total volume in each experiment is constant. Using volumes from the first two
experiments, show by simple calculation that the volume of FA 1 used is a measure of
[l]
\qquad

\begin{abstract}

Abstract

 .
（b）From your results，what can you conclude about how the＇rate of reaction＇is affected by，
（i）the concentration of hydrogen peroxide，
（ii）the concentration of potassium iodide？

rate of reaction $=\frac{1}{\text { reaction time }}$
 瘾

ϖ
？

Add the contents of the measuring cylinder to the beaker and start timing immediately． Stir the mixture once and place the beaker on a white tile． Stop timing as soon as the solution turns blue－black．

Record this reaction time to the nearest second．
Wash out the beaker and the measuring cylinder w
Experiment 3
－Use the measuring cylinder to transfer the following volumes into the same $100 \mathrm{~cm}^{3}$ beaker．
$0 \quad 10 \mathrm{~cm}^{3}$ of FA 3
$0 \quad 10 \mathrm{~cm}^{3}$ of FA 4
$10 \mathrm{~cm}^{3}$ of FA 5
－ $10 \mathrm{~cm}^{3}$ of distilled water
－Add 10 drops of starch indicator to the beaker．
－Rinse the measuring cylinder with water and shake dry．
－Use the measuring cylinder to measure $20 \mathrm{~cm}^{3}$ of FA 2 ．
－Add the contents of the measuring cylinder to the beaker and start timing immediately．
－Stir the mixture once and place the beaker on a white tile．
－Stop timing as soon as the solution turns blue－black．
－Record this reaction time to the nearest second．
Record all your results in a single table．You should include the volume of hydrogen peroxide，
the volume of potassium iodide，the volume of distilled water and the reaction time．You should also include the＇rate of reaction＇which is given by the following expression．

R2 Rate（thiosulfate and iodine）experiments Chem 8 Q\＃81／ALvI Chemistry／2014／s／TZ 1／ Paper 3／Q\＃2／：o）www．SmashingScience．org

2 An acidified solution of hydrogen peroxide is able to oxidise iodide ions， $\mathrm{I}-(\mathrm{aq})$ ，to iodine， $\mathrm{I}_{2}(\mathrm{aq})$ ． $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

In this experiment，you will investigate how the rate of this reaction depends on the concentration of the hydrogen peroxide and on the concentration of the iodide ions．

The rate of this reaction can be measured by adding thiosulfate ions， $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ ，and starch indicator to the mixture．As the iodine is produced，it reacts immediately with the thiosulfate ions and is reduced back to iodide ions．

When all the thiosulfate has reacted，the iodine then turns the starch indicator blue－black．The rate of reaction may be determined by timing how long it takes the reaction mixture to turn blue－black． FA 2 is aqueous hydrogen peroxide， $\mathrm{H}_{2} \mathrm{O}_{2}$ ．

FA 4 is $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium iodide， KI ．
FA 5 is $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate， $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ．
Read through the instructions carefully and prepare a table for your results before starting any practical work．
（a）Method
Experiment 1 Use the measuring cylinder to transfer the following volumes into the same $100 \mathrm{~cm}^{3}$ beaker．
$0 \quad 10 \mathrm{~cm}^{3}$ of FA 3
$0 \quad 20 \mathrm{~cm}^{3}$ of FA 4
$0 \mathrm{~cm}^{3}$ of FA 5
$\circ 10 \mathrm{~cm}^{3}$ of distilled water
－Add 10 drops of starch indicator to the beaker．
－Rinse the measuring cylinder with water and shake dry．
－Use the measuring cylinder to measure $10 \mathrm{~cm}^{3}$ of FA 2 ．
－Add the contents of the measuring cylinder to the beaker and start timing immediately．
－Stir the mixture once and place the beaker on a white tile．
－Stop timing as soon as the solution turns blue－black．
－Record this reaction time to the nearest second．
－Wash out the beaker and the measuring cylinder with water and shake dry．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ．

Experiment 2
－Use the measuring cylinder to transfer the following volumes into the same $100 \mathrm{~cm}^{3}$ beaker
$0 \quad 10 \mathrm{~cm}^{3}$ of FA 3
Experiment 2
－Use the measuring cylinder to transfer the following volumes into the same $100 \mathrm{~cm}^{3}$ beaker．
$0 \quad 10 \mathrm{~cm}^{3}$ of FA 3
$10 \mathrm{~cm}^{3}$ of FA 3
$20 \mathrm{~cm}^{3}$ of FA 4 Add 10 drops of starch indicator to the beaker．
－ $20 \mathrm{~cm}^{3}$ of FA 4
－Rinse the measuring cylinder with water and shake dry．
－Use the measuring cylinder to measure $20 \mathrm{~cm}^{3}$ of FA 2. Add 10 drops of starch indicator to the beaker．
－ $20 \mathrm{~cm}^{3}$ of FA 4
－Rinse the measuring cylinder with water and shake dry．
－Use the measuring cylinder to measure $20 \mathrm{~cm}^{3}$ of FA 2. Add 10 drops of starch indicator to the beaker．
－ $20 \mathrm{~cm}^{3}$ of FA 4
－Rinse the measuring cylinder with water and shake dry．
－Use the measuring cylinder to measure $20 \mathrm{~cm}^{3}$ of FA 2.
$\circ 10 \mathrm{~cm}^{3}$ of FA 3

$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})$

（a）Method
Exine $\begin{aligned} & \text { Use the measuring cylinder to transfer the following volumes into the same } 100 \mathrm{~cm}^{3} \text { beaker．} \\ & 0 \mathrm{~cm}^{3} \text { of FA 3 } \\ & \circ 20 \mathrm{~cm}^{3} \text { of FA } 4 \\ & \circ 10 \mathrm{~cm}^{3} \text { of FA } 5 \\ & \circ 10 \mathrm{~cm}^{3} \text { of distilled water } \\ & \text {－Add } 10 \text { drops of starch indicator to the beaker．} \\ & \text {－Rinse the measuring cylinder with water and shake dry．} \\ & \text {－Use the measuring cylinder to measure } 10 \mathrm{~cm}^{3} \text { of FA } 2 \text { ．} \\ & \text {－Add the contents of the measuring cylinder to the beaker and start timing immediately．} \\ & \text {－Stir the mixture once and place the beaker on a white tile．} \\ & \text {－Stop timing as soon as the solution turns blue－black．} \\ & \text {－Record this reaction time to the nearest second．} \\ & \text {－Wash out the beaker and the measuring cylinder with water and shake dry．}\end{aligned}$ ． －

－

 Using a $25 \mathrm{~cm}^{3}$ measuring cylinder add the following to the second $100 \mathrm{~cm}^{3}$ beaker
 Fill a second burette with distilled water Experiment 2

$$
\begin{aligned}
& \text { on page } 3 \text {. } \\
& \text { Wash out both beakers. }
\end{aligned}
$$

 Stir the mixture once and place the beaker on a white tile.
Stop timing as soon as the solution turns blue-black.人|әझ!! Add 10 drops of starch indicator to the second beaker.
$20 \mathrm{~cm}^{3}$ of FA 2
$10 \mathrm{~cm}^{3}$ of FA 3

 рочวәw (e)

Read through the instructions carefully and prepare a table for your results on page 3
before starting any practical work. FA 3 is $0.00500 \mathrm{moldm}^{-3}$ aqueous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
starch indicator FA 1 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous potassium peroxodisulfate, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
FA 2 is $1.00 \mathrm{moldm}^{-3}$ aqueous potassium iodide, KI . the peroxodisulfate ions.
 long it takes for the reaction mixture to turn blue-black. turns the starch indicator blue-black. The rate of reaction may be determined by timing how

(be) $-z^{9} \mathrm{O}^{7} \mathrm{~S}+(\mathrm{be})_{-\mathrm{I}} \mathrm{I} \leftarrow(\mathrm{bee})_{-} \mathrm{z}^{\mathrm{E}} \mathrm{O}^{2} \mathrm{~S} Z+(\mathrm{be})^{2} \mathrm{I}$
ions and is reduced back to iodide ions.
 $2 \mathrm{I}-(\mathrm{aq})+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{SO}_{4}{ }^{2-}$-(aq) 1 When iodide ions are mixed with peroxodisulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, iodine is formed Rate (thiosulfate and iodine) experiments Chem 8 Q\# 82/ ALvI Chemistry/2012/s/TZ 1/ Paper 3/Q\# 1/:o)
$\sqrt{~}$

（c）The rate of the reaction can be represented by the following formula．

＇rate＇$=\frac{\text { concentration of } \mathrm{I}_{2} \text { from（b）（iii）}}{\text { reaction time }} \times 10^{6}$
FA 1，the reaction time and＇rate＇with their units
If you were unable to answer（b）（iii），you may ass
$4.25 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$（This is not the correct value）

Experiments 3－5

（
玉
这

马	日	日	－

 temperature you recorded.
ThTi Thermometric titration experiments Chem 7 Q\# 83/ ALvl Chemistry/2022/m/Tz 3/Paper 3/Q\# 1 :o) www.SmashingScience.org
Quantitative analysis

Read through the whele metho , Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 You will determine the concentration of sulfuric acid by reaction with a known concentration of sodium hydroxide using a thermometric method. The equation for the reaction is shown $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

FA 1 is 1.90 mol dm $^{-3}$ sodium hydroxide, NaOH .
FA 2 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

f results.
Fill a burette with FA 2.
Run $5.00 \mathrm{~cm}^{3}$ of FA 2 into the solution in the cup.

Repeat adding $5.00 \mathrm{~cm}^{3}$ volumes of FA 2 into the solution in the cup until $45.00 \mathrm{~cm}^{3}$ has
Results

volume of FA 2 added $/ \mathrm{cm}^{3}$	0.00	5.00	10.00	15.00	20.00
temperature of solution $/{ }^{\circ} \mathrm{C}$					
volume of FA 2 added $/ \mathrm{cm}^{3}$	25.00	30.00	35.00	40.00	45.00
temperature of solution $/{ }^{\circ} \mathrm{C}$					

른

Draw two lines of best fit, one for the rise in temperature and one for after the maximum
[4]

(b) After each addition of acid, the temperature rise, ΔT, is given by,
$\Delta T=$ temperature recorded $-T_{1}$.
The total volume of solution in the plastic cup, V_{T} is given by,
$V_{T}=$ volume of FA $2+$ volume of $F A$
The heat given out by the reaction is proportional to the temperature rise, ΔT, multiplied by the total volume of solution in the plastic cup, V_{T}.
Use your experimental results to complete the following table. You should include:
the volume of FA 2
the total volume in the plastic cup, V_{T}

- the total volume in the plastic cup, V_{T}
- the temperature of the solution
- the total volume \times the temperature rise,$\left(V_{T} \times \Delta T\right)$
- the temperature of the solution
- the temperature rise, ΔT
- the total volume \times the temperature rise, $\left(V_{T} \times \Delta T\right)$

The total volume of solution in the plastic cup, V_{T} is given by,
$V_{T}=$ volume of FA $2+$ volume of FA 1 .

the volume of FA 2

Thermometric titration experiments Chem 7 Q\# 84/ ALvI Chemistry/2013/s/TZ 1/ Paper 3/Q\# $1 /$:o)
www.SmashingScience.org
1 The reaction between sulfuric acid and sodium hydroxide is exothermic.

돈

	6LS fo L9t ${ }^{\text {28ed }}$	Jeuneag \%olited	

\square I
-
Thermometric titration experiments Chem 7 Q\# 85/ ALvl Chemistry/2011/w/TZ 1/ Paper 3/Q\# 1/ :o)
www.SmashingScience.org

Σ
www.SmashingScience.org

(f) Calculate how many moles of hydrochloric acid are present in $25 \mathrm{~cm}^{3}$ of FA 2.

(e) Calculate the amount of heat energy produced in the reaction. Use the temperature
change from (c) in calculating your answer.
[Assume that 4.3 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of any solution by
$1^{\circ} \mathrm{C}$]
(e) Calculate the amount of heat energy produced in the reaction. Use the temperature
change from (c) in calculating your answer.
[Assume that 4.3 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of any solution by
$1^{\circ} \mathrm{C}$] [z] ...

N $$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This reaction is exothermic.
Use this information to explain the shape of the graph.
(d) The reaction between FA 1 and FA 2 is shown in the equation below.
 the temperature change is ${ }^{\circ} \mathrm{C}$

	u6;

..
\qquad

 l-

c) Reading from the intersection of the two lines on your graph,

(b) Use the grid below to plot a graph of temperature rise (y-axis) against the volume of $\left.\right|_{\text {For }} ^{\text {Formers }}$

［z］

○。

［เ］

［z］

[^37]
[1]

hydrochloric acid.

 [3]
 [เ] 1
 A_{r} of $\mathbf{M}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

 ! \mathbf{W}

 ! \mathbf{W}}(ii) Another student suggested that the experiment would be more accurate if the carbon dioxide
was collected in a gas syringe rather than over water.

State and explain whether the student was correct
 mass, A_{r} of M
[Assume that 1 mol of gas occupies $24.0 \mathrm{dm}^{3}$ under these conditions.]
(i) Calculate the number of moles of carbon dioxide collected in the measuring cylinder.
(i) Calculate the number of moles of carbon dioxide collected in the measuring cylinder
(b) Calculations
(b)
(i) Calculate the number of moles of carbon dioxide collected in the measuring cylinder.
[Assume that 1 mol of gas occupies $24.0 \mathrm{dm}^{3}$ under these conditions.]
moles of $\mathrm{CO}_{2}=\ldots \ldots \ldots ~ m o l ~[1] ~$
(ii) Use your answer to (b)(i) and the information on page 2 to calculate the relative atomic
mass, A_{n} of \mathbf{M}.
Read through the whole method before starting any practical work. Where appropriate, prepare a table
for your results in the space provided.

> Show your working and appropriate significant figures in the final answer to each step of your calculations.

Metal carbonates react with acid to produce carbon dioxide. You will determine the identity of a

 hydrochloric acid and measuring the volume of carbon dioxide produced. $\mathbf{M C O}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$FA 1 is $50 \mathrm{~cm}^{3}$ of $4.00 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
FA 2 is the metal carbonate, MCO_{3}.

- Remove the paper towel and clamp the tub.

