IB DIPLOMA CHEMISTRY HIGHER LEVEL

IB HL Paper 2

Past Exam Questions

Organised by Topic Number

Winter 2020 to Winter 2023 (7 Papers)

Name:

Class:

Contents

Calendars and time management	
Organising your months in 2024	
Organising your weeks –	4
Planning your days	
Overview Topic Frequency Analysis	
Topic Chem 1 Stoichiometric relationships Q# 2	10
Topic Chem 2 Atomic structure Q# 11	10
Topic Chem 3 Periodicity Q# 24	25
Topic Chem 4 Chemical bonding and structure Q# 34	32
Topic Chem 5 Energetics/thermochemistry Q# 53	47
Topic Chem 6 Chemical kinetics Q# 62	59
Topic Chem 7 Equilibrium Q# 74	73
Topic Chem 8 Acids and bases Q# 81	82
Topic Chem 9 Redox processes Q# 98	102
Topic Chem 10 Organic chemistry Q# 111	117
Topic Chem 11 Measurement and data processing Q# 126	142
Mark Scheme	155
Q# 2/ Chem 1	155
Q# 11/ Chem 2	157
Q# 24/ Chem 3	
Q# 34/ Chem 4	164
Q# 53/ Chem 5	170
Q# 62/ Chem 6	173
Q# 74/ Chem 7	
Q# 81/ Chem 8	
Q# 98/ Chem 9	187
Q# 111/ Chem 10	192
O# 126/ Chem 11	200

For a digital version of this document scan the code below, or go here: https://www.smashingscience.org/ib-chemistry-hl-sl

A note on the topic numbers used here:

IB Chemistry topic numbers from 12 onwards have been merged with their SL counterparts, so "Topic 3" in this booklet includes marks for both IB Chemistry Topic 3 (Periodicity) and Topic 13 (The periodic table—the transition metals). For more information see the syllabus ("Chemistry Guide: First Assessment 2016"). For exams in 2025 and later changes to the ordering of the syllabus have been made which are not addressed here.

Calendars and time management

Organising your months in 2024

April									
S	М	Т	W	Т	F	S			
	1	2	3	4	5	6			
7	8 15	9	10	11	12	13			
14	15	16	17	18	19	20			
21	22	23	24	25	26	27			
28	29	30							

May									
S	M	Т	W	Т	F	S			
				2					
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30	31				

	June								
S	М	Т	W	Т	F	S			
						1			
2	3		5			8			
9	10	11	12	13	14	15			
16	17	18	19	20	21	22			
23	24	25	26	27	28	29			
30									

July									
S	M	Т	W	Т	F	S			
				4					
7	8	9	10	11	12	13			
14	15	16	17	18	19	20			
	22			25	26	27			
28	29	30	31						

August									
S	M	Т	W	Т	F	S			
					2				
4	5	6	7	8	9	10			
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26	27	28	29	30	31			

September									
S	M	Т	W	Т	F	S			
1			4						
8	9	10	11	12	13	14			
			18						
22	23	24	25	26	27	28			
	30								

October									
S	М	Т	W	Т	F	S			
	1 2 3 4 5								
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30	31					

November									
S	М	Т	W	Т	F	S			
-47			37		1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28	29	30			
			-						

December										
S	M	Т	W	Т	F	S				
1	2	3	4	5	6	7				
				12						
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30	31								

Organising your weeks –

	Wk	out weeks	Topic
Week Starting	#	Events	Focus
29-Apr	1		
6-May	2		
13-May	3		
20-May	4		
27-May	5		
3-Jun	6		
10-Jun	7		
17-Jun	8		
24-Jun	9		
1-Jul	10		
8-Jul	11		
15-Jul	12		
22-Jul	13	1 - Sec - Vol	
29-Jul	14		
5-Aug	15	1 was k	
12-Aug	16	150000000000000000000000000000000000000	
19-Aug	17		
26-Aug	18		
2-Sep	19	A WILL TO THE TOTAL TO THE TOTAL TOT	
9-Sep	20	SMASHINGILL	
16-Sep	21		
23-Sep	22		
30-Sep	23		
7-Oct	24		
14-Oct	25		
21-Oct	26		
28-Oct	27		
4-Nov	28		
11-Nov	29		
18-Nov	30		

