iG Chem 1 EQ P4 FINAL Master NEW 2016m to 2019s 180marks

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 AM							
	5:30 AM							
	6:00 AM							
	6:30 AM							
	7:00 AM							
Regstn	7:25 AM							
1	7:50 AM							
2	8:40 AM							
3	9:35 AM							
4	10:25 AM							
5	11:15 AM							
Lunch	12:10 PM							
6	1:10 PM							
7	2:00PM							
8	2:50 PM							
9	3:40 PM							
	4:20 PM							
	5:00 PM							
	5:30 PM							
	6:00 PM							
	6:30 PM							
	7:00 PM							
	7:30 PM							
	8:00 PM							
	8:30 PM							
	9:00 PM							
	9:30 PM							
	10:00 PM							
	10:30 PM				Pull			

www.SmashingScience.org Patrick Brannac Page 1 of 34 SMASHING 1

End of Topic 3 Goals Checklist

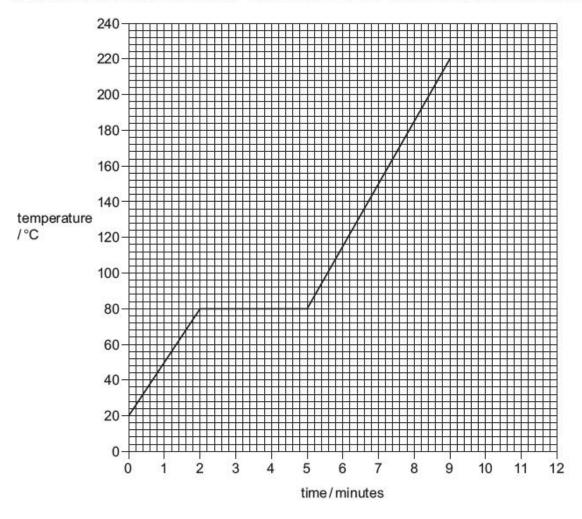
For each topic you ought to try to do as many of the following things to get the most out of your time, the resources available to you and to help you grow as a student. Tick each goal off as you complete it. Growth is difficult and uncomfortable, but you should choose to do these things, and the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win!

Aspect	What you should have done	Yes/No	Level
	Ask your teacher 1 question, about anything, once a week		FUNDAMENTAL
Interacted	Try to answer one question asked by your teacher at least once a week		ESSENTIAL
with your teacher	Ask your teacher one question about something you do not understand in science once a week		ESSENTIAL
tedener	Ask your teacher one question about something to do with science every lesson		EXTENSION
	Complete set of class note		FUNDAMENTAL
Nata a a a a	Cornell Notetaking Attempted		ESSENTIAL
Notes and follow up	Cornell Notetaking Completed		EXTENSION
notes	Cornell Notetaking Completed to an exemplary standard		EXCEPTIONAL
notes	Attempted the Mind Map for this topic		ESSENTIAL
	Completed the Mind Map for this topic		EXTENSION
	Read ahead before the topic has been started		EXTESNION
	Highlighted key ideas and translate new words		FUNDAMENTAL
Textbook	Completed the questions at the end of each 2 page spread in your exercise book		EXTENSION
	Added to your class notes ideas and important information from the textbook that you learnt		EXTENSION
	Worked on at least 25% of the exam questions in this workbook		FUNDAMENTAL
	Attempted more than 25% of the questions and those questions you have		ESSENTIAL
	completed you have marked in a different colour pen		EVTENICIONI
Deat Francis	Completed and marked all questions here		EXTENSION
Past Exam Questions	Completed, marked and additional key ideas where you have located the most difficult marks added to your notebook		EXCEPTIONAL
	Used the resources available online to answer additional questions not found in this workbook on the current topic.		EXCEPTIONAL
	Ask your teacher about an exam question that they cannot answer		EXCEPTIONALLY SMASHING!!!
	Complete the word list activity using the word list at the front of each topic as		SIVIASHING!!!
	little as possible		FUNDAMENTAL
Assessed	Complete 2 assessed activities, either in class or as homework		ESSENTIAL
Activities	Complete 2 assessed activities and scored over 70% on average		ESSENTIAL
	Complete 2 assessed activities and scored over 80% on average		EXTENSION
	Complete 2 assessed activities and scored over 90% on average		EXCEPTIONAL
	Revised sufficiently well to improve upon your score from the previous test		ESSENTIAL
	(except if you are scoring over 90%, then just write Y for this goal)		LOSENTIAL
	Scored 10% higher than your current average		EXTENSION
End of	Scored 15% or more than your previous end of topic average		EXCEPTIONAL
Topic Test	Scored over 90%		EXTESNION
	Scored over 95%		SMASHING!!!
			1 at the control

Aspect	What you should have done	Yes/No	Level
	Spend more than 3 hours a week reading a book you enjoy (in any language) about anything.		EXTENSION
	Spend more than 5 hours a week reading a book you enjoy (in any language) about anything.		EXCEPTIONAL
	Spend at least one hour a week reading a book you enjoy in English about anything.		EXTENSION
	Spend more than 3 hours a week reading a book you enjoy in English about anything.		EXCEPTIONAL
	You completed this goal setting table		FUNDAMENTAL
Reflection	You have looked at the goals you have achieved and the ones you have not and added them up and entered them into the table in the Review and Reflection section		ESSENTIAL
	You have given an answer for every question in the Review and Reflection section at the end of this topic		EXTENSION
	You have Given good and thoughtful answers for every question in the Review and Reflection section at the end of this topic		EXCEPTIONAL

For a variety of Keyword exercises, tests and flashcards for the first 3 topics

https://quizlet.com/652457468/ig-chem-1-to-3-kw-all-89-key-words-flash-cards/?i=ga2m8&x=1jqt



Topic Chem 1 Q# 1/ iGCSE Chemistry2019/s/Paper 41/Q2/

Z is a covalent substance. In an experiment, a sample of pure solid Z was continually heated for 11 minutes.

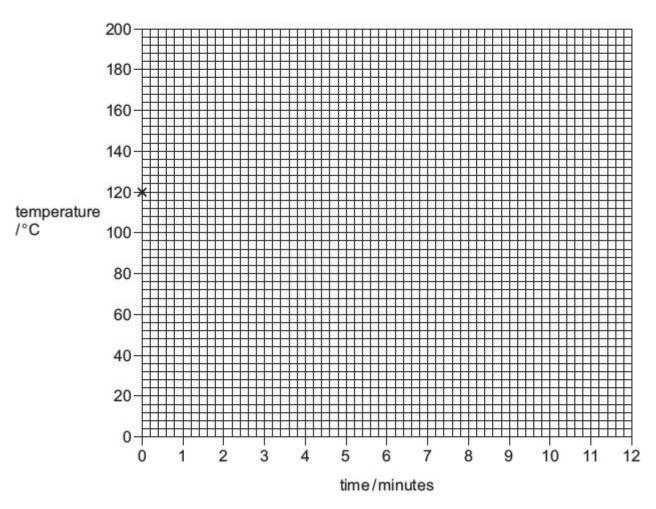
The graph shows how the temperature of the sample of pure Z changed during the first 9 minutes.