- Check that the bung fits tightly into the neck of flask \mathbf{X}, clamp flask \mathbf{X} and place the end of the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
Remove the bung from the neck of the flask. Tip the FA 2, from the container, into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl - Replace the flask in the clamp. Leave for several minutes, swirling the flask occasionally. You may wish to start Question 2 while the gas is being evolved.
- When no more gas is collected, measure and record the final volume of gas in the - Weigh the container, with any residual FA 2, and record the mass.

		seuneıg y pilaed	

Results

 Calculate and record the mass of FA 1 added to the flask.Measure and record the final volume of gas in the $250 \mathrm{~cm}^{3}$ measuring cylinder
 flask occasionally until no more gas is produced
Replace the flask in the clamp. Remove the bung from the neck of the flask. Tip FA 1 into the flask and replace the bung
immediately. Remove the flask from the clamp and swirl it to mix the contents. Swirl the
flask occasionally until no more gas is produced. tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
Weigh the container with FA 1 and record the mas Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $50 \mathrm{~cm}^{3}$ of FA 2 into the conical flask.
Fit the bung tightly in the neck of the flask, clamp the flask and place the end of the delivery
tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder. Remove the paper towel and clamp the inverted measuring cylinder so the open end is in
the water just above the base of the tub.
 Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Hold a piece of paper towe Fill the tub with water to a depth of about 5 cm . (a) Method The formula of basic copper(II) carbonate, FA 1, can be written as $\mathbf{x C u C O}$
You will use your results to determine the ratio $\mathbf{x}: \mathbf{y}$ in the formula. FA 1 is a sample of basic copper(II) carbonate
FA 2 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. $\mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
is called basic copper(II) carbonate. You will determine the composition of an ore of copper by
reacting it with an excess of acid and collecting the gas evolved. Several ores of copper contain both copper(II) carbonate and copper(II) hydroxide. This combination
is called basic copper(II) carbonate. You will determine the composition of an ore of copper by

Show your working and appropriate significant figures in the final answer to each step of your calculations for your results in the space provided
Read through the whole method before starting any practical work. Where appropriate, prepare a table Quantitative Analysis www.SmashingScience.org Gas collection (carbonate reacting with acid) Chem 7 Q\# 88/ ALvl Chemistry/2019/m/TZ 3/Paper 3/Q\# 1 :o)

ou \qquad ᄂ $\forall \unlhd$ u! әұеиоqıе 					

 cylinder in the space on page 3 ．
Keep the contents of flask X for use in Question 2.
Gas collection（carbonate reacting with acid）Chem 10 Q\＃89／ALvI Chemistry／2016／w／TZ 1／Paper 3／Q\＃ 1 ：o）
www．SmashingScience．org
In Questions 1 and 2 you will determine the percentage purity of industrial grade calcium carbonate，
CaCO_{3} ，by two different methods． CaCO_{3} ，by two different methods． In the first method you will collect and measure the volume of gas given off in the reaction between
 carbonate will not react with the acid．
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
FA 1 is industrial grade calcium carbonate， CaCO_{3} ，in the form of small marble chips．
FA 2 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid， HCl ． （a）Method
Read through the whole method before starting any practical work． The diagram below may help you in setting up your apparatus

 firmly over the top，invert the measuring cylinder and place it in the water in the tub．
Remove the paper towel and clamp the inverted measuring cylinder so the open end is in
Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into the reaction flask labelled \mathbf{X} ． Check that the bung fits tightly in the neck of flask \mathbf{X} ，clamp fla
the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder．
Weigh the container with FA 1 and record the mass in the space on page 3.
Remove the bung from the neck of the flask．Tip FA 1 into the acid and replace Remove the bung from the neck of the flask．Tip FA 1 into the acid and replace the bung
immediately．Remove the flask from the clamp and swirl it to mix the contents．Swirl the flask occasionally until no more gas is evolved．Replace the flask in the clamp．

Calculate and record in the space on page 3 the mass of FA 1 used． When no more gas is given off，measure and record the final volume of cylinder in the space on page 3 ．
三

How would the value of \mathbf{y} calculated in（b）change if the experiment was carried out at a much
©

explanation ［1］
（d）Not all the carbon dioxide produced in the reaction is collected in the $250 \mathrm{~cm}^{3}$ measuring cylinder．
One reason for this is that some carbon dioxide is lost before the bung can be replaced in the flask．

Give one other reason why it is not possible to collect all of the carbon dioxide produced in（a）． Suggest an improvement to the method to address this．

reason

improvement

Result
 z uoplseno u! asn dol I $\forall \exists$ deay

 (a) Method FA 1 is a solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
FA 2 is manganese(IV) oxide, MnO_{2}. ' 100 volume' hydrogen peroxide will produce $100 \mathrm{~cm}^{3}$ of oxygen.

 $(6)^{2} \mathrm{O}+(1)^{2} \mathrm{HZ} \leftarrow(\mathrm{be})^{2} \mathrm{O}^{2} \mathrm{HZ}$

(c) (i) A source of error in this experiment is that some oxygen escapes before the bung can be
inserted.
Suggest a change to the practical procedure given in (a) to reduce this source of error. You may draw a diagram as part of your answer

Calculate the maximum percentage error in the volume of hydrogen peroxide added to

(!!)
(a)

[t]
(d) If you repeated the method described using half the mass of FA 2, what volume of gas would
you expect to collect? Explain your answer.
Ξ

Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Use the information on page 2 to calculate the 'volume strength' of FA 1.
Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Use the information on page 2 to calculate the 'volume strength' of FA 1.
Show your working and appropriate significant figures in the final answer to each step of your
calculations.
(i) Use the information on page 2 to calculate the 'volume strength' of FA 1.
(ii) Calculate the number of moles of oxygen collected in the measuring cylinder.
[Assume 1 mole of gas occupies $24.0 \mathrm{dm}^{3}$ under these conditions.]
'volume strength' of FA $1=$.

(iii) Using your answer to (ii) calculate the number of moles of hydrogen peroxide in the volume of FA 1 added to flask \mathbf{X}.

2
(iv) Calculate the concentration of hydrogen peroxide, FA 1, in moldm^{-3}.

moles of $\mathrm{O}_{2}=\ldots \ldots \ldots . ~$
(iv) Calculate the concentration of hydrogen peroxide, FA 1 , in mol dm^{-3}.
(b) Calculations
concentration of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{FA} 1$
${ }^{[4]}$
战
Page 479 of 579

(a) Method

 FA 1 is magnesium powder, Mg.FA 2 is hydrochloric acid, HCl .
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
In this experiment you will determine the concentration of a sample of hydrochloric acid. You will do
this by measuring the volume of hydrogen produced when an excess of magnesium reacts with the
acid.

Read through the whole method before starting any practical work. Where appropriate, prepare a table
for your results in the space provided.
 GC3 Gas collection (metal and acid) Chem 6 Q\# 91/ ALvl Chemistry/2019/w/Tz 1/Paper 3/Q\# 1 :o)
www.SmashingScience.org

[^38]

(ii) Calculate the concentration of hydrochloric acid in FA 2

(i) Calculate the number of moles of hydrogen gas produced.
(Assume 1 mol of gas occupies $24.0 \mathrm{dm}^{3}$ at this temperature.)
suoņe|nวeว (q)

[ᄂ] -upıou …...........................

$[1]$
pou
（b）Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to approximately $80^{\circ} \mathrm{C}$ ．Turn off the Bunsen burner．This will be your hot water bath．

FA 7 is an organic compound with an M_{r} between 40－57．
（i）Carry out Test $\mathbf{2}$ and Test $\mathbf{3}$ on FA $\mathbf{7}$ and record your observations．The result for Test $\mathbf{1}$ is shown in the table．

test	observations
Test 1 Add a small piece of sodium．	no change
Test 2 To a 0．5 cm depth of aqueous iodine in a test－tube add aqueous sodium hydroxide dropwise until the yellow colour just disappears．Then add a few drops of FA 7 and shake the test－tube． If no change is seen，warm the test－tube in your hot water bath．	
Test 3 To a 1 cm depth of FA 7 in a test－tube add a few drops of acidified potassium manganate（VII）． Warm the test－tube in your hot water bath．	

［2］
（ii）Using the observations in（b）（i）suggest what can be deduced from each test about the functional groups present in FA 7 ．「

N
Test 3
저
玉
（iii）Use your deductions in（b）（ii）to suggest the identity of FA 7 ．
FA 7 is ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
［Total： 1 ］
［Total：15］ （iii）Use your deductions in（b）（ii）to suggest the identity of FA 7 ．
FA 7 is ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
［Total： 1

		эeuueng \％	
［ $]$			－．．．S！L V

No additional tests should be attempted．

If any solution is warmed，a boiling tube must be used． Rinse and reuse test－tubes and boiling tubes where possible．
（d）Another student carried out the experiment in（a）but used less magnesium than that calculated
in（b）（iii）．
State and explain the effect this would have on the calculated concentration of hydrochloric acid
in FA 2 ． ［8： 8 ： Qo Qualitative tests to identify unknown organic compounds Chem 17 Q\＃92／ALvl Chemistry／2022／w／TZ 1／Paper 3／Q\＃ 3 ：o）www．SmashingScience．org
Qualitative analysis

For each test you should record all your observations in the spaces provided． Examples of observations include：
colour changes seen
－the formation of any precipitate and its solubility（where appropriate）in an excess of the reagent －the formation of any gas and its identification（where appropriate）by a suitable test． You should record clearly at what stage in a test an observation is made．

Where no change is observed you should write＇no change＇．
Where reagents are selected for use in a test，the name or correct formula of the element or compound
must be given．
 Rinse and reuse test-tubes and boiling tubes where possible. If any solution is warmed, a boiling tube must be used You should indicate clearly at what stage in a test a change occurs. - the formation of any gas and its identification by a suitable test. the formation of any precipitate and its solubility in an excess of
the formation of any gas and its identification by a suitable test. colour changes seen
the formation of any
At each stage of any test you are to record details of the following: must be given
Where reagents are selected for use in a test, the name or correct formula of the element or compound Qualitative Analysis 3/Q\# 3 :0) www.Smashingscience.org Qualitative tests to identify unknown organic compounds Chem 16 Q\# 93/ ALvl Chemistry/2020/s/TZ 1/Paper

test	
To a 1 cm depth of FA 5 in a test－tube add a small spatula measure of sodium carbonate．	
To a 1 cm depth of FA 5 in a test－tube add two drops of acidified potassium manganate（VII）．Leave to stand in the water bath．	
To a 1 cm depth of FA 5 in a test－tube add a few drops of aqueous silver nitrate．	
To a 1 cm depth of aqueous silver nitrate in a test－tube add a few drops of aqueous sodium hydroxide and then add aqueous ammonia slowly until the grey precipitate that forms just dissolves．This is Tollens＇reagent． To this solution add a 1 cm depth of FA 5 and leave to stand in the water bath． Care：rinse the tube as soon as you have completed this test．	

モ

Qualitative tests to identify unknown organic compounds Chem 17 Q\＃95／ALvI Chemistry／2016／s／TZ 1／Paper 3／Q\＃3 ：o）www．SmashingScience．org

3 Qualitative Analysis
colour changes seen
the formation of any prec
the solubility of such pre
－colour changes seen
－the formation of any precipitate
－the solubility of such precipitates in
Where gases are released they should be identified by a test，described in the appropriate place
At each stage of any test you are to record details of the following．

Where gases are relea
in your observations．
in your observations．
Marks are not given for chemical equations．
No additional tests for ions present should be attempted．
If any solution is warmed，a boiling tube MUST be used．
Rinse and reuse test－tubes and boiling tubes where possible．

Where reagents are selected for use in a test，the name or correct formula of
the element or compound must be given．

Page 488 of 579

Patrick Brannac
www．SmashingScience．org
（ii）FA 8 contains an organic compound．
From your observation（s），suggest one possible identity for this compound． Explain your answer． name ．．． reason
reason name
［2］
（iii）State the type of reagent FA 7 acts as in its reaction with aqueous potassium iodide．

[T........... [1]
[Total: 18]
Qualitative tests to identify unknown organic compounds Chem 18 Q\# 94/ ALvI Chemistry/2018/s/TZ 1/Paper
3/Q\# 3:o) www.Smashingscience.org
Qualitative Analysis
Qualitative Analysis
Where reagents are selected for use in a test，the name or correct formula of the element or compound must be given．
At each stage of any test you are to record details of the following：
－colour changes seen； the formation of any precipitate and its solubility in an excess of the reagent added； －the formation of any gas and its identification by a suitable test．
You should indicate clearly at what stage in a test a change occurs．
If any solution is warmed，a boiling tube must be used．
Rinse and reuse test－tubes and boiling tubes where possible．
No additional tests for ions present should be attempted．

[^39]| 4 | | | |
| :---: | :---: | :---: | :---: |
| | | （弓uәбъед s
 | ן ןеэе！иoume әчdouluup－t |

$$
\begin{aligned}
& \text { Primary alcohol } \\
& . \quad \text { tertiary alcohol } \\
& \text { - } \\
& \text { aldehyde } \\
& \text { ketone }
\end{aligned}
$$

FA 7，FA 8，FA 9 and FA 10 are organic compounds．Each contains one of the following
different functional groups．

즌

$9 \forall \exists$
Suggest the identity of FA 6 and FA 7 with an explanation．

	чңеq ләңем ұоч әчł и （IIム）әңеиебиеш
	чдеq ләңем доч әцъ и （IIN）әңеиебиеш unissełod рәщріэе до sdoup мәృ е ppe
suonenəsqo	1รə

Turn off the Bunsen burner． Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to about $50^{\circ} \mathrm{C}$ ．You will use this as a hot water
bath． әuouedold • peuedold 2－methylpropan－2－ol
（d）FA 6 and FA 7 are different organic liquids．Their possible identities are listed below．

$6 \angle S$ fo 06t 28ed $^{\text {d }}$

иоп̣еue｜dxa
State which of the solutions contains a tertiary alcohol．Explain the observations leading
to your conclusion．

				（іл）әұешоичэрр un！ssetiod рәцррию
Or $\forall \pm$	$6 \forall \exists$	$8 \forall \exists$	L $\forall \pm$	ไบว6еә」
suопелазяo				

 To 2 cm depth of aqueous silver nitrate in a boiling－tube add $1 / 2 \mathrm{~cm}$ depth of aqueous
sodium hydroxide．This will produce a brown precipitate of silver（I）oxide．
Add aqueous ammonia a little at a time，with continuous shaking，until the brown

3(a)(ii)	- solid melts / solid dissolves / liquid forms - fizzing / bubbling/ effervescence - (gas) re-lights glowing splint/spill - oxygen produced - (on cooling), (pale) yellow solid formed or residue is yellow 3 or more bullets $=2$ marks 2 bullets = 1 mark			2
3(b)(i)				5
	test	FA 6	FA 7	
	Test 1 NaOH	White ppt/ solid (formed) * Soluble in excess *	Decolourises / turns (pale) yellow * (ppt is CON)	
	Test $2 \mathrm{Ba}^{2+}$	White ppt	No change / no reaction	
	$+\mathrm{HCl}$	AND ppt insoluble / remains / no change/no reaction *	AND no change/no reaction *	
	Test 3 starch		Dark blue / blue-black / black (colour formed) (ignore state)	
	+ thio		AND colourless solution (forms) ALLOW turns colourless / decolourises *	
	Test 4 Ag*	No change/ no reaction/no ppt	Yellow/ brown ppt (forms) *	
	$+\mathrm{NaOH}$	AND ppt (forms) (ignore colour) *	Pale yellow ppt ALLOW ppt turns paler yellow * IGNORE use of excess NaOH	
	Test $5+\mathrm{NH}_{3}$	White ppt AND ppt is insoluble in excess $\left(\mathrm{NH}_{3}\right)^{*}$		
	$2^{*}=1$ mark (round down)			
3(b)(ii)	$\begin{aligned} & \mathrm{FA} 6=\mathrm{Al} \mathrm{l}_{2}\left(\mathrm{SO}_{4}\right)_{3}[1] \\ & \text { FA } 7=\mathrm{I}_{2}[1] \text { AND KI }[1] \end{aligned}$			3
3(b)(iii)	$\begin{aligned} & \mathrm{Al}^{3}(\mathrm{aq})+3 \mathrm{HH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \\ & \mathrm{OR} \\ & \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}(\mathrm{aq}) \\ & \mathrm{OR} \\ & \mathrm{I}_{2}(\mathrm{aq})+6 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}^{-}(\mathrm{aq})+\mathrm{IO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$			1

State which of the solutions contains the aldehyde. Explain the observations leading to your conclusion.
FA

드
 [เレ: |eれol]