Planning your days V1.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am				10			
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm			was Plant				
6	1:10 pm		la l		(%)			
7	2:00pm				79			
8	2:50 pm			16ets	K			
9	3:40 pm			\ (2003019)	A \			
	4:20 pm			100				
	5:00 pm				A \\			
	5:30 pm			Name	7			
	6:00 pm			N EN J				
	6:30 pm		01/	A COUNTY				
	7:00 pm			ASHI				
	7:30 pm				0 0 0			
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Planning your days - v2.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am							
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm							
6	1:10 pm				16/			
7	2:00pm				94			
8	2:50 pm			160	K			
9	3:40 pm			1 (45030)				
	4:20 pm							
	5:00 pm			_40.10				
	5:30 pm		-	16	7			
	6:00 pm			VBI	1 1 11			
	6:30 pm			A				
	7:00 pm			MASHI				
	7:30 pm							
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Planning your days - v3.0

Period		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am			4	7 (4)			
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm							
6	1:10 pm				16/3			
7	2:00pm				34			
8	2:50 pm			160	K			
9	3:40 pm			1 (a x 2 3 c x 3	. A \			
	4:20 pm				0/1			
	5:00 pm			-1/60 5 133				
	5:30 pm		-		7	34		
	6:00 pm			VEST	KHII	7		
	6:30 pm		0.1					
	7:00 pm			MASHI	Delta I			
	7:30 pm					6		
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Planning your days - v4.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am							
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm							
6	1:10 pm				1 (6/)			
7	2:00pm				14			
8	2:50 pm			160	K			
9	3:40 pm			1 (45000)				
	4:20 pm							
	5:00 pm			_100.113				
	5:30 pm		-	16	7			
	6:00 pm			VBI	1 1 11			
	6:30 pm			A A COLUM				
	7:00 pm		0	MASHI				
	7:30 pm			, , ,	44668			
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Overview Topic Frequency Analysis

IB Diploma Chemistry Higher Level PAPER 2

Percentage of all marks awarded for each topic from summer 1999 to winter 2016 (blue crosses) for Paper 2, and same period wieghted for Papers 1, 2 & 3 (green triangles) and Paper 2 2020w to 2023w (red squares)

Topic Number

Topic Chem Q# 1/ IB Chem/2020/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org Entire exam paper was not published Topic Chem 1 Stoichiometric relationships Q# 2/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0) Methanoic acid can be converted into methyl methanoate, HCOOCH₃. 1.72 g of methyl methanoate is produced from 2.83 g of methanoic acid and excess of the other reagent. Determine the percentage yield. [2] Topic Chem 1 Q# 3/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0) Answer all questions. Answers must be written within the answer boxes provided. 1. Methanoic acid (HCOOH) is the first member of the homologous series of carboxylic acids. (b) Calculate the percentage, by mass, of oxygen in methanoic acid. [2] Topic Chem 1 Q# 4/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org 5. Double salts are substances with two cations and one anion. A hydrated sulfate containing two cations has this percentage composition. Element Percentage (%) Nitrogen (N) 7.09 Hydrogen (H) 5.11 16.22 Sulfur (S) 14.91 Cobalt (Co) Oxygen (O)

(ii)	Calculate the percentage of oxygen present in the double salt.	

(iii)	Determine the empirical formula of the double salt. Use section 6 of the data booklet.	[3
(iv)	The molar mass of the empirical formula is the same as the molar mass of the formula unit. Deduce the formula unit of the hydrated double salt.	[1
*****	***************************************	

	(b)		g of the double salt was dissolved in water and an excess of aqueous barium ride was added, precipitating all the sulfate ions as barium sulfate.	
		(i)	Formulate an ionic equation, including state symbols, for the reaction of barium ions with sulfate ions.	[1]
	50505			
		(ii)	Calculate the mass of barium sulfate precipitate. Use your answer to part (a)(iii) and section 6 of the data booklet. (If you did not obtain an answer for part (a)(iii), use $400.0 \mathrm{g} \mathrm{mol}^{-1}$ as $M_{\rm r}$ for the double salt, but this is not the correct value.)	[2]