(a) What is	the melting	point of	f pure Z ?
-------------------------------	-------------	----------	-------------------

.....°C [1]

(b) The sample of pure Z began to boil at 9 minutes. It was boiled for 2 minutes.

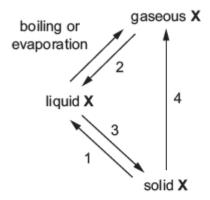
Use this information to sketch on the grid how the temperature of the sample of pure **Z** changed between 9 minutes and 11 minutes. [1]


(c) The sample of pure **Z** was continually heated between 2 minutes and 5 minutes.

Explain, in terms of attractive forces, why there was no increase in the temperature of the sample of pure **Z** between 2 minutes and 5 minutes.

(d)	Describe how the motion of particles of pure Z changed from 0 minutes to 2 minutes.
	[2]
	[2]
(e)	The experiment was repeated using a solid sample of impure Z .
	Suggest the differences, if any, in the melting point and boiling point of the sample of impure ${\bf Z}$ compared to the sample of pure ${\bf Z}$.
	melting point
	boiling point
	[2]

f) A sample of pure **Z** was allowed to cool from 120 °C to 20 °C. The total time taken was 8 minutes.


Starting from point \mathbf{x} , sketch on the grid how the temperature of the sample of pure \mathbf{Z} changed between 0 minutes and 8 minutes.

[2]

[Total: 10]

1 Element **X** can undergo the following physical changes.

(a)	(i)	Give the scientific name for each of the numbered physical changes.
		1
		2
		3
		4
	(ii)	[4] Explain why the changes shown are physical changes.
,	iii)	One difference between boiling and evaporation is the rate at which the processes occur.
,	,	State one other difference between boiling and evaporation.
		otate one other difference between boiling and evaporation.
		[1]
(b)	Des	scribe the separation, arrangement and motion of particles of element X in the solid state.
	sep	aration
	arra	angement
	mo	ion
		[3]
(c)	Ele	ment X is a Group I metal. It burns in air to form an oxide \mathbf{X}_2 O.
	Wri	te a chemical equation for this reaction.
		[2]

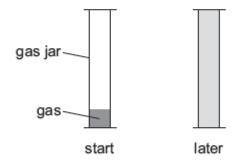
Topic Chem 1 Q# 3/ IGCSE Chemistry/2017/w/Paper 42/

1 (a) Dust particles in the air move around in a random way.

(ii) Identify the particles in the air which cause the random movement of the dust particles.

re-	97
 . [∠	4]

(iii) Explain why the dust particles move in this way.


[2]
 141

(b) When chlorine gas, Cl2, is put into a gas jar, it spreads out to fill the gas jar.

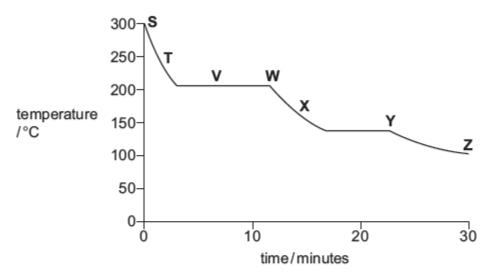
(i) What term describes the random movement of the dust particles?

When bromine gas, Br₂, is put into a gas jar, it also spreads out to fill the gas jar.

The process takes longer for bromine gas than for chlorine gas.

(i) What term describes the way that the gas particles spread out?

......[1]


(ii) Use data from the Periodic Table to explain why bromine gas takes longer to fill a gas jar than chlorine gas.

.....[2]

(iii) Explain why increasing the temperature increases the rate at which the gas particles spread out.

2 The graph shows how the temperature of a substance changes as it is cooled over a period of 30 minutes. The substance is a gas at the start.

Each letter on the graph may be used once, more than once or not at all.

(a) Which letter, S, T, V, W, X, Y or Z, shows when

(ii) the particles in the substance are furthest apart,

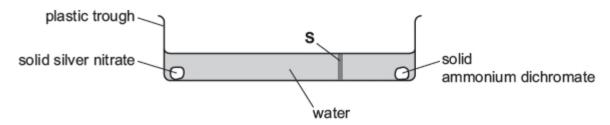
- (i) the particles in the substance have the most kinetic energy,

 [1]
- [1]
- (iii) the substance exists as both a gas and a liquid?

 [1]
- (b) Use the graph to estimate the freezing point of the substance.
- (c) Name the change of state directly from a solid to a gas.
-[1]
- (d) When smoke is viewed through a microscope, the smoke particles in the air appear to jump around.
 - (i) What term describes this movement of the smoke particles?

 [1]
 - (ii) Explain why the smoke particles move in this way.

.....[2]


Topic Chem 1 Q# 5/ IGCSE Chemistry/2017/m/Paper 42/

Silver dichromate, Ag₂Cr₂O₇, is a red insoluble salt.

Silver dichromate can be made by reacting silver nitrate solution with ammonium dichromate solution. The chemical equation for the reaction is shown.

$$2AgNO_3(aq) + (NH_4)_2Cr_2O_7(aq) \rightarrow 2NH_4NO_3(aq) + Ag_2Cr_2O_7(s)$$

(d) The apparatus shown was set up.

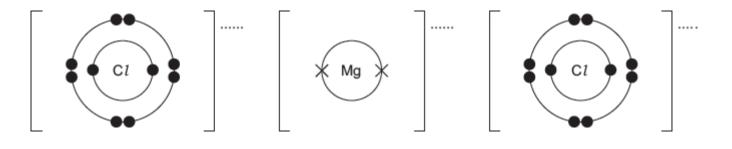
After five minutes, a red solid appeared along the line marked **S** on the diagram.

	(1)	Explain why a red solid appeared along the line marked S.
		[3]
	(ii)	The experiment was repeated at a higher temperature.
		What effect, if any, would this have on the time taken for the red solid to appear? Explain your answer.
Topic	Che	m 1 Q# 6/ IGCSE Chemistry/2016/w/Paper 42/
1	Par	ticles behave differently when in different physical states.
	(a)	Solids have a fixed volume and a definite shape. Gases have no fixed volume and take the shape of the container.
		Describe the volume and shape of liquids.