 Q\# 1/ Qualitative inorganic ions tests ALvl Chemistry/2022/w/TZ 1/Paper 3/Q\# :0)
www.SmashingScience.org www.SmashingScience.org

FA 6 is aqueous $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{KI} ;$ FA 7 gives results for ethanal but is actually butan-2-01		
3(a)(i)	observations Test 1 M1: NaOH : white ppt and soluble in excess M2: Heat: no change / no (visible) reaction / litmus stays red Test 2 M3: AZ: fizz and NH_{3} / gas turns (damp red) litmus blue Test 3 M4: $\mathrm{H}_{2} \mathrm{O}_{2}$: brown / (darker) yellow / yellow-brown / orange-brown / red-brown (solution)	
3(a)(ii)	possible cations: aluminium $/ \mathrm{Al}^{3}$ and zinc $/ \mathrm{Zn}^{2+}$	
3(a)(iii)	identifying the cation M1: cation test: add (aqueous) ammonia M2: white ppt soluble in excess $\mathrm{NH}_{3}(\mathrm{aq})$ shows Zn^{2-}	2
3(a)(iv)	possible anions: any two from $\mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{I}^{-}$	
3(a)(v)	identifying the anion if iodide in (iv) M1: test: add (aqueous) silver nitrate $/ \mathrm{AgNO}_{3}$ M2: yellow ppt (insol in NH_{3}) shows I^{-} if nitrite and nitrate (no iodide) in (iv) M1: test: add (acidified aqueous) potassium manganate(VII) $/ \mathrm{KMnO}_{4}$ M2: purple / KMnO_{4} solution turns (dark) yellow / yellow-brown / orange-brown / red-brown / brown / decolourised shows nitrite OR M1: add named (dilute) acid M2: no fizzing / no brown gas shows nitrate	2

M2: no fizzing/no brown gas shows nitrate
Q\# 2/ Qualitative inorganic ions tests ALvl Chemistry/2022/s/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org
 AND
two (or more) reagents listed in the space
M2: (elimininting ammonium ion)
heat FA 5 with (aqueoous) NaOH
AND no effervescence / (damp re

M4: (eliminating NO_{-}^{-})
anion is
ANO
AND
AND fizz/gas/ $/ \mathrm{NH}_{3}$ turns (damp red) iltmus blue
Either add (a few drops of) (acidified) KMnO4/ potassium manganate(VII) AND no change / no reaction / (solution) remains purple
Or adg (dilute)) camed mineral acid to (solid or aqueous) FA 5 AND no brown fumes / no blue solution/no reaction/no
change produced

			${ }^{\circ} \mathrm{OS}^{2} \mathrm{H}$	\dagger
			$\stackrel{\rightharpoonup}{*}$	
рәјег иәчи sиоделәзqо әлоиб，			（104）HOEN	
әичм－цо в＇ә＇әиии ио иодерел кие дәәәу 		 	（ploo）HOEN	ε
иоиппоs леәр，рәәу 			${ }^{\text {¢ }} \mathrm{HN}$	
			${ }^{\text {¢ O O }}$ ¢ 6	τ
	әлии\％	umo sy？uo ədind poepay 	чวขeys	
	әлои\％${ }^{\text {I }}$	2dd joəəəy ＊umosq／umosq－әбueso／umosq－pas／MO\｜｜ә人 pue sum，／uopnjos	＇Ouwn	\downarrow
	$8 \forall 3$	$\angle \forall \pm$	ұиәбеə	1521
9	（unop puno」）жеш $l=$ ，OM \perp＇suopenesqo $\downarrow l$			（1）（q）ε
\downarrow	．＇HN／wnupuwe			（\＃）（e） \mathcal{E}
2	 ，seb，pelay pəonposd seun！／גnode＾／әyous pue ә！！чм ．рәјелоделә p！／os，рәә／ау 			（1）（e）ε

white emoke/fumes (gos turns red litmus blue
gas sumn blue itmus red
white residue
Award 1 mark for two correct observations from the list, award 2 marks for three or more correct observations. If both gas observations are given they must be in the correct order for both to be credited.

	Both ions correctly identified Iron(II) and ammonium (Fe^{2+} and $\mathrm{NH}_{4}{ }^{*}$)	1
3(a)(i)	Anion test and first observation - Add barium nitrate/chloride - White precipitate	1
	Observation with acid and conclusion: - white ppt is insoluble in specified mineral acid ($\operatorname{not} \mathrm{H}_{2} \mathrm{SO}_{4}$) - sulfate $/ \mathrm{SO}_{4}{ }^{2}$ - present	1
3(a)(iii)	Ionic equation Any one of the following equations, provided that the appropriate test was carried out. - $\mathrm{Fe}^{2 *}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ - $\mathrm{NH}_{4}^{*}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}$ or g$)$ - $\mathrm{Ba}^{2}(\mathrm{aq})+\mathrm{SO}_{4}^{2}-(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$	1
3(a)(iv)	Correct use of M_{r} to calculate no of moles water. Mass of water $=(392)-55.8-192.2-36$	1
	- $\mathrm{n}\left(\mathrm{H}_{3} \mathrm{O}\right)=332-285 / 18$ (expressed as integer)	1

Q\# 10/ Qualitative inorganic ions tests ALvl Chemistry/2020/m/TZ 3/Paper 3/Q\# :0) www.SmashingScience.org

 \begin{tabular}{|l|l|r|}
\hline $3(b)(i)$ \& Award one mark for every two correct observations (") as shown in table below \& 5

\hline

\hline test \& observations

\cline { 2 - 3 }

\hline
\end{tabular}

\quad OR add magnesium and fizzes or gas $/ H_{2}$ pops with a lighted splint
Q\# 11/ Qualitative inorganic ions tests ALvl Chemistry/2019/w/
Q\# 11/ Qualitative inorganic ions tests ALvl Chemistry/2019/w/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org

| | FA 5 is $\mathrm{AlNH}_{4}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} ; \mathrm{FA}_{8}$ is KI and FeSO_{4} | |
| :--- | :--- | :--- | :--- |

melts / dissolves
condensation / moisture on the walls of the test-tube / steam produced
white smoke f fumes (NOT gas)
(gas) turns /ulilmus blue

 (IITロ -
-
ร.
6LS fo L6t ased

\checkmark	чวย1я ㄱuә6eәy			(m)(\%)¢
$\stackrel{ }{ }$				(1)(e)¢
	uognjos ssapnopos MO/IV		20	
	¢HN әoub! $^{\text {a }}$	әбUEYう OU MO/IV \&HN UI IOSUI	¢HN $^{+}$	
		. Pd d Molve ((pld)	${ }_{\text {conbt }}$	
		uмолq-рал ло uмолq-/әбирло моле jои оG 	'osno	
	 	 	Іэн	
	${ }_{9}{ }^{*}$	$t \square$		(1)(e) ε

)
$6 L 5$ fo 867 28ed
эеииеля эрияедед

1		(1)9)
1		(w)erer
$\stackrel{1}{4}$	-12 st uouve smous गd apym	
$\stackrel{ }{ }$		(1)(e)z

,		
$\stackrel{ }{ }$		(1)())
\checkmark	 	(1)(0)
$\stackrel{ }{ }$		(1)(9) $)^{\text {c }}$
	NOO s.onq snumy sum see	(1)(C)

カ	：｜セy\％1	
\downarrow	 	（ \dagger ）（9） \mathcal{E}
\downarrow	10 	（A）（q）ε
\downarrow	（suol әpipol woul）pəonpoud sem әulpol əsneכəq xopəy	（A）（q）ε
\downarrow		（m）（9）ε
\downarrow		（ H （q） ）
\downarrow		
\downarrow	 ฉәнио suonenәаяqо чюо日 1set BW	
\downarrow	ssəэxә ч！им（uouños）ən｜q щuep／dәәр 	
\downarrow	 	
\downarrow	 	
\downarrow	 	（1）（9）ε
\downarrow	z（\％oN）n〕 si $9 \mathrm{\forall y}$	（ ${ }^{(1)(\mathrm{e})}$ ）
τ		（1）（e）ε

Q\# 22/ Qualitative inorganic ions tests ALvl Chemistry/2015/w/TZ 1/ Paper 3/Q\# 3/ :o)

FA 6 is $\mathrm{Na}_{2} \mathrm{SO}_{3} ;$ FA 7 is $\mathrm{CaCl}_{2} ;$ FA 8 is $\mathrm{MgSO}_{4} ; \mathrm{FA} 9$ is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} ;$ FA 10 is MnSO_{4}			
3 (a) (i)	Both observations required - white precipitate with Ba^{2+} ion - Precipitate dissolves/partially dissolves in (excess) HCl	1	
(ii)	Both observations required - white precipitate with Ba^{2+} ion - precipitate insoluble/no change with HCl	1	
(iii)	When heated, gas produced decolourises KMnO_{4} paper.	1	
(iv)	No change (when NaOH added)/no ppt/no reaction and green (solution) formed when KMnO_{4} added	1	
	Colourless solution(with acid)	1	

FA5 is MnSO_{4} and $\mathrm{NH}_{4} \mathrm{Cl}$; FA6 is propanone; FA7 is propanal;			
3 (a) (i)	Red litmus turns blue (then red)	1	
	Condensation or sublimation/white smoke/white fumes	1	[2]
(a) (ii) and (b) (i)	$\mathrm{NH}_{4}{ }^{+}$/ammonium in 3 (a)(ii) and Mn^{2+} /manganese(II) in 3(b)(i).	1	
(b) (i)	Selects NaOH and NH_{3}	1	
	Off-white/beige/light brown precipitate with both NaOH and NH_{3}	1	
	Both precipitates turns brown/darkens	1	
(ii)	white precipitate and insoluble in acid	1	
(iii)	Selects $\mathrm{AgNO}_{3} /$ silver nitrate and $\mathrm{NH}_{3} /$ ammonia	1	
	White precipitate and insoluble / partially soluble in ammonia	1	
	Cannot see if precipitate dissolves in ammonia/ Mn^{2+} causes (off-white) precipitate (so cannot be used to distinguish between halides).	1	[8]
(c)	MnCl_{2} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ or MnSO_{4} and $\mathrm{NH}_{4} \mathrm{Cl}$	1	[1]

			\％u！̣的ms＇MMM	
［s］	\downarrow	 （шлем рие）HOEN ：－${ }^{-}$ON $88_{+}{ }^{7} \mathrm{HN}$ ：uәsoyp suol Z 	（！！！） （！！）	z

Q\＃24／Qualitative inorganic ions tests ALvl Chemistry／2014／w／TZ 1／Paper 3／Q\＃2／：o）

3 （a）	Fizzing Acid or any named acid	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	［2］
（b）（i）－（vi）	In（i）（solid goes from green）to black／grey In（i）condensation／water／water vapour／steam／steamy fumes In（ii）fizzing and forms a（light）blue solution ． Cloudy with limewater in（i）or（ii）or（a） In（ii）blue ppt with sodium hydroxide and insoluble in excess． Any 2 from： In（iv）white ppt insoluble in excess In（v）white ppt insoluble in excess In（vi）white ppt Cation： Cu^{2+} Cation： Mg^{2+} Anions： $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
（viii）	Selects acid／named acid to add to test（vi）（not $\mathrm{H}_{2} \mathrm{SO}_{4}$ ） or Selects named acid to add to FA 6 and tests with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or $\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}$ and $\mathrm{SO}_{4}{ }^{2-}$ insoluble and $\mathrm{SO}_{3}{ }^{2-}$ soluble or $\mathrm{SO}_{4}{ }^{2-}$ no change and $\mathrm{SO}_{3}{ }^{2-}$（orange）turns green or（purple）turns colourless	1	［11］
Qn 3	Total		$3]$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& эеииеля уэидед \& \multicolumn{2}{|l|}{} \\
\hline \& \& \& ¢¢○」 \& \＆uo \\
\hline ［9］ \& 1
1
1
1
1
1 \& \begin{tabular}{l}
 \\
хорәу \(\wedge\) \\
 \\
ə๐иәэөөләнә pue ıdd uмолq－иәел6／имолq／имолq－рәу III uо̣̣n｜os uәәд6 до мо॥əК ло өбиечр ои／ио！рреед ON II \\

\end{tabular} \& \begin{tabular}{l}
uo！snpuoz ヨコナ \\
 OWW
\end{tabular} \& \begin{tabular}{l}
（ 1 ） \\
（！） \\
（！！！） \\
（！！） \\
（！）（q）
\end{tabular} \\
\hline ［6］ \& 1
\(\downarrow\)
1
1
1 \& \& \begin{tabular}{l}
uo！snipuos ヨコナ \\
ио！̣วə｜｜ว OWW \\
uo！snpuoう ヨコマ \\
ио！̣əə॥○ OWW \\
дnoкeา OOd \\
suolsiloeg OWW
\end{tabular} \& （！！）

（！）（e）ε

\hline
\end{tabular}

Test	Observations			
	FA 3	FA 4	FA 5	FA 6
$\mathrm{NaOH}(\mathrm{qq)}$	$\begin{gathered} \text { blue ppt } \\ \text { not dark/deep blue } \\ \text { ppt } \end{gathered}$	white ppt (which dissolves as more added/then dissolves)	red-brown/orangebrown/brown/rust ppt (not dark/deep brown)	white ppt
excess NaOH		ppt soluble (if no ppt in $1^{\text {st }}$ box allow no change)	ppt insoluble (no change no observation provided ppt above)	ppt soluble (not no change after 'no ppt')
$\mathrm{NH}_{3}(\mathrm{aq})$	$\begin{gathered} \text { blue ppt } \\ \text { not dark/deep blue } \\ \text { ppt } \end{gathered}$	white ppt	red-brown/orangebrown/brown/rust ppt (not dark/deep brown)	white ppt
excess ammonia	(ppt soluble) deep blue soln	ppt insoluble (no change no observation provided ppt above)	ppt insoluble (no change no observation provided ppt above)	ppt insoluble (no change no observation provided ppt above)

Q\# 28/ Qualitative inorganic ions tests ALvI Chemistry/2011/w/TZ 1/ Paper 3/Q\# $2 /$: 0)

[6]	し	 ((pesn osje s! 1 sel puoves е п! рөриеме дои s! чиеш s!чд) 'е!иошше spp \forall suo! '(әбиело мо॥е дои ор 'имояq/рел '6'ө umoıq ، pe!!!!enb, мо॥e) peonpoıd se6/seun! umosg p!̣nb!! ssepunoןoo 		(1) (1) (!!!) (!!) (!) (e)	ε

\begin{tabular}{|c|c|c|c|c|}
\hline (c) \& \begin{tabular}{l}
MMO Collection \\
ACE \\
Conclusions
\end{tabular} \& \begin{tabular}{l}
(i) Observes a change in colour (from yellow) to yellow/orange or orange (solution), no ppt, with FA 5 and a white ppt with FA 7. \\
(ii) Observes a brown gas formed with only FA 6. \\
Mark (iii) and (iv) consequentially to observations \\
(iii) Give this mark for one conclusion providing it is supported by an acceptable explanation. \\
(iv) Give this mark for two further conclusions supported by acceptable explanations. \\
Minimum acceptable supporting evidence: \\
\(\mathrm{CrO}_{4}{ }^{2-}\) from yellow soln or soln turning orange in acid \\
\(\mathrm{NO}_{2}{ }^{-}\)from brown gas \\
or \\
from effervescence/fizzing/bubbling with acid, if named soln has yielded ammonia or an alkaline gas in (b) \\
\(\mathrm{NO}_{3}{ }^{-}\)no brown gas etc with acid, but ammonia evolved in (b) \\
\(\mathrm{Pb}^{2+} \quad\) white ppt with HCl if \(\mathrm{Pb}^{2+}\) in (a) (iv) \\
\(\mathrm{Al}^{3+} \quad\) no white ppt with \(\mathrm{HC} l\) if \(\mathrm{A} \mathrm{l}^{3+}\) in (a) (iv)
\end{tabular} \& 1
1
1 \& \\
\hline (d) \& \begin{tabular}{l}
MMO Collection \\
ACE \\
Conclusions
\end{tabular} \& \begin{tabular}{l}
Mixes FA 5 and FA 7 and observes a yellow ppt. \\
If this section has not been attempted, the correct observation on mixing FA 5 and FA 7 can be carried forward from the conclusions in (c). \\
Concludes that FA 5 contains \(\mathrm{CrO}_{4}{ }^{2-}\) and FA 7 contains \(\mathrm{Pb}^{2+}\) providing the ions have been previously mentioned in (a) or (c).
\end{tabular} \& 1