	1/5/5			

	7.7.7			
	2.2.2			
opic 5 .			/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o) type of coal, contains about 0.40% sulfur by mass.	
	(a)		culate the amount, in mol, of sulfur dioxide produced when 500.0 g of lignite ergoes combustion.	[2]
			$S(s) + O_2(g) \rightarrow SO_2(g)$	
	111			

Ans	wer al	I questions. Answers must be written within the answer boxes provided.	
1.	Amr	monium nitrate, NH ₄ NO ₃ , is used as a high nitrogen fertilizer.	
-	(a)	Calculate the percentage by mass of nitrogen in ammonium nitrate. Use section 6 of the data booklet.	[1]
	ST-2023		
		1 Q# 7/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) II questions. Answers must be written within the answer boxes provided.	*
1.	Wh	en heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.	
	(a)	(i) Write a balanced equation for the reaction that occurs.	[1
	(b)	The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:	
		Mass of crucible and lid = 47.372 ± 0.001 g	
	Mas	ss of crucible, lid and magnesium ribbon before heating = 53.726 ±0.001 g	
		Mass of crucible, lid and product after heating = 56.941 ±0.001 g	
		(i) Calculate the amount of magnesium, in mol, that was used.	[1
	5357		

Topic **Chem 1 Q# 6/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

	(iii) Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.	[2]
01.501.0		
(c)	When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:	
	$3 \text{ Mg}(s) + N_2(g) \rightarrow \text{Mg}_3 N_2(s)$	
	(i) Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).	[1]
	(ii) Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).	[1]
		9
(d)	The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.	
	(i) Calculate coefficients that balance the equation for the following reaction.	[1]
	$_Mg_3N_2(s) + _H_2O(l) \rightarrow _Mg(OH)_2(s) + _NH_3(aq)$	

	(a)	Determine the empirical formula of the compound using section 6 of the data booklet.	[;
	• • • •		
	(b)	Determine the molecular formula of this compound if its molar mass is 88.12g mol ⁻¹ . If you did not obtain an answer in (a) use CS, but this is not the correct answer.	[1
Горі	c Chem	If you did not obtain an answer in (a) use CS, but this is not the correct answer. 1 Q# 9/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)	[1
Торі 3 .	c Chem	If you did not obtain an answer in (a) use CS, but this is not the correct answer.	[1

Topic **Chem 1 Q# 8/** IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

(b) 2.67 g of manganese(IV) oxide was added to 200.0 cm³ of 2.00 mol dm⁻³ HCl.	
$MnO_2(s) + 4HCl(aq) \rightarrow Cl_2(g) + 2H_2O(l) + MnCl_2(aq)$	
(i) Calculate the amount, in mol, of manganese(IV) oxide added.	[1]
(ii) Determine the limiting reactant, showing your calculations.	[2]
(iii) Determine the excess amount, in mol, of the other reactant.	[1]
	80 80
(iv) Calculate the volume of chlorine, in dm³, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.	t [1]
	186 187 189
Topic Chem 2 Atomic structure Q# 11/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o) 5. Beryllium is a low-density metal that is used in specialized lightweight alloys. (h) Outline how the first ionization energy of beryllium could be found from its atomic emission spectrum.	[1]
	9% PX

Topic **Chem 1 Q# 10/** IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

Topic Chem 2 Q# 12/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4. Carbon disulfide, CS2, undergoes gas phase hydrolysis according to the overall equation

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

(c) Sulfur has a number of natural isotopes and a sample of sulfur was enriched in ³⁶S, to produce a mixture with the following composition:

Isotope	Percent
³² ₁₆ S	90%
33 16	1%
³⁴ ₁₆ S	4%
38 16	5%

(i)	Calculate the relative atomic mass of this enriched sample, correct to two decimal places.	[2]
11177111		8
		8
		8
0.000.000.000		1
(ii)	In naturally occurring sulfur, the relative abundance of $^{36}_{16}$ S is only 0.0100%. Calculate the number of atoms of this isotope that would be present in 1.00g of natural sulfur. Use sections 2 and 6 of the data booklet.	[2]
		ĝ
		â
		3
200000000		
		â

Topic Chem 2 Q# 13/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :c

- .0)
- 2. The periodic table is a useful tool in explaining trends of chemical behaviour.
 - (a) (i) Annotate and label the ground state orbital diagram of boron, using arrows to represent electrons.