(b) Complete the table to show the separation, arrangement and movement of particles in each physical state.

state	separation of particles	arrangement of particles	movement of particles
solid			
liquid	touching one another	randomly arranged	move over one another
gas			

[6] (c) Name the following changes of state. (i) Ice turning into water. (ii) Solid carbon dioxide turning directly into gaseous carbon dioxide at room temperature.[1] Topic Chem 3 Q# 7/ iGCSE Chemistry2019/w/Paper 41/Q2/ (a) Sulfur exists as a number of different isotopes. What is meant by the term isotopes? (b) A sulfide ion has the symbol shown. How many neutrons are contained in this sulfide ion?[1] (ii) How is a sulfide ion, S²-, formed from a sulfur atom?

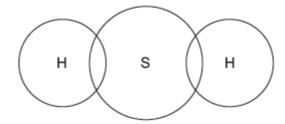

			10:000±00 0:0000	019/s/Paper 41/0			
				uctures of atom	is and ions.		
(a)	Def	ine the tern	n <i>proton nı</i>	umber.			
							[2
(b)	(i)		the table 1 Mg and 12 12		umber of proto	ns, neutrons a	and electrons present in
				number of	number of	number of	7
			i	protons	neutrons	electrons	
			²⁴ Mg		5	3	
			²⁶ Mg				
			125				
	(ii)	What term	TO 10-10-10-10-10-10-10-10-10-10-10-10-10-1				[2] as ²⁴ Mg and ²⁶ Mg?
	(iii)	25.000.000	is used to				as ²⁴ Mg and ²⁶ Mg?
		25.000.000	is used to	mical properties	s of ²⁴ Mg and ²⁶	Mg are the sa	as ²⁴ Mg and ²⁶ Mg? [1] me.
		25.000.000	is used to	mical properties	s of ²⁴ Mg and ²⁶	Mg are the sa	as ²⁴ Mg and ²⁶ Mg?
	(iii)	Explain wl	n is used to	mical properties	s of ²⁴ Mg and ²⁶	Mg are the sa	as ²⁴ Mg and ²⁶ Mg? [1] me.
	(iii)	Explain wl	n is used to	mical properties	s of ²⁴ Mg and ²⁶ 12 and ions which	Mg are the sa	as ²⁴ Mg and ²⁶ Mg? [1] me.
	(iii)	Explain wl	n is used to	mical properties	s of ²⁴ Mg and ²⁶	Mg are the sa	as ²⁴ Mg and ²⁶ Mg? [1] me.
	(iii)	Explain wl	n is used to	ntify the atoms	and ions which	Mg are the sa	as ²⁴ Mg and ²⁶ Mg? [1] me.
	(iii)	Explain wl	hy the cherelectrons.	ntify the atoms	and ions which	have the followinumber of electrons	as ²⁴ Mg and ²⁶ Mg? [1] me.
	(iii)	Explain wl	hy the cherelectrons.	ntify the atoms number of protons	and ions which number of neutrons	have the following number of electrons	as ²⁴ Mg and ²⁶ Mg? [1] me.

Topic Chem 3 Q# 9/ IGCSE Chemistry/2018/w/Paper 43/Q1/

1 Answer the following questions using only the substances in the list. Each substance may be used once, more than once or not at all.

	ammonia	bauxite	carbon dioxide	carbon monoxide	
	hematite	oxygen	sodium chloride	sulfur dioxide	
State wh	ich substance is:				
(f) an ior	nic compound				. [1]
Topic Chem 3 Q	# 10/ IGCSE Chemistr	y/2018/w/Paper 42,	/Q2/		

- (d) Magnesium reacts with chlorine to form magnesium chloride, MgCl₂. Magnesium chloride is an ionic compound.
 - (i) Complete the diagrams to show the electronic structures of the ions in magnesium chloride. Show the charges on the ions.



(ii) Give three physical properties that are typical of ionic compounds such as MgCl₂.

1	
2	
3	
_	[3]

Topic Chem 3 Q# 11/ IGCSE Chemistry/2018/w/Paper 41/Q4/

- (c) The gas hydrogen sulfide, H₂S, is produced when concentrated sulfuric acid is added to solid potassium iodide.
 - (ii) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of hydrogen sulfide. Show outer shell electrons only.

[2]

[3]

(iii) Hydrogen sulfide has a simple molecular structure.

Explain why h	iyarogen sulfide	e has a low boil	ling point.	
				 [2]

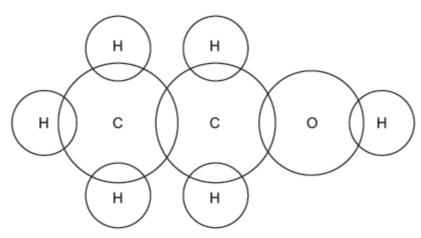
Topic Chem 3 **Q# 12/** IGCSE Chemistry/2018/w/Paper 41/Q2/

2 The table gives some information about four different particles, A, B, C and D.

particle	number of electrons	number of neutrons	number of protons	electronic structure	charge on particle
Α	11	12	11	2,8,1	0
В		14	11	2,8,1	0
С	18	20		2,8,8	0
D	18	20	17		

(a) Complete the table. The first row has been done for you.

[4]


(b) Give two particles from the table which are isotopes of each other.

.....[1]

Topic Chem 3 Q# 13/ IGCSE Chemistry/2018/s/Paper 43/Q4/

(b) The structure of ethanol is shown.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ethanol. Show outer shell electrons only.

Topi	c Che	m 3 (Q# 14/ IGCSE Che	mistrv/	′2018 <i>/</i>	/s/Pape	er 43,	/					
2			l is a radioactiv	•		•			only	non-ra	adioac	tive isotope of aluminium is	
		(i)	Describe, in te similar and how		-	-		ons and	d elect	rons,	how th	ne isotopes ²⁹ A1 and ²⁷ A1 are	
			how they are s	imilar									
			how they are d	lifferen	ıt							[2]	
		(ii)	Complete the tion.	table t	o sho	w the	nun	nber of	nucle	ons, n	eutror	ns and electrons in an ²⁷ Al ³⁺	
							Т	numbe	r in 27	A <i>1</i> ³+			
					nu	cleons	5				•		
					ne	utrons	5						
					ele	ctrons	5						
												[3]	
Topi	c Che	m 3 (Q# 15/ IGCSE Che	mistry/	/2018/	s/Pape	er 42,	/					
2	This	s que	estion is about t	he ele	ments	s in Pe	eriod	3 of th	e Peri	odic 7	able.		
				Na	Mg	Αl	Si	Р	S	Cl	Ar		
			n of the following used once, mor		_				which	n mato	hes th	e description. Each element	
	Stat	te wh	hich Period 3 ele	ement	:								
	(a)	forn	ns an oxide with	a ma	crom	olecul	ar st	ructure					
												[1]	

molten.