1 \&]

\hline \multicolumn{5}{|l|}{[Total: 12]}

\hline
\end{tabular}

	FA 3		FA 4	FA 5	
$+\mathrm{NaOH}(\mathrm{aq}$	ignore		white ppt white ppt or "cloudines	white ppt or "cloudiness"	
$+\mathrm{NH}_{3}(\mathrm{aq})$	no ppt (allow reference to "cloudiness"/"slight white ppt")		white ppt no ppt/no no reactio	no ppt/no change/ no reaction	
Q\# 31/ Qualitative inorganic ions tests ALvl Chemistry/2009/s/TZ 1/ Paper 3/Q\# 3/ :o) www.SmashingScience.org					
Question	Sections	Indicative material		Mark	
FA 5 is $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$; FA 6 is $\mathrm{NaNO}_{2}(\mathrm{aq})$; FA 7 is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, FA 8 is $\mathrm{MgSO}_{4}(\mathrm{aq})$					
3 (a)	MMO Collection ACE Conclusion	(i) Records no reaction, no change or no precipitate on adding NaOH and $\mathrm{NH}_{3}(\mathrm{aq})$ to FA 5 and FA 6. (ii) Records white ppt soluble (in excess NaOH) and white ppt insoluble (in excess NH_{3}) with FA 7 (iii) Records white ppt insoluble (in excess for both NaOH and NH_{3}) with FA 8 (iv) Conclusion is marked consequentially from the observations for a single cation and a pair of cations. $\mathrm{Mg}^{2+} /$ magnesium from white ppt insoluble in an excess of $\mathrm{NaOH}(\mathrm{aq})$ and in an excess of $\mathrm{NH}_{3}(\mathrm{aq})$ Ca^{2+} /calcium from white ppt insoluble in an excess of $\mathrm{NaOH}(a q)$ no ppt in $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{Pb}^{2+} / A l^{3+}$ from white ppt soluble in an excess of $\mathrm{NaOH}(a q)$ and insoluble in an excess of $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{Ba}^{2+} / \mathrm{NH}_{4}^{+}$from no ppt with $\mathrm{NaOH}(\mathrm{aq})$ or $\mathrm{NH}_{3}(\mathrm{aq})$ FA 6 only		1 1 1 1	[4]
(b)	MMO Decisions ACE Conclusion	(Warms) with NaOH and $\mathrm{Al}(\mathrm{s})$ and records appropriate test for ammonia. Gas must be tested in at least one test. This is a mark for the method not the observation. Must have indication that the test has been performed with FA 6, FA 7 and FA 8. In awarding the conclusion mark, assume, in this section only, that a blank box indicates no reaction (no ammonia detected). Award this mark for any of the following: (i) a conclusion, from correct observations, that FA 6 and FA 7 contain nitrate or nitrite (ii) correct observations for NH_{3} - only with FA 6 and FA 7, but no conclusion given (iii) a statement that NH_{3} is evolved - only with FA 6 and FA 7 (iv) observation that red litmus turns blue (gas not needed) - only with FA 6 and FA 7		1 1	[2]

言	高	$\begin{aligned} & \overrightarrow{\vec{a}} \\ & \stackrel{\rightharpoonup}{\text { an }} \end{aligned}$	旁	旁	흔

2(c)	Error: Mass was given correct to 1 sig fig $/$ nearest g Modification: Use a more accurate balance or Error: Hydrolysis of halogeno group may be incomplete Modification: Use more concentrated NaOH / heat for longer	1
2(d)	If F chosen then 87 If Cl chosen then 86 or 117 If Br chosen then 116 or 163 If I chosen then 162	1
Q\# 37/ ACID/BASE TITRATIONS ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# :0) www.SmashingScience.org		
1(a)	I Initial and final readings and titre recorded for rough titre and accurate titre details tabulated (minimum 2×2 boxes)	1
	II All three headings and units correct for accurate titrations Headings: initial / final (burette) and reading/volume / vol or reading / volume / vol at start / finish (but not V) and volume/FA 2 and added/used or titre and Units: (cm^{3}) or $/ \mathrm{cm}^{3}$ or in cm^{3} [or cm^{3} by every entry]	1
	III All accurate burette readings are recorded to the nearest $0.05 \mathrm{~cm}^{3}$ Do not award this mark if. - $50(.00)$ is used as an initial burette reading: - more than one final burette reading is $50(.00)$; - any burette reading is greater than $50(.00)$	1
	IV The final accurate titre recorded is within $0.1 \mathrm{~cm}^{3}$ of any other accurate titre.	1
All burette readings should be rounded to the nearest $0.05 \mathrm{~cm}^{3}$. Subtractions should be checked. The 'best' titres should be selected using the hierarchy: two (or more) identical; then 2 (or more) within $0.05 \mathrm{~cm}^{3}$; then two (or more) within $0.1 \mathrm{~cm}^{3}$, etc, the mean titre calculated and this then compared with the supervisor mean titre.		
	V, VI and VII Award V, VI and VII for a difference from supervisor within $0.20 \mathrm{~cm}^{3}$ Award V and VI for $0.20<\delta<0.40 \mathrm{~cm}^{3}$ Award V for $0.40<\delta<0.60 \mathrm{~cm}^{3}$	3
1(b)	Candidate must average two (or more) titres for which the total spread is not greater than $0.2 \mathrm{~cm}^{3}$. Working must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should normally be quoted to $2 d p$ rounded to the nearest 0.01 . Example: 26.667 must be rounded to 26.67 . Two special cases where the mean may not be to 2 dp : allow mean to 3 dp only for 0.025 or 0.075 e.g. 26.325; allow mean to $1 d p$ if all accurate burette readings were given to $1 d p$ and the mean is exactly correct e.g. 26.0 and $26.2=$ 26.1 is correct but 26.0 and $26.1=26.1$ is incorrect. Do not award this mark it: any selected titre io not within $0.20 \mathrm{~cm}^{3}$ of any other selected titre; the rough titre was used to calculate the mean; the candidate carried out only 1 accurate titration; burette readings were incorrectly subtracted to obtain any of the accurate titre values. All burette readings, excluding initial 0 , (resulting in titre values used in calculation of mean) are integers. Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.	1
1(c)(i)	All answers to (c) correct to 3 or 4 sig figs.	1
1(c)(ii)	Correctly calculates moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $25.0 \mathrm{~cm}^{3} \mathrm{FB} 1=\frac{1.30}{100 \times 10}$	1
1(c)(iii)	Correctly calculates answer to (c)(ii) $\times 2$	1
1(c)(iv)	$\text { Correctly uses } \frac{\text { answer to (iii) } \times 1000}{\text { Volume from (b) }}$	1

		Jeuuesя＞ว！ıłed	
	6LS 5 Lls	seunexg rọaed	ภıว

91	1 ๒๐1	
ε xeum \dagger	 Jem이 Kund \％：I uousseno	（p）z
g		$(!\Lambda)(0) Z$
	 $z-01 \times(00) \cdot \mathrm{S}=\text { Jemsu甘 }$ fs $\downarrow 10$ \＆of sjamsue yoq pue （！！）ul ламsue әues pue 	$\begin{aligned} & (!)(0) Z \\ & (\Lambda)(0) Z \\ & \\ & \text { (A) }(0) Z \\ & \text { pue }(\ldots)(0) Z \\ & \\ & \text { (!) pue } \\ & (0)(0) Z \end{aligned}$
\downarrow レ	 	（q） 2

	6LS fo 8LS 28ed $^{\text {d }}$		
	\downarrow		（！！！）
	\downarrow	$\frac{(q)}{(!)(0) 09 Z}$ ¢0 esn smous II	（！！）
	l		（1）（0）
［レ］	1	 	（q）

\downarrow		
		(1)(0) \downarrow
\downarrow		(1)(0)!
\downarrow	 	(9) \downarrow
	 III ' $1 \Lambda^{\prime} \Lambda$	
L	 	(8)

Yyulyseus'MMM

\checkmark	 ($\left.{ }^{\circ} \mathrm{OS}^{2}-\mathrm{H}\right)$)u: ($\mathrm{O}^{2} \mathrm{H}$) u ope 	
\checkmark		($\mathrm{K}_{(0) 1}$
$\stackrel{ }{ }$		(1)(0) 1
$\stackrel{ }{ }$		(m)(0)
$\stackrel{ }{ }$		(1)(0)
$\stackrel{1}{ }$		(10)
$\stackrel{ }{ }$	 	(q)
$\stackrel{ }{ }$		
\checkmark		
\checkmark	әдप s,10sınədns əun pue аमn s, әuepipuej 	
\checkmark		
$\stackrel{ }{ }$	 	
\checkmark		
\checkmark	y, 	(8)

흘	$\frac{\stackrel{3}{3}}{\frac{0}{3}}$	郭	言

1(c)(i)	All final answers in 1(c) are quoted to 3 or 4 significant figures Minimum of four answers attempted	1
${ }^{1(c)(i i)}$	Correctly calculates number of moles of KMnO , used $=0.03(00) \times \frac{\text { mean titre }}{1000}$	1
1(c)(iii)	Two correct multiplying factors shown - answer (ii) $\times 2.5$ - (subsequent answer) $\left(\right.$ mol of $\left.\mathrm{H}_{2} \mathrm{O}_{2}\right) \times 40\left(\times \frac{1000}{25}\right)$	1
1(c)(iv)	Correctly calculates concentration of $\mathrm{H}_{2} \mathrm{O}_{2}=$ final answer in (iii) $\times 10$	1
1(c)(v)	Correctly uses (iv) to find moles of $\mathrm{O}_{2}=$ answer (iv) $\times 0.5$	1
	Correctly uses (iv) to find 'volume strength' $=$ moles of $\mathrm{O}_{2} \times 24$ Answer for default value $=12.24 \mathrm{vol}$	1
${ }^{1(d)}$	$\%$ error pipette $=0.24$ and $\%$ error burette $=0.4(0)$ OR $2 \times 0.05\left(\mathrm{~cm}^{3}\right)$ is greater (than $0.06 /$ pipette error) Working must be shown	1

2(a)	I initial and final burette readings and volume added recorded for rough titre AND accurate titre details tabulated	1
	II initial and final burette readings recorded and volume of FA 3 added recorded for each accurate titration - all headings and units correct for accurate titrations - titre OR volume FA 3 added/used - initial/final (burette) reading/volume OR reading/volume at start/finish - $\left(\mathrm{cm}^{3}\right)$ OR $/ \mathrm{cm}^{3}$ OR in cm^{3} by every entry	1
	III all accurate burette readings are recorded to the nearest $0.05 \mathrm{~cm}^{3}$	1
	IV final titre within $0.10 \mathrm{~cm}^{3}$ of any previous accurate titre	1
	$\mathbf{v}, \mathbf{V I}$ and $\mathbf{V I I}$ award V, VI and VII for $\delta<0.20 \mathrm{~cm}^{3}$ award V and VI for $0.20 \mathrm{~cm}^{3}<\delta<0.30 \mathrm{~cm}^{3}$ award \mathbf{V} for $0.30 \mathrm{~cm}^{3}<\delta<0.50 \mathrm{~cm}^{3}$	3
2(b)	mean titre correetly calculated from clearly selected values: - candidate must average two (or more) titres where the total spread is $<0.20 \mathrm{~cm}^{3}$ - working must be shown or ticks must be put next to the two (or more) accurate readings selected - the mean should normally be quoted to $2 \mathrm{~d} . \mathrm{p}$. rounded to the nearest 0.01 Note: the candidate's mean will sometimes be marked as correct even ifitis different from the mean calculated by the examiner for the purpose of assessing accuracy.	1
2(c)	M1 correetly caleulates $\frac{0.030 \times(\mathrm{b})}{1000}$	1
	M2 correctly uses (i) $\times 5 / 2$	1
	M3 correctly uses (ii) $\times 1000 / 25$	1
	M4 all final answers to 3 or 4 sig. fig. (minimum two parts attempted)	1

	M4 all final answers to 3 or 4 sig. fig. (minimum two parts attempted)

Q\# 47/ REDOX TITRATIONS WITH KMNO_{4} ALvI Chemistry/2015/w/TZ 1/ Paper 3/Q\# 1/ :o)
www.SmashingScience.org

1	(a)	I Initial and final readings and titre value given for rough titre and initial and final readings for two (or more) accurate titrations (minimum of 2×2 box)	1
	II Titre values recorded for accurate titrations and Appropriate headings for the accurate titration table and cm^{3} units. initial/start burette reading/volume/value - final/end burette reading/volume/value (not amount) titre or volume $/$ FA 4 and used/added unit: $/ \mathrm{cm}^{3}$ or $\left(\mathrm{cm}^{3}\right.$) or in cm^{3} (for each heading)	1	

Q\# 46/ REDOX TITRATIONS WITH KMNO 4 ALvl Chemistry/2017/m/TZ 3/Paper 3/Q\# :0)

$$
31
$$

s

$6 \angle 5 ~+0925$ ә8еd			\％eגя ¢ ¢	
［L］	1	елe	رo өио 190 и nsenf asea ${ }^{\text {®uO }} 0$ Z	47 өои peouds а рлем р рыем А рлем

1 	 wo GO＇ 0 łseneeu ＇sбu！peәд чэұеш 	

［st： 1 leoll			1 uo
［z］	1		（！！）
	\downarrow		（！）（p）
［s］	1	（eulpol u！） 0 이（uo！ иоцрәәә әuo sesol uo！ep！po！uv • 	（！${ }^{\text {）}}$
	1		（ 1
	1	$\left.z \times\left({ }^{(11)}\right)_{(m)}\right)=\left({ }^{\left.\tau_{I}\right)} \mathbf{u}\right.$ 	（A！）