[1]

(ii) Sketch the shapes of the occupied orbitals identified in part (a)(i).

[2]

Topic **Chem 2 Q# 14/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

-			e 11 .	
3.	Consider	the	tollowing	reaction:

$$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$$

(a) State the ground-state electron configuration for Fe ²⁺ .	[1]
(c) Predict, with a reason, whether Cu or Cu ²⁺ has the greater ionization energy.	[1]
(d) Determine the frequency, in s ⁻¹ , of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.	[2]
(e) Outline the magnetic properties of iron by referring to its electron configuration.	[2]
	- 20
Chem 2 Q# 15/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2(e). www.SmashingScience.org :o) (ii) This reaction can be done with a conner catalyst. State the ground state electron.	
(ii) This reaction can be done with a copper catalyst. State the ground-state electron configuration for copper.	[1]

Topic Chem 2 Q# 16/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

6. Nitric acid is usually produced by the oxidation of ammonia.

(a)	(i)	Draw arrows in the bo	es to represent the electron	configuration of a nitrogen atom.	[1]
-----	-----	-----------------------	------------------------------	-----------------------------------	-----

30071300007 3840-001		***	2000	
	2p			
	2s			
	1s			

(e) Mos	t nitride ions are "N".	
(i)	State the number of subatomic particles in this ion.	[1]
Protons:		
Neutrons:		
Electrons		
(ii)	Some nitride ions are $^{15}N^{3-}$. State the term that describes the relationship between $^{14}N^{3-}$ and $^{15}N^{3-}$.	[1]
(iii)	The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.	[1]
(iv)	Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.	[1]
(f) Sug	gest two reasons why atoms are no longer regarded as the indivisible units of matter.	[2]

Topic Chem 2 Q# 17/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

Topic Chem 2 Q# 18/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9. www.SmashingScience.org :o)

Fast moving helium nuclei (4He2+) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.

Suggest what can be concluded about the gold atom from this experiment.

(a) Suggest what can be concluded about the gold atom from this experiment.	[2
Most ⁴He²+ passing straight through:	
	* *
	0.0
Very few ⁴ He ²⁺ deviating largely from their path:	
	5.7
	5.5

	(b)	(i)	V 24	nt experiments s bital shapes.	showed electrons ex	isting in energy levels occupying	
			Draw diag	rams of 1s, 2s a	and 2p.		[2]
14:			1s	0	2s	2p	4-
		(ii)	State the	electron configur	ration of copper.		[1]
	(2)202						
	- Ch	2.0#	10/ID Cham /2	024 //T70 /Danas	2/Uishaa Laval/02	. Carachine Coinnean and	
2.					2/Higher Level/Q2. www nds in the periodic ta		
	(b)		dium emits yo m 3p to 3s or	ACCO - 04 0470	a frequency of 5.09 >	10 ¹⁴ Hz when electrons transition	
			lculate the er the data book		, in J, between these	e two orbitals using sections 1 and 2	[1]
	1010						
						1.2.2.2	

Topic Chem 2 Q# 20/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3. Magnetite, Fe₃O₄, is another ore of iron that contains both Fe²⁺ and Fe³⁺.

	(b)	Iron exists	s as several isotopes.			
			e the type of spectrosco tive abundances.	opy that could be used t	to determine their	[1]
		(ii) Stat	e the number of protons	s, neutrons and electror	ns in each species.	[2
			Protons	Neutrons	Electrons	
		⁵⁴ Fe				
		⁵⁸ Fe ³⁺				
-	wer all	questions.		Higher Level/Q1. www.Smasen within the answer bookide, FeS.		
	(d)		lfide, FeS, is io <mark>nically b</mark> o e the full electron config	onded. Juration of the sulfide io	n.	[1]
	1101					
			ine, in terms of their ele de ion is greater than th	ctronic structures, why at of the oxide ion.	the ionic radius of the	[1]
	1101					