Topic Chem 3 **Q# 16/** IGCSE Chemistry/2018/s/Paper 42/

(b) Potassium bromide exists as an ionic lattice.

(i) What is meant by the term ionic lattice?

Potassium reacts with bromine at room temperature to form potassium bromide.

Potassium bromide does **not** conduct electricity when solid but does conduct electricity when

		(ii)	Explain why potassium bromide does not conduct electricity when solid but does conduct electricity when molten.	
(d)	loc	line re	eacts with chlorine to form iodine monochloride, IC1, as the only product.	
	(i)	Wri	te a chemical equation for this reaction.	
			[2]	
	(ii)		w a dot-and-cross diagram to show the electron arrangement in a molecule of ne monochloride. Show outer shell electrons only.	
			[2]	
(e)			um bromide has a melting point of 734°C. nonochloride has a melting point of 27°C.	
		terms ints.	s of attractive forces, explain why there is a large difference between these melting	
			[3]	

Topic Chem 3 **Q# 17/** IGCSE Chemistry/2018/s/Paper 42/

3 Complete the following table.

particle	number of protons	number of electrons	number of neutrons	number of nucleons
²³ Na	11	11		23
37C1-			20	
56 26	26	24	30	56

Topio				Chemistry/2018/s/Paper classified as elements	41/ , compounds or mixture	es.	
	(a)	Wh	at is meant	by the term compound	!?		
							[2]
Topi	c Che	m 3 (Q# 19/ IGCSE	Chemistry/2018/s/Paper	41/		
2	Fle	roviu	ım, F <i>l</i> , atom	ic number 114, was fire	st made in research lab	oratories in 1998.	
	(a)		rovium was ment Z .	made by bombarding a	atoms of plutonium, Pu,	atomic number 94, wit	h atoms of
	. B	•	This forme	d the nucleus of one a			
	(d)			f flerovium are ²⁵⁰F≀an y when they split up.	d ²⁸⁹ F1. The nuclei of bo	oth of these isotopes ar	e unstable
		(i)	State the te	erm used to describe is	sotopes with unstable n	nuclei.	
		.,					[4]
		,					
		(ii)	the isotope		umber of protons, neutr	ons and electrons in th	e atoms of
			isotope	number of protons	number of neutrons	number of electrons	
			²⁸⁶ F1				
			²⁸⁹ F1				
							[2]
	(e)			y small number of atom erovium have not yet b	ns of flerovium have bed een investigated.	en made in the laborato	ory and the
		lt h	as been sug	gested that flerovium i	s a typical metal.		
		(i)		vo physical properties			
		(-)					
			2				[2]

(ii) Suggest one chemical property of flerovium oxide.

6 Dilute hydrochloric acid, HC1(aq), reacts with aqueous sodium carbonate, Na2CO3(aq).

The chemical equation for the reaction is shown.

(a) A 25.0 cm³ portion of Na₂CO₃(aq) was placed in a conical flask with a few drops of a suitable indicator. It was titrated against HC1(aq) of concentration 0.180 mol/dm³.

20.0 cm3 of HC1(aq) was required to reach the end-point.

Calculate the concentration of the Na₂CO₃(aq), in mol/dm³, using the following steps.

Calculate the number of moles of HC1 used in the titration.

..... mol

Calculate the number of moles of Na₂CO₃ contained in the 25.0 cm³ portion of Na₂CO₃(aq).

..... mol

Calculate the concentration of the Na₂CO₃(aq) in mol/dm³.

..... mol/dm³ [3]

(b) In another experiment, the volume of carbon dioxide, CO₂, produced was 48.0 cm³, measured at room temperature and pressure.

How many moles of CO₂ is this?

moles of CO₂ = mol [1]

(c)		sample of ctrodes.	concentrated	hydrobromic	acid,	HBr(aq),	was	electrolysed	using	platinum
	The	e concentra	ntion of the hyd	robromic acid	was 8	8.89 mol/d	lm³.			
	(i)	Calculate	the concentrat	tion of the HB	r(aq) ir	ng/dm³.				

concentration of HBr(aq) = g/dm3 [1]

Topic Chem 4 Q# 21/ iGCSE Chemistry2019/w/Paper 41/Q2/

(e) Sulfur dioxide reacts with aqueous sodium sulfite to produce a compound with the following composition by mass: 29.1% Na, 40.5% S and 30.4% O.

Calculate the empirical formula of this compound.

empirical formula =[3]

Topic Chem 4 Q# 22/ iGCSE Chemistry2019/s/Paper 41/Q4/

(c) Hydrochloric acid produces salts called chlorides.

Magnesium carbonate reacts with hydrochloric acid to produce magnesium chloride.

$$\mathrm{MgCO_3} \ + \ 2\mathrm{HC}\mathit{l} \ \rightarrow \ \mathrm{MgC}\mathit{l}_2 \ + \ \mathrm{H_2O} \ + \ \mathrm{CO_2}$$

A student used 50.00 cm³ of 2.00 mol/dm³ hydrochloric acid in an experiment to produce magnesium chloride.

Calculate the mass, in g, of magnesium carbonate needed to react exactly with $50.00\,\mathrm{cm^3}$ of $2.00\,\mathrm{mol/dm^3}$ hydrochloric acid using the following steps.

Calculate the number of moles of HC1 present in 50.00 cm³ of 2.00 mol/dm³ HC1.

.... mol

•	Determine	the	number	of	moles	of	MgCO ₃	which	would	react	with	50.00 cm ³	of
	2.00 mol/di	m ³ H	C1.				THE ORDER OF THE PERSON OF THE						

																m	ol	
				-		-	-			-				-			IVI	

Calculate the relative formula mass, M_n of MgCO₃.

$$M_r$$
 of MgCO₃ =

Calculate the mass of MgCO₃ needed to react exactly with 50.00 cm³ of 2.00 mol/dm³ HC1.

Topic Chem 4 Q# 23/ IGCSE Chemistry/2018/w/Paper 43/Q4/

4 (a) Dilute sulfuric acid and aqueous potassium hydroxide can be used to make potassium sulfate crystals using a method that includes titration.

A student titrated $25.0\,\mathrm{cm^3}$ of $0.0500\,\mathrm{mol/dm^3}$ aqueous potassium hydroxide with dilute sulfuric acid in the presence of an indicator. The volume of dilute sulfuric acid needed to neutralise the aqueous potassium hydroxide was $20.0\,\mathrm{cm^3}$.