$6 \angle 5$ fo 9zs ased

Examiner rounds burette readings to the nearest $0.05 \mathrm{~cm}^{3}$ ，checks subtractions and then selects the＇best＇ titres using the hierarchy： two（or more）identical，then two（or more）within $0.05 \mathrm{~cm}^{3}$ ，then two（or more）within $0.1 \mathrm{~cm}^{3}$ ，etc． Examiner compares candidate mean titre with Supervisor mean titre．				
（a）	MMO Quality	Award \mathbf{V} and $\mathbf{V I}$ for difference from Supervisor，$\delta \leq 0.20 \mathrm{~cm}^{3}$ Award V only for $0.20<\delta \leq 0.40 \mathrm{~cm}^{3}$ Spread penalty：if the two＇best＇titres are $\geq 0.50 \mathrm{~cm}^{3}$ apart cancel one of the Q marks．	2	［6］
（b）	ACE Interpretation	Candidate must average two（or more）titres that are within $0.20 \mathrm{~cm}^{3}$ ． Working must be shown or ticks must be put next to the two （or more）accurate readings selected． The mean should normally be quoted to $2 d p$ rounded to the nearest 0.01 ． Two special cases where the mean may not be to $2 d p$ ： allow mean to 3 dp only for 0.025 or 0.075 e．g．26．325； allow mean to 1 dp if all accurate burette readings were given to 1 dp and the mean is exactly correct．e．g． 26.0 and $26.2=26.1$ is correct but 26.0 and $26.1=26.1$ is incorrect． Note：the candidate＇s mean will sometimes be marked as correct even if it is different from the mean calculated by the Examiner for the purpose of assessing accuracy．	1	［1］
（c）	ACE Interpretation PDO Display ACE Interpretation PDO Display	I Correctly evaluates $\frac{0.0200 \times(b)}{1000}$ in（i） II Correctly evaluates $\frac{\text {（i）} \times 5 / 2}{25}$ in（iii） III Correct balanced equation in（iv） IV Correctly evaluates ans（iii）$\times 1 / 2 \times 24.0$ in（v） （Allow ecf from incorrect equation） V All answers given to 3 or 4 sf（minimum of 3 answers attempted）	1 1 1	［5］
Qn 1	Total			
Q\＃50／REDOX TITRATIONS WITH KMNO_{4} ALvI Chemistry／2013／w／TZ 1／Paper 3／Q\＃ $1 /$ ：o） www．SmashingScience．org				
1 （a）	PDO Layout	I The following data must be given －mass of solid used（or both weighings） －volume for rough titre（or both readings） －initial and final readings for two（or more） accurate titrations．	1	

出き －

${ }^{1(a)}$	AwardVI if $4.0<\delta<6.0 \mathrm{gcm}$	
	Award VI and VIII $\quad \mathrm{if} 2.0<\delta<4.0 \mathrm{~g} \mathrm{~cm}$	
	Award VI, VII and VIII if $\delta<2.0 \mathrm{gcm}{ }^{\text {3 }}$	
	If there is only one accurate titration award accuracy marks based on that titration without further penalty. If only a rough titration is shown award accuracy marks based on this value but cancel one accuracy mark. Apply spread penalty as follows:if titres selected (by examiner) differ $\geqslant 1.00 \mathrm{~cm}^{3}$ then cancel one accuracy mark. Apply spread penalty as 10100 c .if tres sele tolervisor's value $\leqslant 10.00 \mathrm{~cm}^{3}$ then halve tolerces (3 marks: $\delta<1.0 ; 2$ marks: $\delta<2$; 1 mark: $\delta<3.0 \mathrm{~g} \mathrm{~cm}{ }^{3}$)	
1 (b)	Candidate must average two (or more) titres that are all within $0.20 \mathrm{~cm}^{3}$. Working must be shown or ticks must be put next to the two (or more) accurate titres selected.	
${ }_{1(c)(0)}$	Answers for (ii) and both pats of (iii) are quoted to $3-4 \mathrm{st}$.	
1(c)(i)	Correctly calculates 1.25×10^{-3}	
${ }^{1(c)(i i i)}$	Correctly uses 2.50×10^{-3} AND $2.50 \times 10^{-3} \times \frac{250}{(b)}\left(=\frac{0.625}{(b)}\right)$	1
1(c)(iv)	Correctly uses correctly calculated mass from $\frac{\text { (a) }}{\text { ans(iii) }}$	1
	Display of $\frac{\text { (ANS-156.2) }}{18}$	1
1(c)(iv)	Uses values to calculate x to the nearest integer	1
${ }^{1(d)(1)}$	Uncertainty in a single reading for 1 dp balance allow the uncertainty given to be +0.1 or 0.05 for $2 d p$ balance allow the uncertainty given to be ± 0.01 or 0.005 , etc. AND Display of $\left(\frac{2 \times \text { uncertainty given }}{\text { candidate mass }}\right) \times 100$	1

Q\# 51/ Titrations with thiosulfate and iodine Alvl Chemistry/2022/m/TZ 3/Paper 3/Q\# :o) www.SmashingScience.org

2(a)	I The following data must be shown: - burette readings and titre for rough titration - 2×2 'box' showing both accurate burette readings.	1
	II Headings and units correct for accurate titration table and headings match readings. - initial/ start AND (burette) reading / volume + unit - final/ end AND (burette) reading/volume + unit - titre OR volume / FA 4 AND used/added + unit	1
	III All accurate burette readings given to the nearest 0.05	1
	IV The final accurate titre recorded is within $0.10 \mathrm{~cm}^{3}$ of any other accurate titre.	1
	Accuracy marks Check and correct titre subtractions where necessary. Exclude any titre from the calculation for the mean where final burette reading is greater than 50(.00). Examiner selects the best titres for calculating the mean, using the hierarchy: 2 identical titres, titres within $0.05 \mathrm{~cm}^{3}$, titres within $0.10 \mathrm{~cm}^{3}$ etc. Examiner subtracts (corrected) candidate's titre from Supervisor's titre. Write and ring Supervisor's value next to the accurate titration table of each candidate, also candidate mean value (calculated by examiner) and δ.	
	Award V if $\delta<0.50 \mathrm{~cm}^{3}$ Award Vl if $\delta<0.30 \mathrm{~cm}^{3}$ Award VII if $\delta<0.20 \mathrm{~cm}^{3}$	3
2(b)	Candidate must average two (or more) titres that are all within $0.20 \mathrm{~cm}^{3}$ AND give the answer to 2 dp . AND working must be shown or ticks must be put next to the two (or more) accurate titres selected.	1
2(c)(i)	All final answers for (c)(ii), (c)(iii), (c)(iv) are to 3-4 sf	1
2(c)(ii)	Correctly calculates amount of $(\mathrm{n}) \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=0.1 \times($ b $) / 1000 \mathrm{~mol}$ AND $\mathrm{n}\left(\mathrm{I}_{2}\right)=$ ans $/ 2$	1
2(c)(ii)	$\begin{aligned} & \text { Correctly calculates } \\ & \text { initial amount of }(\mathrm{n}) \mathrm{I}_{2}=2.5(0) \times 10^{-3} \mathrm{~mol} \\ & \text { AND } \\ & \mathrm{n}\left(\mathrm{I}_{2}\right) \text { that reacted }=2.5(0) \times 10^{-3}-\text { final answer to (ii) } \end{aligned}$	1
2(c)(iv)	Correctly uses amount of $(\mathrm{n}) \mathrm{Na}_{2} \mathrm{SO}_{3}=$ final answer to (iii) $\times 100 \mathrm{~mol}$	1
2(c)(v)		1
	$\mathrm{M2n} \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=($ answer above -126.1$) / 18$ AND answer is a $($ correctly rounded $)$ integer OR $\mathrm{M1}$ mass $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)=(\mathrm{c})(\mathrm{iv}) \times 126.1$ AND $\mathrm{mass}\left(\mathrm{H}_{2} \mathrm{O}\right)=31.5(0)-$ answer above $\mathrm{M2} n\left(\mathrm{H}_{2} \mathrm{O}\right)=$ mass above $/ 18$ ANDD $x=\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{n}\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ AND answer is a $($ correctly rounded $)$ integer	1
2(d)	agree: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ would neutralise acid (formed in reaction between sulfite and iodine which would react with the thiosulfate)/ some thio would (otherwise) react with the acid (formed) OR disagree: (n o advantage) as the reaction of thio with acid is slow OR disagree: (no advantage) as $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will react with iodine (so less to react with thio)	1

\downarrow		$($ (1) $)+(\ldots)(0) \downarrow$
\downarrow		(1)()) \downarrow
	 :dp Z 여 әq ł.	(9) 1
\downarrow	 -Крәәноэ иеәш әц sәјепээеэ әјер!риеэ	(q) \downarrow
\downarrow		
\downarrow		
\downarrow		
\downarrow		
\downarrow	(00)' Os st Bulpead әमалиq Ieuy әио ией длош 	
\downarrow	 	
\downarrow	 	(घ) \downarrow
\downarrow	$\mathfrak{r}-\mathrm{x} \boldsymbol{z}=$ 2ıefs uopepixo	$(\mu)(0)$!
\downarrow	$\mathrm{O}^{z} \mathrm{H} \mathrm{\varepsilon}+{ }^{z} \mathrm{I} \varepsilon \leftarrow, \mathrm{H} 9+\mathrm{I} \mathrm{I}+{ }^{\mathrm{E}} \mathrm{OI}$ peouejeq Killy uopenbe Kue :үнеш puooas	
\downarrow	 	$(\wedge)(0) 1$
\downarrow		(A)(0) !