6.	The	electr	on configuration of copper makes it a useful metal.	
	(a)		ermine the frequency of a photon that will cause the first ionization of copper. Use ions 1, 2 and 8 of the data booklet.	[2]
	•••			
			3/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) stions. Answers must be written within the answer boxes provided.	
1.	Chle	orine u	undergoes many reactions.	
S	(a)	(i)	State the full electron configuration of the chlorine atom.	[1]
<u> </u>		(ii)	State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius.	[1]

	1.1.			
		(iii)	Outline why the chlorine atom has a smaller atomic radius than the sulfur atom.	[2]
		* * * *		
	1.00			

Topic Chem 2 Q# 22/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

Topic Chem 3 Periodicity Q# 24**/** IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5. Beryllium is a low-density metal that is used in specialized lightweight alloys.

(e)	Iron (III) chloride also exists as a dimer in the vapour phase, but iron, unlike beryllium,
	is a transition element.

(i)	Outline,	in terms	of its electronic	structure,	what identifies a transition element.	[1]
-----	----------	----------	-------------------	------------	---------------------------------------	-----

			Ö					ु					Į.		8			्					•		8							3		Ç	3	3			÷
	-	· .		0.4	 20	201	 	 				-			 200	 		 						200	200	 	20	 					٠.	00	-27	121	201	 	

(ii) The first four ionization energies of beryllium and iron are shown.

One common property of transition elements is that they have variable oxidation states. Discuss, referring to the graph, why iron, but not beryllium, displays this characteristic.

[3]

	(g)	Explain, in terms of nuclear charge, electron subshells and the shielding provided by filled electron shells, why the first ionization energy increases from Li to Be, but decreases from Be to B.	[4
	20.00		
	7.7.5		
Topic	Chem	3 Q# 25/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q9. www.SmashingScience.org :o)	
9.	(a)	Explain why a colorimeter set at a wavelength of 500 nm is not suitable to investigate reactions of Zn ²⁺ compounds. Use section 3 of the data booklet.	[2
	102020		
	202020		

Topic	Chem	3 Q# 26/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)	
2.		periodic table is a useful tool in explaining trends of chemical behaviour.	10
	(b)	Explain the decrease in first ionization energy from Li to Cs, group 1.	[2
):3			

	27272		
9	838381	T. GER STANDER DE DE MENEREN DE DE MENEREN DE EN DE MENEREN DE MENEREN DE MENEREN DE MENEREN DE MENEREN DE MEN	

	manganese, Mn, in terms of one characteristic chemical property of transition als, other than complex ion formation.	
Property:		
Comparis	on:	
Chem 3 Q# 2 (ii)	28/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1(a). www.SmashingScience.org :o) Identify a metal, in the same period as magnesium, that does not form a basic oxide.	
Chem 3 Q# 2 (iii)	(29) IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9(b). www.SmashingScience.org :0) Copper is a transition metal that forms different coloured complexes. A complex [Cu(H ₂ O) ₆] ²⁺ (aq) changes colour when excess Cl ⁻ (aq) is added.	
	Explain the cause of this colour change, using sections 3 and 15 from the data booklet.]

Topic **Chem 3 Q# 27/** IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

	Elec	tron transitions are related to trends in the periodic table.	
	(a)	Explain the general increase in trend in the first ionization energies of the period 3 elements, Na to Ar.	
	1.77		
	177		
c	Chem (f)	3 Q# 31/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :0) Outline why, unlike typical transition metals, zinc compounds are not coloured.	
	(g)	Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.	
_		SMASHING [1]	_
		3 Q# 32/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)	
51	wer al	I questions. Answers must be written within the answer boxes provided.	
	Iron	may be extracted from iron (II) sulfide, FeS.	

Topic Chem 3 Q# 30/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

(c) Sketch th	e first eig	ht succ	essive ioni	sation ene	rgies of s	ulfur.		
	lonization energy	1	2 3 Numl	4 5			8	
Chem 3 Q# 33/ IB ('Paper 2/High	ner Level/Q6	. www.Sm	1/	ence.org :	o)
						17 of the	e data book	let.
The electron co	***							

Topic Chem 4 Chemical bonding and structure Q# 34/ IB Chem/2023/w/TZ0/Paper 2/Higher

Level/Q5. www.SmashingScience.org :o)

- 5. Beryllium is a low-density metal that is used in specialized lightweight alloys.
 - (a) Beryllium has a crystalline structure.