The equation for the reaction is shown.

$$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$$

Determine the concentration of the dilute sulfuric acid.

	mol
	Colorate the number of molec of dilute culturing and product to posterilize the agreement
	 Calculate the number of moles of dilute sulfuric acid needed to neutralise the aqueous potassium hydroxide.
	mol
	Calculate the concentration of the dilute sulfuric acid.
	• Calculate the concentration of the unite suitable acid.
	mol/dm³
	[3]
Topic Che	m 4 Q# 24/ IGCSE Chemistry/2018/w/Paper 43/Q3/
	is a metallic element in Group IV. Its main ore is cassiterite which is an impure form of
	IV) oxide, SnO₂. also occurs in stannite, Cu₂FeSnS₄.
(a)	Calculate the relative formula mass, M_n of Cu_2FeSnS_4 .
	$M_{\rm r}$ of ${\rm Cu}_2{\rm FeSnS}_4$ =[1]
(b)	The M_r of SnO ₂ is 151.
	Calculate the percentage of tin by mass in SnO ₂ .
	percentage of tin by mass in SnO ₂ =[1]
(c)	The percentage of tin by mass in Cu ₂ FeSnS ₄ is 27.6%.
	Use this information and your answer to (b) to suggest whether it would be better to extract tin
	Use this information and your answer to (b) to suggest whether it would be better to extract tin from SnO ₂ or Cu ₂ FeSnS ₄ .
	Explain your answer.
	[1] T

Calculate the number of moles of aqueous potassium hydroxide used.

Topic Chem 4 Q# 25/ IGCSE Chemistry/2018/w/Paper 42/Q3/

(d) In a titration, a student added 25.0 cm³ of 0.200 mol/dm³ aqueous sodium hydroxide to a conical flask. The student then added a few drops of methyl orange to the solution in the conical flask.

Dilute sulfuric acid was then added from a burette to the conical flask. The volume of dilute sulfuric acid needed to neutralise the aqueous sodium hydroxide was 20.0 cm³.

$$2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O$$

- (ii) Determine the concentration of the dilute sulfuric acid in g/dm³.
 - Calculate the number of moles of aqueous sodium hydroxide added to the conical flask

Calculate the number of moles of dilute sulfuric acid added from the burette.	•
Calculate the concentration of the dilute sulfuric acid in mol/dm³.	•
mol/dm	

Calculate the concentration of the dilute sulfuric acid in g/dm³.

(e) Iron(II) sulfate decomposes when heated strongly.

$$2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$$

15.20 g of FeSO₄(s) was heated and formed 4.80 g of Fe₂O₃(s).

$$[M_{\rm r}, {\rm FeSO_4} = 152; M_{\rm r}, {\rm Fe_2O_3} = 160]$$

Calculate the percentage yield for this reaction.

% [3]	
Topic Chem 4 Q# 26/ IGCSE Chemistry/2018/w/Paper 42/Q1/ (c) Element X is a Group I metal. It burns in air to form an oxide X ₂ O.	
(c) Element X is a Group i metal. It burns in all to form an oxide λ_2 0.	
Write a chemical equation for this reaction.	
	[2
Topic Chem 4 Q# 27/ IGCSE Chemistry/2018/w/Paper 41/Q4/	
(c) The gas bydrogen sulfide H-S is produced when concentrated sulfuric acid is added to solid	

potassium iodide.

(d)	Dilut	te sulfuric acid reacts with aqueous sodium hydrogencarbonate in a neutralisation reaction.
		$H_2SO_4(aq) + 2NaHCO_3(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I) + 2CO_2(g)$
		titration, 0.200 mol/dm³ aqueous sodium hydrogencarbonate was used to neutralise cm³ of dilute sulfuric acid of concentration 0.150 mol/dm³.
	(i)	Calculate the number of moles of dilute sulfuric acid used in the titration.
		mol [1]
		Calculate the number of moles of sodium hydrogencarbonate needed to neutralise the dilute sulfuric acid.
		mol [1]
(Calculate the volume, in cm³, of 0.200 mol/dm³ aqueous sodium hydrogencarbonate needed to neutralise the dilute sulfuric acid.
		cm³ [1]
Topi 3		m 4 Q# 28/ IGCSE Chemistry/2018/w/Paper 41/Q3/ Copper(II) nitrate decomposes when heated. Two gases, oxygen and nitrogen dioxide, and a
		solid are made in the reaction.
Only	the fi	rst two terms of this equation (which are given) are necessary to answer the questions that follow: $2Cu(NO_3)_2 \rightarrow O_2 +NO_2 +$
(c)	A te	acher heated 18.8g of copper(II) nitrate.
(-)	(i)	Calculate the number of moles of copper(II) nitrate present in the 18.8 g.
	(-/	одошало ило папидог от полос от сорранца, пишало ресодительного де
		mol [2]
	(ii)	Calculate the maximum number of moles of oxygen that can be made by heating 18.8g of
		copper(II) nitrate.
		mol [1]

(iii) Calculate the maximum volume of oxygen at room temperature and pressure, in cm³, that can be made by heating 18.8g of copper(II) nitrate.

..... cm³ [1]

	Topic Chem 4 Q# 29/ IGCSE Chemistry/2018/s/Paper 43/Q3/ (f) Another compound of cobalt is Co(OH) ₃ .							
		the charge on the cobalt ion in Co(OH) ₃ .						
Topi 6	c Chem 4	Q# 30/ IGCSE Chemistry/2018/s/Paper 43/ n chlorate(V), Ca(ClO_3) ₂ , is made by reacting calcium hydroxide with chlorine gas.						
		$6Ca(OH)_2 + 6Cl_2 \rightarrow Ca(ClO_3)_2 + 5CaCl_2 + 6H_2O$						
	(a) 8.8	8g of calcium hydroxide and 7200 cm³ of chlorine gas are mixed together.						
	(i)	How many moles is 8.88g of calcium hydroxide?						
	(ii)	How many moles of chlorine gas is 7200 cm ³ ?						
	(iii)	What is the maximum number of moles of calcium chlorate(V) that can be made from 8.88 g of calcium hydroxide and 7200 cm³ of chlorine gas?						
	(iv)	What is the maximum mass of calcium chlorate(V) that can be made from 8.88g of calcium hydroxide and 7200 cm³ of chlorine gas?						
		e experiment is repeated using different amounts of calcium hydroxide and chlorine gas. It is maximum mass of calcium chlorate(V) that can be made in the experiment is 4.84g. The actual mass of calcium chlorate(V) made in the experiment is 3.63g.						
		Calculate the percentage yield. percentage yield = % [1]						
Topi 4		Q# 31/ IGCSE Chemistry/2018/s/Paper 42/ um reacts with bromine at room temperature to form potassium bromide.						
	(a) Wri	ite a chemical equation for this reaction. Include state symbols.						
		[3]						

Topic Chem 4 Q# 32/ IGCSE Chemistry/2018/s/Paper 42/

- 7 Many organic compounds, such as alcohols, carboxylic acids and esters, contain the elements carbon, hydrogen and oxygen only.
 - (a) Compound R has the following composition by mass: C, 60.00%; H, 13.33%; O, 26.67%.
 Calculate the empirical formula of compound R.

empirical	formula	=	[2]

(b) Compound S has the empirical formula C₂H₄O and a relative molecular mass of 88.