(b)	ACE Interpretation	Calculates the mean, correct to 2 decimal places (third decimal place maybe rounded to the nearest $0.05 \mathrm{~cm}^{3}$) from any accurate titres within $0.20 \mathrm{~cm}^{3}$. A mean of exactly .x25 or .x75 is allowed but the candidate may round up or down to the nearest 0.05 cm^{3}. If ALL burette readings are given to 1 decimal place then the mean can be given to 1 decimal place if numerically correct without rounding. Mean of 24.3 and $24.4=24.35(\mathrm{n})$ Mean of 24.3 and 24.4 $=24.4$ (x) Mean of 24.3 and $24.5=24.4$ (V) Titres to be used in calculating the mean must be clearly shown - in an expression or ticked in the titration table.	1	[1]
(c)	ACE Interpretation	No additional factor/expression is allowed in any step If an answer, with no working, is given in any section allow if correct. 1 Uses ${ }^{15.0} / 248.2$ only in step (i) If no working shown accept only the following evaluated answers: ($0.060,0.0604$ or 0.06044)	1	
		```II Uses answer (i) }\times\mathrm{ cand sverage titre/1000 in step (ii) and answer (iv) }\times1000/25\mathrm{ in step (v)```	1 1	
		III Uses answer (ii) $\times 1 / 2$ in step (iii), and answer (iii) $\times 2$ in step (iv)	1	
	PDO Display	IV Appropriate working shown in a minimum of three sections.   To include equations as steps for the working mark;   In (iii) must see $\mathbf{x} \mathbf{2}$ or $\mathbf{x} 0.5$.   In (iv) must see multiplication or division by $6,1.2$ or 2. $\begin{array}{ll} 1: 6 & \text { for } 1 \mathrm{O}_{3}^{-} / 6 \mathrm{H}^{+}, \\ 1: 1.2 & \text { for } 5 \mathrm{I}^{-} / 6 \mathrm{H}^{+}, \\ 1: 2 & \text { for } 6 \mathrm{H}^{+} / 3 \mathrm{I}_{2} \end{array}$	1	
		V 3 to 5 significant figures in final answers to all sections attempted - minimum of three final answers required to qualify for the award of this mark.	1	[5]


(d)	ACE Interpretation	Gives $0.1(0) \mathrm{cm}^{3}$ as the maximum error in (i).   Ignore any sign   and the expression ${ }^{0.1} /$ cand titre in (b) $\times 100$ in (ii)   Evaluates ${ }^{0.06} / 25.0 \times 100$ in step (iii)   Accept only 0.240 or 0.24 ,   or   rounded to 0.2 provided 0.24 has been seen in the working.	1 1	[2]
	[Total: 15]			


$\begin{aligned} & \text { 1ibpusyws } \\ & 4 \% \times 1 \end{aligned}$		эеииедя яэинед	¢．


［เ］	$\downarrow$	   әчъ＇seэe｜d ןеш！    өбенәле әй әовן   umoys aq isnu pesn eq of sentı ．／e！ 1 ，        	uo！̣ełerdıəəu｜ ヨコV	（q）
［9］	乙	      （！＾）pue（＾）Кэелทээヲ   （q）и！өбелөле өцъ Биперпоеэ иәчм ио！sseлdхө ие и！       ${ }_{\varepsilon}$ แว เ＇0      ${ }_{\varepsilon}$ шooz＇o u！̣u！   pue   ：suo！̣วnısu！SMO｜ㅇ」（！！！）            －Suipees әдеип           	Kulyeno OWW   suolsipeg OWW   u！ㅣӨㅔㅇㅣ OWW   6uppooəy OOd   2noאe7 Odd	（e） 1
	Yew	ן！！әңеш әп！̧еכ！pu｜	suolpoes	uonssano

 This is given by the expression $\frac{47.25}{\text { volume diluted }} \times$ Examiner selected titre
Candidate scripts
Calculate，correct to 2 dp ，the titre if the Supervisor had diluted $47.25 \mathrm{~cm}^{3}$ of FA 2.
This is given by the expression $\frac{47.25}{} \times$ Examiner selected titre www．SmashingScience．org
Supervisor＇s Report
Q\＃56／TITRATIONS WITH THIOSULFATE AND IODINE ALvI Chemistry／2009／s／TZ 1／Paper 3／Q\＃ $1 /$ ：o）


［t］		1	s！лоs！লəedns pue әңер！     		
		$\downarrow$	＇G＇u！̣ 反u！̣pue əuo pue 0＇u！̣ 6u！̣pue əuo        		（e）$乙$
Zı／s／stoz／Кגร！					
［ヵا ：｜Ełol］					
［l］	$\downarrow$	＇seэe｜d ןеш！		uọpeyendıełuI $\exists \supset \forall$	（ə）
［1］	1	    		ヨコV	（p）
［G］	$\varepsilon$	（paı！nbəə                   （！！！）pue（！！）＇（！）		Ke｜ds！a OCd    $\exists コ \forall$	（）


	IV, V and VI   $\Delta T$ within $10 \%$ of Supervisor   IVand V   $\Delta T$ within $15 \%$ of Supervisor   IV only   $\Delta T$ within $20 \%$ of Supervisor	3	[6]
(b) (i)	I Axes labelled, linear scales chosen so that more than half the available space is used on both axes for plotted points.   II Plotted points should be drawn clearly with a sharp pencil. Points should be plotted to within half a small square and in the correct square for $y$-axis and on line for $x$-axis.	1   1	
(ii)	III Correctly extrapolated best fit straight lines drawn up to time $21 / 2$ minutes and after $21 / 2$ minutes.	1	
(iii)	IV Examiner calculates $\Delta \mathrm{T}$ from graph and checks answer is within $0.25^{\circ} \mathrm{C}$ of candidate's stated answer	1	[4]
(c) (i)   (ii)	All the magnesium/solid dissolved/disappeared or all solid/Mg has gone/been used up or no solid/ Mg left   Correctly calculates $25 \times 4.2 \times \Delta \mathrm{T}$	1   1	
(iii)	Correctly calculates (ii) $~+~ n u m b e r ~ o f ~ m o l e s ~ o f ~ m a g n e s i u m ~ a n d ~ c o n v e r t s ~$ to $\mathrm{kJ}\left(\frac{\text { (ii) } \times 24.3}{1000 \times \text { mass Mg }}\right)$ and final answer to $2-4$ sf   Sign is negative in (c)(iii) and (e)(iv)	$1$   1	[4]
(d)	8 readings (in space below printed area)   - $4 \times$ balance readings   - $2 \times$ initial temp   - $2 \times$ highest/max temp with unambiguous headings	1	
	Correctly calculates both masses of Mg and both $\Delta \mathrm{Ts}$.	1	[2]
(e) (i)   \& (ii)   (iii)   (iv)	Correctly calculates   - mean $\Delta T$   - mean mass   Moles $\mathrm{CuSO}_{4}=\frac{25 \times 1}{1000}=0.025$   Moles $\mathrm{Mg}=\frac{\text { (ii) or max mass } \mathrm{Mg}}{24.3}$ so $\mathrm{CuSO}_{4}$ in excess or $<0.025$   Working to calculate $\Delta H$ using mean values of mass Mg and $\Delta T$ $\left(\frac{\Delta T(i) \times 25 \times 4.2 \times 24.3}{(\text { ii) }) \times 1000}\right) \text { or }\left(\frac{\Delta T(i) \times 25 \times 4.2}{\mathrm{~mol} \mathrm{Mg} \text { from }(\text { iii }) \times 1000}\right)$	1   1   1   1	[4]
(f)	Attempt at use of Hess' law either by cycle or reverse reaction 2   Correctly calculates   $\Delta H$ reaction $3=\Delta H$ reaction $1-\Delta H$ reaction 2	1	[2]


(b) (i)	Axes labelled temperature or $T$ or ${ }^{\circ} \mathrm{C}$ or temperature and time or   minutes or min or t.   Linear scales chosen to use more than half of each axis and to   include $5^{\circ} \mathrm{C}$ more than the maximum temp.   All points recorded (minimum of 10). Correct plotting -each point   accurately plotted (within $1 / 2$ small square and in the correct   square).	1	1
(ii)	All three straight lines drawn   Lines of best fit and extrapolated	1	1
(iii)	Correct $\Delta T$ from graph to within $.2^{\circ} \mathrm{C}$ of examiner value using the   candidate's lines.	1	[5]


Question	Indicative material	Mark	Total
(c) (i)   (ii)   (iii)	Correct answer to $4.2 \times 40 \times$ ans(b)(iii).   Allow answers to $2-4$ sf   Correct answer to (i)/219000   Allow answers to 2-4 sf   Expression (ii)/ 0.040   Allow answers to 2-4 sf	1	[3]
(d) (i)	Correct answer correct to number of sf shown ( min 2 sf ): 0.5 /highest temp $\times 100$	1	
(ii)   (iii)	Do not agree as the zinc is in excess   Incorrect as temperature rise is the same or Incorrect as (a smaller volume) has a greater \% error ORA	$1$	[3]
Qn 2	Total	[15]	
Q\# 58/ THERMOMETRIC (METAL DISPLACEMENT) ENTHALPY EXPERIMENT ALvI Chemistry/2014/w/TZ 1/ Paper 3/Q\# 1/ :o) www.SmashingScience.org			
1 (a)	I Two balance readings and correct mass of magnesium recorded. Table to show temperature and time. Headings and units - must be temperature $/^{\circ} \mathrm{C},\left({ }^{\circ} \mathrm{C}\right)$, in ${ }^{\circ} \mathrm{C}$ and time/s, (s), or time in seconds or $/ \mathrm{min}, /$ minutes, $\ldots$ and $/ \mathrm{g},(\mathrm{g}), \ldots$   II Thermometer readings to $\pm 0.5^{\circ} \mathrm{C}$ (at least 1 ending in . 5 or .0) (Minimum 8 readings)   III All specified readings taken and balance readings to the same number of dp	1 1 1	
	Difference between temperature at 2 minutes and highest temperature (in table) calculated and compared with $\Delta T$ of Supervisor.		



［z］	1		Kelds！ COOd		
［c］	1		KıEnO OWW		
		   $1 \nabla$ иеәш әңеןпэеэ pue suoḷว	100）иеәш $s_{4} 10 s_{!} /$   duoo ıод рөрлем łqns yวәч० ：7d！os		
	1	              ＇（s6u！̣pead $\downarrow$ go unu！̣u！um   －（q）z pue（e）z suọ̣əәs u！sбu！̣pea жәәчэ） $\mathrm{O}_{\circ} \mathrm{SO}$          ＇s6u！pees $\varepsilon$ ईо wnuи！u！－（q）pue （e）u！̣ sб̂u！pee»  	uọ̣ełerdıęu｜ ヨコナ   6u！pıoэey Oad   uం！̣วఅ｜｜ОО OWW	（e）	

Chemistry／2011／s／TZ $1 /$ Paper 3／Q\＃ $2 /: 0$ ）www．SmashingScience．org

$\stackrel{0}{\square}$	§ ভ	
	ఠ๐  	
$\stackrel{-1}{-1}$		$\rightarrow$－
N	W	

पло＇วЈиว！ग马马u！पsems＇MMM

	$\downarrow$	－anłeıedüə    pue       ләрмод эи！z әцъ Би！̣ppe ләце        	ъои Кеш syıe әчъ＇Kиио диәи swioдәә әңер		
		            stuun pue sbuppeəu əŋeudoıdd $\forall$（！！）       ＇（x）pue（！！ 1 ）＇＇（！$)^{\prime}$＇（！！！）＇＇（！！） ：рәрлеме әq иеэ тјио sұu！оd би！мо॥оу әчң  	นกฺุગ્થ્｜○ว OWW   6u！pıoэəy OOd	（q）	
［เ］	$\downarrow$	ои－ұиәш！        	znokel OOd	（e）	


				（）
［เ］	1		şuәшəィодduı ヨゴ	
［غ］	1 1 1		suoisnpuoう   ヨコナ   Kelds！ O OQd   uoḷełèdaəu｜ ヨコ४	
［＾］	1 1 1	s ，os，«1edns    s．ıos！̣ıdns to \％0Z     	Kıneno own uoḷepardię！ ヨコV	（q）
			\％0Z өృenno	位

##  <br> 6LS ło Zts ə8ed $_{\text {d }}$



MMO   Quality	（vi）\＆（vii） $1^{\text {st }}$ expt．   Compare $\Delta T$ with Supervisor．   award（vi）and（vii）if within $2^{\circ} \mathrm{C}$   award（vii）only if $>2^{\circ} \mathrm{C}$ and $\leq 5^{\circ} \mathrm{C}$   （viii）\＆（ix） $2^{\text {nd }}$ expt．   Compare $\Delta T$ with Supervisor．   award（viii）and（ix）if within $2^{\circ} \mathrm{C}$   award（ix）only if $>2^{\circ} \mathrm{C}$ and $\leq 5^{\circ} \mathrm{C}$   （x）$\left(1^{\text {st }}\right.$ expt）\＆（xi）$\left(2^{\text {nd }}\right.$ expt）．   Compare time after mixing at which max temp is obtained with same time for Supervisor，for each expt．   If Supervisor $\leq 3 \mathrm{~min}$ ； 1 mark for $\Delta$ time $\leq 1 \mathrm{~min}$ ．   If Supervisor $>3 \mathrm{~min} ; 1$ mark for $\Delta$ time $\leq 11 / 2 \mathrm{~min}$ ．	2 2 2 1 1	［11］






1		
1		
1	$\operatorname{tazzo}$	(1)
1		
1		(4)!
1		(3)
z		()ı
1	Poedid	
1		${ }^{(\otimes) t}$
1		(p)t
1		(m)(0)
1	[5t-20,	
1		(m)(0)4
1		(\%) 1
1		(1)(9) 1
1		
1		
1		
1		(1)(9)
z	    	
,		
1	 	
1		(e)!

Q\# 61/ Thermometric (carbonate and acid) enthalpy experiment ALvl Chemistry/2018/w/TZ
1/Paper 3/Q\# :o) www.SmashingScience.org


	IV and V: Accuracy marks   Calculate supervisor's mass ratio (to 2 d.p.) $=$ mass FA $4 /$ mass or residue   Calculate the candidate's mass ratio (to 2 d.p.) $=$ mass FA $4 / \mathrm{mass}$ of resiove   Calculate 20\% of this ratio and calculate ratio $\pm$ this ratio   Award IV if $\delta$ is within the range $0.00-0.25$   Award V if $\delta$ is within the range $0.00-0.10$	2
2(b)(i)	Correctly calculates moles of $\mathrm{MgO}=$ mass of resilue $/ /_{40.3}$ AND answer to 2-4 sig fig	1
2(b)(i)	Correctly uses   (b)(i) to calculate $M_{\mathrm{r}}$ of $\mathrm{X}=$ mass lost $/$ moles of Mg 人 OR $M_{\mathrm{r}}$ of $\mathrm{X}=$ (mass FA $4 / \mathrm{moles}$ or Mgo ) -40.3   AND answer to 2-4 sf	1
2(b)(iii)	X is water/ steam/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CO}_{2}$	1
2(b)(iv)	FA 4 is magnesium hydroxide	1
2(c)	Student is not correct because there is no spitting / frothing during heating OR student is correct because there was spitting / frothing during heating	1
2(d)	$2 \text { d.p. balance uncertainty }=0.01 \mathrm{~g} \text { or } 0.005 \mathrm{~g}$   3 d.p. balance uncertainty $=0.001 \mathrm{~g}$ or 0.0005 g   Correct expression for \% error $=(2 \times$ balanoe unceetanty $/$ mass of residue $) \times 100$	1

Q\# 66/ GRAVIMETRIC (THERMAL DECOMPOSITION) EXPERIMENT ALvI Chemistry/2021/w/TZ
1/Paper 3/Q\# :0) www.SmashingScience.org
$-$
www.SmashingScience.ors


$\stackrel{ }{ }$		${ }^{\text {() } 2}$
$\stackrel{ }{ }$		
$\checkmark$	       	
$\stackrel{ }{ }$	099008n	
$\iota$		(1)(9)


$\checkmark$		(1)(9)2
$\stackrel{ }{ }$		
$\downarrow$		
$\stackrel{ }{ }$		
$\stackrel{ }{ }$		(e)2




6LS fo oss ased
эеииеля » э!идед




$\stackrel{ }{ }$		(1)(大)
$\stackrel{ }{ }$		\%r
$\checkmark$		(1)(P) L
$\stackrel{ }{ }$		(1)(P)


2(b)(i)	- No of moles of FA $5=$ snower $(1) / 2$  		1
2(b)(iii)			1
2(b)(iv)	$M_{\text {r }}$ of FA 5 calculated from $A$, values $=239$		1
2(b)(v)	Candidate should   - correctly calculate the $2.5 \%$ of $M$, in (iv) $=5.98 / 6.0$, and   - make a correct statement about the accuracy of the accepted formula, based on their result(s).   or correctly calculate \% difference for their result(s) from $M_{r}$ in (iv) and correct comment		1
2(c)(i)	- heat (crucible and residue) to constant mass   - heat more gently for longer period   - cool in a desiccator		1
	- to ensure that decomposition (of FA 5) is complete or to ensure that all the residue is CuO   - to prevent escape of dust/smoke / solid (during heating)		1
2(c)(ii)	Larger masses have lower percentage error in weighing		1
		Total:	14

Q\# 72/ GRAVIMETRIC (THERMAL DECOMPOSITION) EXPERIMENT ALvl Chemistry/2010/w/TZ 1/ Paper 3/Q\# 2/ :o) www.SmashingScience.org

2 (a)	PDO Layout   PDO Recording   MMO Decisions   MMO Quality	III	Records at least four different balance readings and at least one mass of solid/gas   Accept $0.0(0 X) \mathrm{g}$ as the mass of the empty tube or a statement that the tube is tared.   Gives all appropriate headings and units when recording results.   Do not accept mass of empty tube as $0.0(00) \mathrm{g}$ here unless tube is described as tared.   (minimum of three pieces of information)   All recorded balance readings consistent to at least 1 decimal place.   (minimum of three balance readings)   Evidence of reheating to "constant" mass.   For balances reading to $1 \mathrm{~d} . \mathrm{p}$. two masses must be identical   For 2 or 3 d.p.balances, two masses must be within 0.05 g   VI   Check and correct all subtractions in the results table. Calculate mass heated $/$ mass of residue to 3 significant figures.   Compare to Supervisor standard or standard value of $\mathbf{1 . 4 5}$.   Award $\underline{\mathrm{V}}$ and VI for a difference up to 0.15   Award $\underline{\mathbf{V} \text { only for a difference of } 0.15+\text { to } 0.30}$   Where a candidate repeats the experiment use cumulative masses of FA 3 and residue.   Where masses of FA 3 and residue cannot be checked, accept candidate values to calculate the ratio.	1 1	