(ii) Outline the electrostatic attraction in the be	ryllium crystal structure.
---	----------------------------

[1]

				 0		2	2						-																					2	
	•		7			-	•			•	•							•	 		•						 0.5		*	-			 	-	

(c) Beryllium forms a chloride, BeCl₂.

(i)	Draw the Lewis	(electron dot)	structure of	the BeCL	molecule
11/	DIGW GIC LCWIS	CICCUOII GOL	Suddlucture of	tile beer	morconc

[1]

 Outline how the Lewis (electron dot) structure of the BeCl₂ molecule differs from most Lewis (electron dot) structures.

[1]

[1]

(d) Beryllium chloride, BeCl₂, partially dimerizes in the gas phase to produce this molecule:

(i) Identify the hybridization of the beryllium atom in the dimer, Be₂Cl₄.

Topic Chem 4 Q# 35/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4. Carbon disulfide, CS2, undergoes gas phase hydrolysis according to the overall equation

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

	(b)		duce the molecular geometries of CS ₂ and H ₂ S, and the reason why they different.	[2]
	Мо	lecula	or geometry CS ₂ : or geometry H ₂ S: for difference:	
opic	Chem (b)		36/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q9. www.SmashingScience.org :o) ogen (II) oxide radicals (NO•) catalyse the decomposition of ozone (O ₃).	
		(i)	Formulate equations showing how NO• acts as a catalyst in this reaction.	[2]
	100 A			
		Chlo	orine also forms free radicals; the bond enthalpy for Cl_2 is 4.02×10^{-19} J.	
		(ii)	Calculate the minimum frequency of light needed to break this bond. Use sections 1 and 2 of the data booklet.	[1]
	100 E			

(iii)	Calculate the formal charge on each atom the $NO_2^{\bullet}(g)$ radical.	on each atom in the two Lewis structures of	
	Structure A	Structure B	
	: O O O :	: O O O :	
Oxygen 1			
Nitrogen			
Oxygen 2			
(iv)	Lewis structure A is more stable. Suggest, charge model supports this.	giving one reason, whether the formal	[
opic Chem 4 Q# 3 (iii)	7/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. w Explain the polarity of the S—O bond. Use s		[2
22.2.2.2.2			

Topic Chem 4 Q# 38/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

Double salts are substances with two cations and one anion. A hydrated sulfate containing two cations has this percentage composition.

Element	Percentage (%)
Nitrogen (N)	7.09
Hydrogen (H)	5.11
Sulfur (S)	16.22
Cobalt (Co)	14.91
Oxygen (O)	19

(a) (i) Draw one Lewis (electron dot) structure of the sulfate ion.

Topic Chem 4 Q# 39/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

The periodic table is a useful tool in explaining trends of chemical behaviour.

	State the electron domain geometry of the ammonia molecule.	
(ii	Deduce the Lewis (electron dot) structure of ammonia and sketch its 3E molecular shape.)
Lewis s	structure:	
3D mol	ecular shape:	
(iii	Explain, with reference to the forces between molecules, why ammonia higher boiling point than phosphine (PH ₃).	has a
(iii	Explain, with reference to the forces between molecules, why ammonia higher boiling point than phosphine (PH ₃).	has a
(iii	higher boiling point than phosphine (PH ₃).	has a
(iii	higher boiling point than phosphine (PH ₃).	has a
(iii	higher boiling point than phosphine (PH ₃).	has a