Calculate the molecular formula of compound S.

molecular formula = [2]

Topic Chem 4 Q# 33/ IGCSE Chemistry/2018/s/Paper 41/

This question is about masses, volumes and moles. (a) Which term is defined by the following statement? The average mass of naturally occurring atoms of an element on a scale where the 12C atom has a mass of exactly 12 units. (b) Butane, C₄H₁₀, has a relative molecular mass of 58. Potassium fluoride, KF, has a relative formula mass of 58. Explain why the term relative molecular mass can be used for butane but cannot be used for potassium fluoride. (c) A 0.095 g sample of gaseous element Y occupies 60.0 cm³ at room temperature and pressure. Determine the number of moles of element Y in 60.0 cm³. moles of element Y = mol Calculate the relative molecular mass of element Y and hence suggest the identity of element Y. relative molecular mass = identity of element Y = [3]

	empirical formula =[4]	
Ano One	other oxide of phosphorus has the empirical formula P_2O_3 . The molecule of this oxide of phosphorus contains four atoms of phosphorus.	
Calo	culate the mass of one mole of this oxide of phosphorus.	
	mass = g [2]	
ark	mass = g [2] Scheme	
		_
/ iGC	Scheme	_
L / iGC 2(a)	Scheme CSE Chemistry2019/s/Paper 41/Q2/	
/ iGC 2(a) 2(b)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1)	_
/ iGC 2(a) 2(b)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1)	
/ iG(2(a) 2(b) 2(c)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1) energy is used to break bonds / overcome attraction (1)	
/ iG(2(a) 2(b) 2(c)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1) energy is used to break bonds / overcome attraction (1) between molecules (1)	
2(a) 2(b) 2(c) 2(d)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1) energy is used to break bonds / overcome attraction (1) between molecules (1) vibrations (1)	
/ iGC 2(a) 2(b) 2(c)	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1) energy is used to break bonds / overcome attraction (1) between molecules (1) vibrations (1) increase (1)	
	Scheme CSE Chemistry2019/s/Paper 41/Q2/ 80(°C) (1) horizontal line from end of graph at minute 9 to minute 11 (1) energy is used to break bonds / overcome attraction (1) between molecules (1) vibrations (1) increase (1) melting point decreases (1)	

(d) A 1.68g sample of phosphorus was burned and formed 3.87g of an oxide of phosphorus.

Calculate the empirical formula of this oxide of phosphorus.

Q# 2/ IGCSE Chemistry/2018/w/Paper 42/

1(a)(i)	M1 Melting	4
	M2 Condensing	
	M3 Freezing	
	M4 Sublimation	
1(a)(ii)	No new substances are made or The change can be reversed (by a physical process)	1
1(a)(iii)	Boiling happens at a specific temperature or Evaporation happens over a range of temperatures	1
1(b)	M1 Separation: Touching	3
	M2 Arrangement: Regular	
	M3 Movement: Vibrate	

Q# 3/ IGCSE Chemistry/2017/w/Paper 42/

1(a)(i)	Brownian (motion)	1			
1(a)(ii)	molecules				
	nitrogen / N ₂ / N OR oxygen / O ₂ / O				
1(a)(iii)	nitrogen OR oxygen (particles) collide with / bombard / hit the dust (particles)				
	(the bombarding particles) move randomly	1			
1(b)(i)	diffusion	1			
1(b)(ii)	Br₂ has an M₂ of 160 AND C₺ has an M₂ of 71 / bromine has an A₂ of 80 AND chlorine has an A₂ of 35.5	1			
	(heavier) bromine (molecules / particles) diffuses more slowly	1			
1(b)(iii)	particles have more energy / move faster	1			

Q# 4/ IGCSE Chemistry/2017/w/Paper 41/

Question	Answer	Marks
1(a)(i)	В	1
1(a)(ii)	A	1
1(a)(iii)	С	1
1(a)(iv)	E	1
1(b)	O ²⁻ M1 O M2 ²⁻	2

Question	Answer	Marks
2(a)(i)	S	1
2(a)(ii)	s	1
2(a)(iii)	V	1
2(b)	any value in the range 130–145 °C	1
2(c)	sublimation	1
2(d)(i)	Brownian motion	1
2(d)(ii)	nitrogen / oxygen / carbon dioxide / air molecules hit / bombard the smoke particles	1
	(the bombarding particles) move randomly	1

Q# 5/ IGCSE Chemistry/2017/m/Paper 42/

2(d)(i)	2(d)(i) M1 dichromate ions/particles are heavier (than silver ions)						
	M2 so dichromate ions diffuse/move more slowly ORA						
	M3 (where they meet they react and) silver dichromate is made						
2(d)(ii)	M1 red solid forms in less than five minutes or red solid forms faster/sooner	1					
	M2 particles/ions move faster	1					
2(e)(i)	M1 breaking down	1					
	M2 when heated	1					

Q# 6/ IGCSE Chemistry/2016/w/Paper 42/

1(a)		fixed volume AND take the shape of the container							
1(b)									
	solid	touching	regular	vibrate					
	liquid								
	gas	not touching	random	random					
					'				
1(c)(i)	melting					1			
1(c)(ii)	sublimatio	on				1			

Q# 7/ iGCSE Chemistry2019/w/Paper 41/Q2/

2(a)	atoms with same number of protons or atoms of the same element or atoms with same atomic number (1) atoms with different number of neutrons or atoms with different mass number or atoms with different nucleon number (1)	2
2(b)(i)	18	1
2(b)(ii)	gain of two electrons	1
2(b)(iii)	Ca / calcium	1