［ $]$	$\downarrow$	＇eдөy SSOI    u！słfnsea pejejnqeı u！ssol sseu eul se өnp！！sel өцł Łо sseu өцъ sөq！            \＆$\forall \exists \ddagger 0$ sseum $\overline{\text { pues }}$   （e）woy ssol sseu pues	uoṇełəədıəృu৷ ヨЭV	（q）




	$\downarrow$	 	Kejdsid   OWW	（！）（q）
［9］	$\downarrow$ $\downarrow$ $\downarrow$	＇өл！snjou！＇s9＇$\angle$ pue 06 ＇ G иәәмңәq s！    ＇GZ＇L    ＇GZ＇L  	Ky！eno OWW	（7uos）   （e）


$8 L^{\prime} 9=\Re / \text { 比 }=\text { olpes pepedxө ө૫। }$        				
$\downarrow$	＇рәрәәи өле sби！чб！өм әәлч до шпщ！и！ии $\forall$ ＇dp $\downarrow$  	6u！puosey OOd		
$\downarrow$		Kejds！a Odd		
$\downarrow$	 	OWW	（e）	$乙$





[^40]

(ii)	ACE   Interpretation	Correct expression for the number of moles of   residue with correct masses of anhydrous salt and   208 and answer expressed to 2-4 sf   or correct answer and 2-4 sf   If only one expt carried out then   correct calculation for number of moles of residue   expressed to 2-4 sig fig.	1		
(iii)	ACE   Interpretation	Correct calculation of (i) + (ii) to give answer as an   integer.   (should be $\mathrm{x}=2$ 2)	1	[3]	
(c) (i)	ACE   Improvements	Heat to constant mass (owtte)	1		
(ii)	ACE   Interpretation	An attempt to "scale" mass loss to the mass of FA 5   used   or to calculate x separately for the two experiments.	1		
	ACE   Conclusion	Uses calculated values to comment sensibly on the   consistency the results.	1	[3]	
[Total: 12]					


1 (a)	I Six identifiable masses recorded	1	
	II All recorded masses have unambiguous headings and unit: / g or $(\mathrm{g})$ or g (for each heading) by each entry.	1	
	III Four measured masses all recorded to the same number of decimal places minimum 1 decimal place	1	
	IV Correctly calculates mass of FA1 added and mass of $\mathrm{CO}_{2}$ evolved.	1	
	V, VI and VII Examiner compares corrected mass of FA1/corrected mass of $\mathrm{CO}_{2}$ with supervisor value.   Accuracy marks are awarded as shown.   Award V, VI and VII if $\delta \leq 0.10$   Award $\mathbf{V}$ and VI if $0.10<\delta \leqslant 0.20$   Award $\mathbf{V}$ if $0.20<\delta \leqslant 0.40$	3	[7]
(b) (i)	1 Correctly calculates $\mathrm{n}\left(\mathrm{CO}_{2}\right)$ (mass $\mathrm{CO}_{2} / 44$ )	1	
(ii)	II Correct equation and all state symbols $\mathrm{XCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{XCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$	1	
(iii)   (iv)	$\text { III (iii) }=(\mathrm{i})$   and   Expression mass of FA1/(iii) shown in (iv)	1	

2LS 6

1		(b)(A) 1
$\downarrow$	       	(1) (G)
$\downarrow$	( (xuew ч109 suleb ssәoxə u! o!   (II) woul po moly              	
$\stackrel{1}{ }$	          	( m ( $($ ) $)$ !
1		(1)(2) ${ }^{\text {l }}$
$\downarrow$	    	(1)(e)t
$\downarrow$	 	
$\downarrow$	NOO S! ןeuo!nodord Kipoan!     	(p) $\downarrow$
1	       	
1	 	(0) $\downarrow$
1	 	
1	 	
$\stackrel{1}{ }$	   aull jeиf uo aq jsnu au! e uo aq pinoчs цэ! цм дulod Kuヲ  	
1	 	(q) 1
$\stackrel{1}{4}$	    	
1		
1	 	
$\downarrow$		
1	 	
1	 	
$\stackrel{1}{ }$		
1		(e) $\downarrow$


ร.

			z uo	
[G]	$\downarrow$	 	( 1 )	
	$\downarrow$	 	(A)	
	$\downarrow$		(!!! )	
	$\downarrow$		(!!)	
	1	(ıs $\downarrow$ łou łnq) 6y 6ịs əues ol pesseıdxe sıamsue ॥ib  	(!) (q)	
[t]	$\tau$	                 $\cdot\left(\sqrt{4}-z_{y}\right) 乙$ ddx      A 1 pue III		
	$\downarrow$			
	$\downarrow$		(e)	z




\begin{tabular}{|c|c|c|c|c|}
\hline (b) \& \[
\begin{aligned}
\& \text { PDO } \\
\& \text { Layout }
\end{aligned}
\] \& \begin{tabular}{l}
Plots rate or ( \(1000 /\) time ) on \(y\)-axis and volume of FA \(1 / F A 1 \mathrm{~cm}^{3}\) on \(x\) - axis. Axes correctly labelled. \\
II Uniform scales selected. \\
Each scale starts at zero and highest point plotted on each axis has used more than half of the available grid. \\
III and Examiner to check all plotted points. \\
IV Points must be correct to \(1 / 2\) small square and in correct small square. \\
Award III and IV for correct points for all experiments carried out (minimum 5). \\
Award III only if one mistake made. (If only four expts carried out then all 4 correct.) \\
V Draws a "best-fit" straight line - one that passes close to the majority of points and points are balanced. The line does not have to pass through the origin. (Allow curve if appropriate.)
\end{tabular} \& 1
1

2
2
1 \& [5] <br>

\hline (c) \& ACE Conclusions \& | Depth (of solution) is greater, |
| :--- |
| ... so time is shorter/less//time is faster//fewer seconds (time is conditional on depth) |
| or solution/liquid depth unchanged so reaction time unchanged for 1 mark. | \& 1

1 \& [2] <br>

\hline (d) \& | ACE |
| :--- |
| Interpretation |
| PDO |
| Display | \& | Give one mark for a concentration of $0.021 / 0.0214 / 0.02143 \mathrm{~mol} \mathrm{dm}^{-3}$ for expt 5 . |
| :--- |
| Working shown must include correct use of 70 . | \& 1

1 \& [2] <br>

\hline (e) \& | ACE |
| :--- |
| Interpretation | \& | Two pieces of evidence with no conclusion or one piece and conclusion. |
| :--- |
| $2^{\text {nd }}$ piece of evidence and conclusion. |
| Evidence for 'correct' |
| (i) a straight line/(line with) constant gradient |
| (ii) straight line passes through origin (if |
| evidence straight |
| appropriate from results) is 2 pieces of |
| (iii) line passes through origin $=1$ if line drawn is |
| Evidence for 'incorrect' |
| (i) a curve has been drawn/no straight line/not constant gradient |
| (ii) straight line does not pass through the origin |
| (iii) points too scattered/not on best fit line |
| (iv) a curve drawn but expect straight line $=2$ |
| A straight line, not passing through the origin could score both marks depending on explanation given (proportional but not directly proportional). |
| If two points are compared they must be on or very close to the graph line. | \& 1 \& [2] <br>

\hline
\end{tabular}


 From the candidate's experimental results round times to the nearest second and calculate (volume cripts From the Supervisor's experimental results round times to the nearest second and calculate the
average of (volume of sodium thiosulfate x time) for $50 \mathrm{~cm}^{3}$ and for $25 \mathrm{~cm}^{3}$ of sodium thiosulfate.


	©	3
-		
N	$\rightarrow$ -	$\sim$
	저	$\Xi$




1 (a)	PDO layout PDO recording   PDO recording   MMO decision   MMO collection   MMO quality	I Constructs a table for results   II Appropriate headings and units for data given. Volume / V in $\mathrm{cm}^{3}, / \mathrm{cm}^{3}$ or $\left(\mathrm{cm}^{3}\right)$ Time/t in seconds, /s or (s)   III All times recorded to the nearest second.   IV 3 additional volumes chosen with intervals not less than $2.00 \mathrm{~cm}^{3}$ and all volumes of FA 1 greater or equal to $6.00 \mathrm{~cm}^{3}$   V In all 3 additional experiments water is added to make a total of $20.00 \mathrm{~cm}^{3}$   Round times to nearest second.   $\mathrm{VI}+\mathrm{VII}$ Compare time for $20.00 \mathrm{~cm}^{3}$ of FA 1 with that of supervisor.   VIII + IX Compare time for $10.00 \mathrm{~cm}^{3}$ of FA 1 with that of supervisor.   The range for award of 1 or 2 depends on the supervisor value.   Supervisor value:   < or $=15 \delta$ for 2 is 2 and for 1 is 4   16 to $30 \delta$ for 2 is 3 and for 1 is 6   31 to 458 for 2 is 4 and for 1 is 8   46 to $60 \delta$ for 2 is 5 and for 1 is 10   $>60 \delta$ for 2 is 6 and for 1 is 12	1   1   1   1   1   2   2   [9]
(b)	PDO display   ACE interpretation   PDO display	(i) Working to show ans $=5 \times 10^{-5} \mathrm{~mol}$   (ii) 0.5 x ans to (b)(i) $=2.5 \times 10^{-5} \mathrm{~mol}$   (iii) Working to show that: $\left(2.5 \times 10^{-5}\right) / 0.050=$ $\left(5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right)$	$\begin{array}{lr} 1 & \\ 1 & \\ 1 & \\ & \\ & \text { [3] } \end{array}$
(c)	ACE interpretation   PDO recording	Rate correctly calculated using ans (b)(iii) / time (or $4.25 \times 10^{-4}$ ). Min 2 s.f. rounded correctly and minimum 4 results.   Unit for rate given as $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.	[2]



\begin{tabular}{|c|c|c|c|c|}
\hline 2 (a) \& \begin{tabular}{l}
PDO \\
Recording \\
ACE \\
Interpretation \\
MMO \\
Quality
\end{tabular} \& \begin{tabular}{l}
I Table to include \\
- volume of hydrogen peroxide/FA 2, \\
- volume of potassium iodide/FA 4, \\
- volume of distilled water, \\
- reaction time. \\
volume \(/ \mathrm{V}\) in \(\mathrm{cm}^{3} / / \mathrm{cm}^{3} /\left(\mathrm{cm}^{3}\right)\), time/t in seconds \(/ / \mathrm{s} /(\mathrm{s})\). \\
(Minimum 2 expts recorded) \\
II All times recorded to the nearest second. \\
(Minimum 2 expts) \\
III Correctly calculates all three rates (allow to 2 or 3 sf ) \\
Compare times for Expts 1 and 3 with those of the Supervisor. \\
Award IV, V and VI for both times within 3 s \\
Award IV and V for one within 3 s and one within 6 s \\
Award IV only for either within 6 s \\
(If only 2 expts carried out IV is available - from either expt performed)
\end{tabular} \& 1
1

3 \& [6] <br>
\hline (b) \& ACE Conclusion \& Rate increases with increasing concentration of hydrogen peroxide and potassium iodide (ora). Allow ecf from candidate's results. \& 1 \& [1] <br>

\hline (c) \& MMO Decisions \& | Selects different volumes of FA 4 (less than $20 \mathrm{~cm}^{3}$, not $10 \mathrm{~cm}^{3}$ and not closer than $2 \mathrm{~cm}^{3}$ to suggested volumes or to $20 \mathrm{~cm}^{3}$ or to $10 \mathrm{~cm}^{3}$ ) |
| :--- |
| Volumes of distilled water selected so that vol of water + vol of FA $4=20 \mathrm{~cm}^{3}$ and FA $2=20 \mathrm{~cm}^{3}$ If FA 3 and FA 5 are shown then the volumes must be constant. | \& 1

1 \& [2] <br>

\hline (d) \& ACE Improvements \& | Reason: change of temperature Use water bath to maintain constant temperature |
| :--- |
| Reason: decomposition of hydrogen peroxide Store $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ in the fridge, make up fresh $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, check conc. of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, keep $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ in dark/dim light. | \& 1 \& [2] <br>


\hline | (e) (i) |
| :--- |
| (ii) | \& ACE Interpretation \& | $\text { Expression } \frac{1}{\text { time from Expt } 1} \times 100$ |
| :--- |
| or correct value. |
| (Higher conc. of thiosulfate means) greater reaction time (allow reaction will be slower) and so a smaller percentage error. | \& 1

1 \& [2] <br>
\hline Qn 2 \& Total \& \& \& <br>
\hline
\end{tabular}



$\downarrow$   $\downarrow$   $\downarrow$	＇əjenbs         －Kıןедиozüоч   $\dagger$ pue К॥еэ！          s！！xe－x uo $Z \forall \pm$ ！	nokel OCd	（！）（0）
［ $]$ ］	 	uоџ̣еұәлdıə̨u！ ヨコナ	（q）
［c］$Z$	     ＇G＇u！euo pue 0 ＂    O．S＇0 łsereeu eut of pepıooes seanłeıeduel IIV        	Kyenb OWW   6u！p．ooed Odd   6u！p．pooed Odd   ZnoKel Odd	（e） 1


(b)	PDO Layout	I Axes correct and labelled: temperature change/ T change/ $\Delta \mathrm{T}$ and volume/vol/ V (of) sodium hydroxide/ $\mathrm{NaOH} / \mathrm{FA} 1$ and correct units $/{ }^{\circ} \mathrm{C}$ or $\left({ }^{\circ} \mathrm{C}\right)$ or 'in ${ }^{\circ} \mathrm{C}$ '; $/ \mathrm{cm}^{3}$ or ( $\mathrm{cm}^{3}$ ) (allow NaOH in $\mathrm{cm}^{3}$ )   II Scales chosen so that graph occupies at least half the available length for $x$ - and $y$-axes.   III Plotting - all points accurate to within half a small square and in the correct square.   IV Draws two straight lines of best fit which intersect.	1 1 1 1 1	[4]
(c)	ACE Interpretation	Reads to nearest $1 / 2$ square to 1 or 2 dp volume of FA 1 and temperature rise from intercept. Do not award if $\Delta T$ at intercept (or point) < $\max \Delta T$ from table unless candidate has clearly indicated the max $\Delta T$ is anomalous.	1	[1]



S	6LS fo OLS $\operatorname{\text {28ed}}$			
［ट］	$\downarrow$		sұuәшәлодdu｜ ヨコV	（！）
［乙］	$\downarrow$	  sец әдер！риеэ ssөןип уиеш риоэөs s！чך риеме ұои оด          ：uo！sseıdxe əul ses $\cap$	ヨコナ	（4）


［เ］	$\downarrow$	－6！6is өul of रifdde sepns 6u！punos ןeuuon uoisseıdxe s！पł u！pesn өq ol seлиno pepunoı wout     	Kejds！ OOd	（6）
［乙］	$\downarrow$ $\downarrow$	（f）и！ч！！м fə ou s！ө夫өч         （open     	  ヨコV   Kejds！d   OOd	（！）
［เ］	$\downarrow$		uo！snipuoう ヨコV	（ ${ }^{\text {a }}$
［เ］	$\downarrow$	   10 өөqеuел  	ұno人依 OOd	（p）
［เ］	$\downarrow$	          	ヨコマ	（0）
［ $\dagger$ ］	$\downarrow$	 		

Q\# 88/ Gas collection (carbonate reacting with acid) ALvl Chemistry/2019/m/TZ 3/Paper 3/Q\# :o)

${ }^{1(a)}$	I Clear layout for 4 data items with unambiguous headings and units covering all entries (2 weighings, 1 mass, 1 gas volume)	1
	II Recording of volume of $\mathrm{CO}_{2}$ (collected) AND both weighings AND mass of FA 1 correctly calculated	1
1(b)(i)	All answers to parts (ii) to (v) are given to 2-4 sf	1
1(b)(i)	Correctly calculates: $\frac{\mathrm{V} \text { (a) }}{24.0 \times 1000}$ AND (ii) $=$ (i)	1
1(b)(iii)	Correctly uses: (iii) $=$ (ii) $\times 123.5$	1
1(b)(iv)	Correctly uses: candidate's mass FA 1 - (iii)	1
$1(\mathrm{~b})(\mathrm{v})$	Correctly uses: moles $\mathrm{Cu}(\mathrm{OH})_{2}=($ (iv) $/ 97.5$	1
	Correctly uses: ratio (ii) : $\mathrm{n}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right)=1$   Allow correctly rounded to nearest integer.	1
${ }^{1(c)}$	Ticks 2nd box ( y would increase):   lower $T \Rightarrow$ smaller volume (of $\mathrm{CO}_{2}$ ) $\Rightarrow$ s smaller mass / moles / amount of $\mathrm{CuCO}_{3}$ OR   lower $T=>$ more $\mathrm{CO}_{2}$ dissolves ( $=>$ less collected) $=>$ smaller mass $/$ moles /amount $\mathrm{CuCO}_{3}$   Ticks 3rd box (y unchanged):   lower $T=>$ molar gas volume will be smaller (compensates for smaller volume)	1
${ }^{1(d)}$	some $\mathrm{CO}_{2}$ dissolves (in water) so:   hot water in tub / saturate water with $\mathrm{CO}_{2}$ initially / collect gas (directly) in gas syringe / use oil / non-polar solvent (in place of water)	1



${ }^{1(a)}$	3 masses recorded with unambiguous headings in the space provided，with correct units mass used correctly calculated   volume of gas collected or final volume recorded with correct units	1
	Award this mark if volume recorded by candidate lies within $\pm 10 \%$ of supervisor value．	1
${ }^{\text {（b）（b）}}$	Correctly calculates volume of gas in $\mathrm{cm}^{3} / 24000$ answer to 2－4 sf	1
1（b）（i）	Correct use of：   $2 \times$   ans（b）（i）／ 0.025 （answer to 2－4 sf）	1
1（b）（iii）	Correctly uses ans（b）（i）$\times 24.3$ and answer to 2－4 sf	1