Topic **Chem 4 Q# 40/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o

5. Lignite, a type of coal, contains about 0.40% sulfur by mass.

(c)	Deduce the Lewis (electron dot) structure for sulfur dioxide.	
(f)	${\sf SF_4Cl_2}$ can form two isomers, one which is polar and another non-polar. Deduce the 3-dimensional representations of both isomers of ${\sf SF_4Cl_2}$.	
Non	-polar isomer:	
Pola	ar isomer:	

opio	(v) Deduce the Lewis (electron dot) structure, including formal charges, and shape for dinitrogen monoxide showing nitrogen as the central atom.	[3
	Lewis structure:	
	Shape:	
pio	Nitric acid is usually produced by the oxidation of ammonia. (ii) Deduce a Lewis (electron dot) structure of the nitric acid molecule, HNO ₃ , that obeys the octet rule, showing any non-zero formal charges on the atoms.	3
_	(iii) Explain the relative lengths of the three bonds between N and O in nitric acid.	-

Topic Chem 4 Q# 43/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :o

(d) Iodomethane is used to prepare CH₃MgI. It can also be converted into methanol:

$$CH_3I + HO^- \rightarrow CH_3OH + I^-$$

(iv) The polarity of the carbon–halogen bond, C–X, facilitates attack by HO⁻. Outline, giving a reason, how the bond polarity changes going down group 17.

 200			_	 			2							2		020	2.2	123	 			2.12		202			200	
 ÷					(*)	 	+	 •	 ٠	-0-				÷			 				-		•		-	-		
Ç.,) įs				:21			٥.		020					٠.		22							

Topic Chem 4 Q# 44/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

(g) State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.

[4]

[1]

Substance	Bond type	How the valence electrons produce these bonds
Magnesium		
Oxygen		
Magnesium oxide	******	

Topic Chem 4 Q# 45/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3. White phosphorus is an allotrope of phosphorus and exists as P₄.

(a)	(i)	Sketch the Lewis (electron dot) structure of the P ₄ molecule, containing only single bonds.	[1]

(ii)	Write an equation for the reaction of white phosphorus (P_4) with chlorine gas to form phosphorus trichloride (PCl_3).	[1
11177777		
(b) (i)	Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl-P-Cl bond angle in PCl_3 .	[3]
Electron o	domain geometry:	
Molecular	geometry:	
Bond ang	le:	
(ii)	Outline the reason why PCl ₅ is a non-polar molecule, while PCl ₄ F is polar.	[3]
PCl ₅ is no	n-polar:	
PCl₄F is p	polar:	
1.000.000		

10.	Hybridization of hydrocarbons affects their reactivity.	
	(a) (i) Distinguish between a sigma and pi bond.	[2]
	Sigma (σ) bond:	
	Pi (π) bond:	
	~**************************************	. 404
7 .	Chem 4 Q# 47/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q7. www.SmashingScience.org :o) Oxygen exists as two allotropes, diatomic oxygen, O ₂ , and ozone, O ₃ . (a) (i) Draw a Lewis (electron dot) structure for ozone.	[1]
	(ii) Discuss the relative length of the two O–O bonds in ozone.	[2]
SE		notes and the second
		or or or

Topic Chem 4 Q# 46/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q10. www.SmashingScience.org :o)

2.	Iror	ı(II) su	lfide reacts with hydrochloric acid to form hydrogen sulfide, H ₂ S.	
	(a)	(i)	Draw the Lewis (electron dot) structure of hydrogen sulfide.	[1
50 		(ii)	Predict the shape of the hydrogen sulfide molecule.	[1
	9.43			
-	wer a	II ques	of IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1, www.SmashingScience.org :o) tions. Answers must be written within the answer boxes provided. The extracted from iron (II) sulfide, FeS.	
-	(a)		ne why metals, like iron, can conduct electricity.	[1
Que	stion	1 con	itinued)	
	(d)	Iron (II) sulfide, FeS, is ionically bonded.	
		(i)	Describe the bonding in this type of solid.	[2]

Topic **Chem 4 Q# 48/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

	Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.
(f) E:	xplain why the addition of small amounts of carbon to iron makes the metal harder.
Sharra 4 Ot	450/10 Chan (2020/ 1770/Dan 22/Uinhan Land (04 man) Carabin China and Carabin China
Nickel ca (c) Di	scuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone
Nickel ca (c) Di	atalyses the conversion of propanone to propan-2-ol. OH Ni, heat Scuss, referring to intermolecular forces present, the relative volatility of propanone

(Question 4 continued)

(v)	Describe the bonding in metals.	[2]
(vi)	Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.	[1]

Topic Chem 4 Q# 51/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org

Compound A is in equilibrium with compound B.