Q# 8/ iGCSE Chemistry2019/s/Paper 41/Q1/

1(a)	number of protons (1)	2
	protons in the nucleus (of an atom) (1)	15
1(b)(i)	12p 12n 12e (1)	2
	12p 14n 12e (1)	
1(b)(ii)	isotope(s)	1
1(b)(iii)	same number of electrons (1)	2
	(same number) of electrons in the outer shell (1)	
1(c)	9 ₄ Be	4
	any element symbol with a single negative charge (1)	
	use of C1(1)	
	use of ³⁷ 17 (1)	
1(d)	2 8 3 (1)	2
	2 8 8 (1)	

	SE Chemistry/2018/w/Paper 43/	
1(f)	sodium chloride	
	CSE Chemistry/2018/w/Paper 42/	ı
2(d)(i)	M1 Mg shown with new outer shell with 8 crosses;	
	M2 Both C? atoms with a new outer shell with 7 dots and 1 cross;	
	M3 '2+' charge on Mg and '-' charge on each C ?;	
2(d)(ii)	M1 Physical constants mark High melting point or high boiling point	
	M2 Solubility mark Dissolve in water	
	M3 Electrical conductivity mark Conduct (electricity) when molten	
	or conduct (electricity) in aqueous solution	
11/ IG	CSE Chemistry/2018/w/Paper 41/	
4(c)(ii)	M1 one shared pair between each H and S	
	M2 four unpaired electrons on S giving S a total of 8 outer shell electrons and no other unpaired electrons	
4(c)(iii)	M1 weak (attractive) forces OR (attractive) forces need little energy to overcome	
	M2 forces between molecules / intermolecular	
12/ IG(CSE Chemistry/2018/w/Paper 41/	
2(a)	M1 11	
-(-,	M2 18	
	M3 2.8.8 M4 –1	
2(b)	M3 2.8.8 M4 –1 A and B	
13/ IG0	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/	
	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons	
# 13/ IG0	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet	
4(b)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/	
# 13/ IG0	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons	
4(b)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/	
4(b)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons	
13/ IG(4(b) 14/ IG(2(a)(i)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons	
13/ IG(4(b) 14/ IG(2(a)(i)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27	
# 13/ IG(4(b) # 14/ IG(2(a)(i) 2(a)(ii)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii)	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10	
13/ IG(4(b) 14/ IG(2(a)(i) 2(a)(ii)	M3 2.8.8 M4 -1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/Si	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii) 15/ IGO 2(a) 16/ IGO	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/Si CSE Chemistry/2018/s/Paper 42/	
13/ IG(4(b) 14/ IG(2(a)(i) 2(a)(ii)	M3 2.8.8 M4 -1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/Si	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii) 15/ IGO 2(a) 16/ IGO	M3 2.8.8 M4 –1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/Si CSE Chemistry/2018/s/Paper 42/	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii) 15/ IGO 2(a) 16/ IGO	M3 2.8.8 M4 – 1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon / Si CSE Chemistry/2018/s/Paper 42/ 2K(s) + Br ₂ (l) → 2KBr(s) 1 mark for formulae all correct 1 mark for balancing	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii) 15/ IGO 2(a) 16/ IGO 4(a)	M3 2.8.8 M4 −1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/ Si CSE Chemistry/2018/s/Paper 42/ silicon / Si CSE Chemistry/2018/s/Paper 42/ 1 mark for formulae all correct 1 mark for balancing 1 mark for state symbols (ionic): made of, positive and negative ions / anions and cations / oppositely charged ions / unlike charged ions / different	
13/ IGO 4(b) 14/ IGO 2(a)(i) 2(a)(ii) 15/ IGO 2(a) 16/ IGO 4(a)	M3 2.8.8 M4 −1 A and B CSE Chemistry/2018/s/Paper 43/ all bonding pairs correct and no extra incorrect non-bonding electrons 4 non-bonding electrons on O completing oxygen octet CSE Chemistry/2018/s/Paper 43/ similarities: number of protons and electrons differences: number of neutrons nucleons: 27 neutrons: 14 electrons: 10 CSE Chemistry/2018/s/Paper 42/ silicon/ Si CSE Chemistry/2018/s/Paper 42/ 2K(s) + Br ₂ (t) → 2KBr(s) 1 mark for formulae all correct 1 mark for balancing 1 mark for state symbols (ionio): made of, positive and negative ions / anions and cations / oppositely charged ions / unlike charged ions / different charged ions	

4(d)(i)	$I_2 + Cl_2 \rightarrow 2ICl$	2
	1 mark for formulae all correct 1 mark for correct balancing	
4(d)(ii)	one bonding pair	1
	6 non-bonding electrons on each atom	1
4(e)	(potassium bromide): ionic bonds / attraction between ions	1
	(iodine monochloride): intermolecular forces / forces between molecules / named intermolecular forces, e.g. van der Waals / London forces / dispersion forces / dipole- dipole	1
	bonds in KBr are stronger / need more energy to break bonds / ORA	1

Q# 17/ IGCSE Chemistry/2018/s/Paper 42/

3	particles	number of protons	number of electrons	number of neutrons	number of nucleons	6
				12 (1)		
		17 (1)	18 (1)		37 (1)	
	Fe (1) 2+ (1)					

Q# 18/ IGCSE Chemistry/2018/s/Paper 41/

1(a)	a substance made from two (or more) elements	1	
	chemically combined	1	

Q# 19/ IGCSE Chemistry/2018/s/Paper 41/

2(d)(i)	radioisotopes	1
2(d)(ii)	²⁸⁶ F <i>I</i> 114p 172n 114e	1
	²⁸⁹ F <i>l</i> 114p 175n 114e	1
2(e)(i)	any two from:	2
	high melting point / boiling point hard dense conduct electricity conduct heat ductile / malleable sonorous lustrous / shiny	
2(e)(ii)	basic (oxide)	1

Q# 20/ iGCSE Chemistry2019/w/Paper 41/Q6/

		100
6(a)	correct final answer = 0.072(0)	3
	M1 moles $HCl = 0.0036(0)$ M2 moles $Na_2CO_3 = 0.0018(0)$ (M1 / 2) M3 concentration $Na_2CO_3 = 0.072$ (M2 / 0.025)	
6(b)	0.002(00)	1
6(c)(i)	720(.09)	1

Q# 21/ iGCSE Chemistry2019/w/Paper 41/Q2/

	2(e)	29.1/23 40.5/32 30.4/16 or 1.2(65) 1.2(65) 1.9 (1) 1:1:1.5 (1) Na ₂ S ₂ O ₃ (1)	3
- [9		C 25