1（c）	Student correct as reaction now slower so less gas lost（while bung is being fitted）．	1
	Student incorrect as Mg is in excess．   or Student incorrect as reaction is faster so more gas lost	1
1（d）	gas volume／amount／moles lower so concentration is lower	1


宣	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \stackrel{\text { an }}{1} \end{aligned}$		$\frac{\stackrel{\rightharpoonup}{0}}{\frac{\text { an }}{3}}$	㝘	$\begin{aligned} & \frac{\overrightarrow{0}}{\frac{0}{3}} \\ & \frac{1}{3} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{0}} \\ & \stackrel{\text { an }}{0} \end{aligned}$	亭		$\stackrel{\rightharpoonup}{2}$
  0   $N$   0   0   0   0   $\vdots$   0				$\qquad$						

Q\＃90／Gas collection（Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ）ALvl Chemistry／2017／m／TZ 3／Paper 3／Q\＃：o）


$\downarrow$		（1）（e）$\varepsilon$
$\downarrow$	 	
$\downarrow$	       	
$\downarrow$		
$\downarrow$		



 ZL／M／Zzoz／＾из！

$\stackrel{1}{ }$		（p）z
$\stackrel{ }{ }$		（N）（0）
$\stackrel{ }{ }$		（11）（0）
$\stackrel{ }{ }$		（1）（0）
$\stackrel{ }{ }$		（1）2
$\stackrel{ }{ }$		（9）z
$\stackrel{ }{ }$		
$\stackrel{1}{ }$		
$\stackrel{ }{ }$		
$\stackrel{1}{4}$		
$\stackrel{1}{ }$		
$\checkmark$		
$\stackrel{ }{ }$		
$\stackrel{1}{ }$		（e）

[^41]

(d)	Both observations required   FA6 no reaction/solution turns pink and   FA7 tums colourless/decolourises the $\mathrm{KMnO}_{4}$							[2]
	FA6 is either 2-methylpropan-2-ol or propanone as they cannot be oxidised (only 1 needed) and FA7 is propanal as it can be oxidised.						1	
Question 3								
Q\# 96/ Qualitative tests to identify unknown organic compounds ALvl Chemistry/2010/s/TZ 1/ Paper 3/Q\# 2 / :o) www.SmashingScience.org								
FA 7 is a tertiary alcohol; FA 8 is an aldehyde; FA 9 is a ketone; FA 10 is a primary alcohol								
(g)	ммо Collection		One mark for two correct observations with FA 7   One mark for correct observations with FA 8 and FA 9   One mark for two correct observations with FA 10 See table below for expected observations				$1$	[3]
reagent		observations						
			FA 7	FA 8	FA 9	FA 10		
acidified dichromate	no reaction				no reaction	(colour change to) green/blue-green/ cyan/turquoise (solution not ppt)		
2,4-DNPH	no reaction			yellow ppt	yellow ppt			
Tollens' reagent		no reaction		silver mirror or black/grey solution or pp		no reaction		
(h)	ACE Conclusions		No ecf from (g)   FA 7 contains the tertiary alcohol from no reaction with all three reagents   or   no reaction with dichromate and 2,4-DNPH provided there   is no CON in the observation with Tollens'   FA 8 contains the aldehyde from the silver (mirror), black or grey precipitate or solution with ammoniacal silver nitrate   Allow from brown ppt if it is the only positive result with Tollens'.				1 1	[2]
	Total							[14]


3(a)(ii)	Anion test and first observation   - Add barium nitrate/chloride   - White precipitate	1				
	Observation with acid and conclusion:   - white ppt is insoluble in specified mineral acid $\left(\right.$ not $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$   - sulfate/ $\mathrm{SO}_{4}{ }^{2}$ - present	1				
3(a)(iii)	Ionic equation   Any one of the following equations, provided that the appropriate test was carried out.   - $\mathrm{Fe}^{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$   - $\mathrm{NH}_{4}^{*}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}$ or g$)$   - $\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$	1				
3(a)(iv)	Correct use of $M_{r}$ to calculate no of moles water. Mass of water $=(392)-55.8-192.2-36$	1				
	- $n\left(\mathrm{H}_{2} \mathrm{O}\right)=392-234 / 18$ (expressed as integer)	1		$3($ b) $($ i)	Award one mark for every two correct observations $\left.{ }^{( }\right)$as shown in table below	5
:---	:---	:---:		test	FA5	observation(s)
:---:	:---:	:---:				


Correct reference to the redox reaction with $\mathrm{KMnO}_{4}$ (provided that FA 8 was identified as an alcoholValdehyde).
3(b)(iii) FA 7 is an oxidising agent because iodine is formed.
Q\# 94/ Qualitative tests to identify unknown organic compounds ALvl Chemistry/2018/s/TZ 1/Paper 3/Q\# :o) www.SmashingScience.org

FA 5 is $\mathrm{HCOOH}: \mathrm{FA} 7$ is $\mathrm{ZnCO}_{3}$ : FAB is $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

$3(\mathrm{a})(\mathrm{i})$	$+\mathrm{Na}_{2} \mathrm{CO}_{3}$ fizz/ effervescence/bubling	1			
				$+\mathrm{Na}_{2} \mathrm{CO}_{2}$ : fizz/effervescence /bubbling	$\mathbf{1}$
:---	---:				
$+\mathrm{KMnO}_{4}$ purple (allow pink) to colourless (allow pale yellow)	$\mathbf{1}$				
$+\mathrm{Ag}_{\mathrm{g}} \mathrm{NO}_{3}:$ no (visibile) reaction / no change/ no ppt/ solution remains colourless	$\mathbf{1}$				
+ Tollens: silver	1		+ AgNO$_{3}:$ no (visible) reaction/no change/ no ppt/ solution remains colourless	$\mathbf{1}$	
:---	---:				
+ Tollens: silver mimror/black pot/grey pot	$\mathbf{1}$		$3($ (a) (ii)	(Carboxylic) acid	1
:---	:---	:---			
	Alderl	$\mathbf{1}$			

 www.SmashingScience.org F

$6 \angle \mathrm{~s}$ to $8 \angle \mathrm{LS}$ 28ed

6Ls to LLs ased	эеииеяя яวипед	
 		（be）－z＇OS＇əpeyns
		（be）．－5N＇әұеци
		（be）－I＇zp！po！
		（be）＿ıя＇әр！шоля
		（be）－ı0＇әриоои
ио！ววセad		uolue
suolue po suonjorey z		
		（be）$)_{\text {z }} \mathrm{uZ}$＇כu！z
ssəวxว u！ə｜qn｜osu！    umosq 6u！umи Kipides 7dd әu！	ssəวxə ul ə｜qnıosul     	（be）${ }_{\text {z }} \mathrm{uW}$＇（II）${ }^{\text {asəue6ueu }}$
ssəวxə u！ə｜qn｜osu！ๆdd umouq－pas		
ssəวxว u！əqп｜osu    uo umouq 6u！̣umł ఫdd uәәぃ	ssวうxa u！ə｜qn｜osu！    иo uмоля 6u！umi 7dd uәәб	
7dd ou		（be）$)_{\text {z }}$ EO＇un！ups
7dd ou	M이 Кəə $\mathrm{S!}\left[(\mathrm{bbe})_{+2} \mathrm{eg}\right]$ ssəjun pəләsqo s！7dd әұчм ұu！e！	
－	6и！шеем иo pəonpord e！tuoume	（be）${ }^{\dagger} \mathrm{HN}$＇un！uoume
		（be） tel $_{\text {l }}$＇＇un！u！unie
（be）${ }^{\text {c }} \mathrm{HN}$	（be）HOEN	ио！19
suonge jo suoljorey $\downarrow$ sełou siskipue әantel！｜eno		
		Ez／No／tع／026

The Periodic Table of Elements


	\％」 镸
$2 \gg{ }^{\circ} \mathrm{C}$	
¢ 오 镸㫛	
	的立喜喜
	\％E E E
	\％安竞


[^0]:    mass，$A_{0}$ of $\mathbf{Z}$ ．Hence identify $\mathbf{Z}$
    
    

[^1]:    
    （iii）

[^2]:    
    

[^3]:    (b) From your accurate titration results, obtain a suitable value for the volume of FA 3 to be used
    in your calculations. Show clearly how you obtained this value.

[^4]:    Show your working and appropriate significant figures in the final answer to each step of your
    calculations．
    （i）Calculate the number of moles of sodium hydroxide， NaOH ，present in $25.0 \mathrm{~cm}^{3}$ of FA 3.

[^5]:    （ii）Use the following equation to calculate how many moles of $\mathrm{Fe}^{2+}(\mathrm{aq})$ were present
    in the conical flask．
    $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$

[^6]:    Calculate how many moles of potassium manganate（VII）were run from the burette into
    the conical flask during the titration of FB 2 with FB 1

[^7]:    Carry out this test and record the result.

[^8]:    [乙]
    (b) A student carried out Qualitative Analysis tests on a hydrated salt, FA 7, and concluded that it The relative formula mass of FA 7 is 499.3 .

    Determine the formula of FA 7 .
    
    and ..

[^9]:    Name a reagent you could use to prepare solutions of the cations from solid samples of
    

    $$
    \begin{aligned}
    & \text { (ii) You are provided with the following solutions. } \\
    & \text { FA } 6 \text { contains } \mathbf{M}^{2+}(\mathrm{aq}) \text {. } \\
    & \text { FA } 7 \text { contains } \mathbf{Q}^{2+}(\mathrm{aq}) \text {. } \\
    & \text { Choose reagents that could be used to confirm the identity of } \mathbf{M} \text { and } \mathbf{Q} \text {. } \\
    & \text { Carry out the tests. Record the tests, observations and conclusions. }
    \end{aligned}
    $$

    You will now plan and carry out tests to confirm, or not confirm, the identities of $\mathbf{M}$ and $\mathbf{Q}$. Both $\mathbf{M}$ and $\mathbf{Q}$ are listed in the Qualitative Analysis Notes.
    (i) Group 2 carbonates are insoluble in water. In order to test for the cations present $\left(\mathbf{M}^{2+}\right.$ and
    $\left.\mathbf{Q}^{2+}\right)$ they must be in solution.
    $\mathbf{M C O}_{3}$ and $\mathbf{Q C O}_{3}$.
    Youn......................................................................................................................... 1

[^10]:    
     [1]
    

[^11]:    
    дuәsaıd ospe aлe suonge omı
    
    

[^12]:    Explain your answer
    Explain your answer.

[^13]:    (ii) To a 2 cm depth of dilute nitric acid in a boiling tube, add the remaining FA 8

[^14]:    ple data to fill in your table at the end of the next question.]
    (b) Use your chosen reagents to carry out tests on
     Record your results in an appropriate form in the space below

[^15]:    Then heat strongly until no further change occurs.
    Record all of your observations.

[^16]:    Carry out tests using solution FA 7 in order to decide whether FA 6 is sodium sulfite or
    sodium sulfate． below．
    

[^17]:    －

[^18]:    sем рәрре ррэе әч।
    
    [เ]
    [1] .............................. sем рәрре pịe әч।

[^19]:     sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. 1 cm depth of FA 2 in a test-tube, add a small spatula measure of sodium carbonate. Record your observations.
    
    

[^20]:    ự|.

[^21]:    

[^22]:    $\mathrm{cm}^{3}$ ．

[^23]:    

[^24]:    
    Show your working and appropriate significant figures in the final answer to each step of your
    calculations.
    (i) Calculate the number of moles of sodium hydroxide, NaOH , present in the volume of FA 3
    you calculated in (b).

[^25]:    Carry out as many accurate titrations as you think necessary to obtain consistent results．
    Make sure any recorded results show the precision of your practical work． Record in a suitable form below all your burette readings and the volume of FA 2 added in each accurate titration．

[^26]:    
    （iii）Calculate the amount，in mol，of ethanedioate ions that reacted with the manganate（VII）
    ions in（c）（ii）．

[^27]:    (d) A student suggests that sodium carbonate should be added to each
    and iodine in the conical flask before titrating with sodium thiosulfate

    State whether you agree with the student. Explain your answer.
    
    $=x$

[^28]:    pouzew（e）
    FA1 reacts with excess acidified potassium iodide to produce iodine， $\mathrm{I}_{2}$ ．This iodine is then titrated
    with aqueous sodium thiosulfate using starch indicator． FA 4 is 0.105 mol $^{2} \mathrm{~m}^{-3}$ sodium thiosulfate， $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ．
    starch indicator FA 1 is dilute sulfuric acid， $\mathrm{H}_{2} \mathrm{SO}_{4}$ ．
    FA 23 is aqueous potassium iodide， KI ． FA 1 is a $0.0197 \mathrm{moldm}^{-3}$ solution of the iodine－containing compound
     www．SmashingScience．org

    Titrations with thiosulfate and iodine Chem 6 Q\＃53／ALvl Chemistry／2017／w／TZ 1／Paper 3／Q\＃ 1 ：0）

[^29]:    > Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker. Use the $50 \mathrm{~cm}^{3}$ measuruing cylinder to transfer $40 \mathrm{~cm}^{3}$ of FA 5 into the plastic cup. Measure and record the initial temperature of the solution in the plastic cup. Start the stopwatch. Measure and record the temperature of the solution every 30 seconds up to and including the temperature at 2 minutes. Stir the solution frequently. At time $t=2 \frac{1}{2}$ minutes, add all the powdered zinc to the solution in the plastic cup and stir the mixture. Record the temperature every 30 seconds from $t=3$ minutes up to and including $t=9$ minutes. Stir the solution constantly.
    -

[^30]:    (ii) Draw the following best-fit straight lines on the graph.

    Draw the following best-fit straight lines on the graph.

    - a line through the points between time $t=0$ minutes and time $t=2$ minutes
    - a line through the points between time $t=5$ minutes and time $t=9$ minutes
    - a vertical line at time $t=2 \frac{1}{2}$ minutes
    Draw the following best-fit straight lines on the graph.
    - a line through the points between time $t=0$ minutes and time $t=2$ minutes
    - a line through the points between time $t=5$ minutes and time $t=9$ minutes
    - a vertical line at time $t=2 \frac{1}{2}$ minutes
    (iii) Extrapolate the first two straight lines so that they intersect the vertical line at

    Use these extrapolated lines to determine the theoretical temperature change at time $t=2 \frac{1}{2}$ minutes

[^31]:    
    (i) Use the enthalpy changes calculated in (b)(iii) and (d)(i) to calculate the enthalpy change of dehydration of hydrated copper(II) sulfate.
    $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
    Show clearly how you obtained your answer.

[^32]:    > Results

    Results

[^33]:    
    ［เ］Iow …．．．．．．．．．．．．．．．．．．．．．．．．$={ }^{2} \mathrm{O}$ səom

[^34]:    
    Repeat the method used in Experiment 1，using between 1.5 g and 2.0 g of FA 5 in the second
    crucible．
    
    Experiment 2
    Repeat the me
    crucible．
    Results
    
    Results
    （a）$\square$
    

[^35]:    Calculate the initial concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the reaction mixture in Experiment 5 .
    Show your working.
    (d) FA 1 is $0.150 \mathrm{moldm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. how your working.

[^36]:    $N \sum^{N}$
     a printed insert a stop clock or clock with seconds hand
    (a) Method - Read through the instructions before starting any practi
     FA $1,0.15 \mathrm{moldm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ a measuring cylinder to measure $50 \mathrm{~cm}^{3}$ measure $5 \mathrm{~cm}^{3}$
    
     You are to investigate how the rate of formation of
    sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, in the reaction below.
    

[^37]:    әбеңuenpes！̣
    әбедиелре
    
    әчł ！！рәлолdய！әq p｜noм ұиәш！

[^38]:    

[^39]:    3 （a）Half fill the $250 \mathrm{~cm}^{3}$ beaker with water．Heat to approximately $70^{\circ} \mathrm{C}$ ，then turn off the Bunsen
    （i）FA 5 is an aqueous solution of an organic compound．Carry out the following tests on FA 5 and record your observations in the table．

[^40]:    
    

[^41]:    