Q# 22/ iGCSE Chemistry2019/s/Paper 41/Q4/

4(c)	M1 mol of HC I = 2.00 \Box $\frac{50.0}{1000}$ = 0.1(00) mol (1)	4
	M2 mol of MgCO ₃ = $\frac{M1}{2}$ = 0.1(00)/2 = 0.05(00) (1)	
	M3 M _r of MgCO ₃ = 84 (1)	
i e	M4 mass of MgCO ₃ = M3 □ M2 = 84 □ 0.05(00) = 4.2(0)g (1)	

Q# 23/ IGCSE Chemistry/2018/w/Paper 43/

4(a)	M1 (Mol KOH =) 0.00125 / 1.25 □ 10 ⁻³	3
	M2 (Mol H ₂ SO ₄ =) 0.000625 / 6.25 □ 10 ⁻⁴	
	M3 (Conc H ₂ SO ₄ =) 0.03125 / 3.125 \square 10 ⁻² (mol / dm ³)	

Q# 24/ IGCSE Chemistry/2018/w/Paper 43/

3(a)	[(64 \(\text{D} \) 2) + 56 + 119 + (32 \(\text{D} \) 4) =] 431	1	
3(b)	[(119 / 151) 🗆 100 =] 78.8 (%)	1	
3(c)	SnO₂ because the percentage of tin is larger in SnO₂ or answer to (b) □ 27.6 %	1	

Q# 25/ IGCSE Chemistry/2018/w/Paper 42/

3(d)(ii)	M1 $0.2 \square 25 / 1000 = 5(.00) \square 10^{-3} \text{ or } 0.005(00) \text{ (mol)}$	4
	M2 $5(.00) \Box 10^{-3}/2 = 2.5(.0) \Box 10^{-3} \text{ or } 0.0025(0) \text{ (mol)}$	
	M3 $2.5(.0) \square 10^{-3} \square 1000/20 = 0.125 \text{ (mol/dm}^3\text{)}$	
	M4 $0.125 \square 98 = 12.25 (g / dm^3)$	
3(e)	M1 Mol FeSO ₄ = 15.2 / 152 = 0.1(00)	3
	M2 Expected mol of $Fe_2O_3 = 0.1/2 = 0.05(00)$)	
	Actual mol of Fe ₂ O ₃ = 4.80 / 160= 0.03(00)	
	M3 Percentage yield = 100 □ 0.03(00) / 0.05(00) = 60%	

Q# 26/ IGCSE Chemistry/2018/w/Paper 42/

	1(c)	$4X + O_2 \rightarrow 2X_2O$	2
- 1		M1 Species	
- 1		M2 Balance	

Q# 27/ IGCSE Chemistry/2018/w/Paper 41/

4(d)(i)	0.003	1
4(d)(ii)	0.006	1
4(d)(iii)	30	1

Q# 28/ IGCSE Chemistry/2018/w/Paper 41/

	M1 188 M2 (18.8 / 188) = 0.1(00)	2
3(c)(ii)	0.05	1
3(c)(iii)	1200	1

Q# 29/ IGCSE Chemistry/2018/s/Paper 43/

3(f)	3+	1	
------	----	---	--

Q# 30/ IGCSE Chemistry/2018/s/Paper 43/

6(a)(i)	74	1
	0.12	1
β(a)(ii)	0.3	1
6(a)(iii)	0.02	1
6(a)(iv)	207	1
	4.14	1
6(a)(v)	75%	1

Q# 31/ IGCSE Chemistry/2018/s/Paper 42/

4(a)	$2K(s) + Br_2(l) \rightarrow 2KBr(s)$	3	
	1 mark for formulae all correct 1 mark for balancing 1 mark for state symbols		

Q# 32/ IGCSE Chemistry/2018/s/Paper 42/

7(a)	60 / 12 :13.33 / 1 : 26.67 / 16 or evaluation 5 : 13.33 : 1.67 or 3:8:1	1
	C ₃ H ₆ O	1
7(b)	(C ₂ H ₄ O =) 44	1
	C ₄ H ₈ O ₂	1

Q# 33/ IGCSE Chemistry/2018/s/Paper 41/

<u> </u>		
4(a)	relative atomic mass	1
4(b)	C ₄ H ₁₀ is covalent	1
	KF is ionic	1
4(c)	mol of Y = 0.060 / 24.0 = 2.5 \square 10 ⁻³ or 0.0025	1
	$M_r = 0.095 / 2.5 \square 10^{-3} = 38(.0)$	1
	fluorine	1
4(d)	mass of O = 3.87 g - 1.68 g = 2.19 (g)	1
	mol of P and mol of O 1.68/31 OR 0.054 2.19/16 OR 0.13	1
	ratio of P to O P = 0.054/0.054 O = 0.13/0.054 = 1 = 2.5	1
	whole number ratio and P ₂ O ₅ = 2 = 5	1
4(e)	the formula is P ₄ O ₆ or (one mole of) P ₂ O ₃ = 110 (g)	1
	mass = 220 (g)	1

The Periodic Table of Elements

	III/	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon -			
	II/				6	ш	uorine 19	17	Cl	chlorine 35.5	35	Br	romine 80	53	П	odine 127	85	At	statine -			
	<u>-</u>							-												9	>	orium .
	>							-		s sulfur 32										1	<u></u>	livermo
	>				7	z	nitrogen 14	15	Д	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	<u>></u>				9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀί	flerovium -
	≡				5	В	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204			
											30	Zn	zinc 65	48	B	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111		
Group											28	Z	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium
Gre											27	ပိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	M	meitnerium -
		- :	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
					_						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loc	18S				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	Та	tantalum 181	105	Op	dubnium
					, co	ato	rela				22	ĭ	titanium 48	40	Z	zirconium 91	72	士	hafnium 178	104	꿒	rutherfordium -
								• 50			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium
	_				က	:-	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -

۲.	Ξ	lutetium 175	103	۲	lawrencium	Ē
70	Д	ytterbium 173	102	%	nobelium	Ĺ
69	E	thulium 169	101	Md	mendelevium	I.
89 1	ш	erbium 167	100	Fm	fermium	E.
29	운	holmium 165	66	Es	einsteinium	ī
99	Ŋ	dysprosium 163	86	ర	californium	ı
65	d L	terbium 159	26	Ř	berkelium	ı
64	9	gadolinium 157	96	CB	curium	t.
63	П	europium 152	95	Am	americium	t
62	Sm	samarium 150	96	Pu	plutonium	ı
19	Pa	promethium -	93	dN	neptunium	ı
09	P N	neodymium 144	95	⊃	uranium	238
29	Pr	praseodymium 141	91	Ра	protactinium	231
28	Çe	cerium 140	06	H	thorium	232
22	Б	lanthanum 139	89	Ac	actinium	ī

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

lanthanoids