(a)	Predict the electron domain and molecular geometries around the oxygen atom of
	molecule A using VSEPR.

molecule A using VSEPR.	
Electron domain geometry:	
Molecular geometry:	
(b) State the type of hybridization shown by the central carbon atom in molecule B .	
(c) State the number of sigma (σ) and pi (π) bonds around the central carbon atom in molecule B .	
σ-bonds:	_

π-bonds:

1000 C	Calculate the percentage by mass of oblering in CCLE	[3
(i)	Calculate the percentage by mass of chlorine in CCl ₂ F ₂ .	- 1
(ii)	Comment on how international cooperation has contributed to the lowering of CFC emissions responsible for ozone depletion.	[
(iii)	CFCs produce chlorine radicals. Write two successive propagation steps to show how chlorine radicals catalyse the depletion of ozone.	[2

Topic Chem 4 Q# 52/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

Topic Chem 5 Energetics/thermochemistry Q# 53/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4.

www.SmashingScience.org :o)

4. Carbon disulfide, CS2, undergoes gas phase hydrolysis according to the overall equation

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

(a) (i) Calculate the enthalpy change in this reaction from section 12 of the data booklet and the given values:

t [2]

	$CS_2(g)$	H ₂ S (g)
ΔH ^Θ _f	+88.7 kJ mol ⁻¹	–20.6 kJ mol⁻¹

																																															100	1			
+			4	¥								4			ž	÷	4	•	20.					-	-	÷		- 1	÷	÷	٠	•	2.	्	- 2	-		 -				÷			•	¥ .		e e	-	-	
					Ť.				12	ै	٥	2	*	16	ं	Ō		•	35				12															ं		10		. 2		3	500	36	229	100	· ·	1	-
÷	٠		3	4		•						-			÷		*	•	¥ 7.	 	33	 			40	÷	- 3	200		*		÷	2 :	्	-			 -	÷			÷	٠		•	¥.		e e	- 2	-	
																		50																													20		Ž.	-	÷
+	3		•	•	+	•		•	•	•		7	*					÷								*	•	•		٠		٠	•	ं					*			•			•			55		-	•

(ii)	Outline why you would expect the entropy change for this reaction to be quite sn	nall.
	**************************************	•

Topic Chem 5 Q# 54/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium

$$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$$

- (c) Bond enthalpies are a useful way of finding approximate enthalpy changes for reactions.
 - Determine the enthalpy change, ΔH^Θ, of this reaction, using section 11 of the data booklet.

[3]

				•	: V	ं	•	1					17	-	•	•	•	3	-	•		100			-			ं			•			•	ं	·	ŧ.		187	ैं	•		•	1	•	•			•			eX.	18	-
					2:0	•		٠			2								÷	Į.		<u>.</u>			٠	¥			٠				٠			÷			- 2	٠									÷	•				÷
1	•	•		•		ं	•	Ţ.	•	ं	700		ī	•	•	•	ः	÷	•	:	•		S	ा	•						•	:	·	•	37	•	t	t		•	•	·	•		•	•	•		÷	•		t	18	•
																																																			ÇQ.			
		- 1	37	•		ं	Ť	(t)	î		70		17	•	•	•		3	:	٠	•			81	•						•	30	Ü	-		÷	t	1	18	•	1		•	583		٠	t	510	÷	38	715	e t	ĵ.	-
			٠			٠		•		÷	Σ,		÷						•								2 .		٠			 				÷	•	•			•											٠		

	data booklet and the	tropy change, ΔS^{Θ} , of the reaction ΔS^{Θ} , of the reaction ΔS^{Θ}	on. Use data from section 12
		H ₂ (g)	HCOOH(g)
Se		130.7 J mol ⁻¹ K ⁻¹	251.0 J mol ⁻¹ K ⁻¹
		Paper 2/Higher Level/Q6. www.Smash	ingScience.org :o)
he elemen a) (i)	t sulfur has many in		
he elemen a) (i)	t sulfur has many ind Determine the stand of SO_2 to SO_3 .	dustrial uses. ard enthalpy of reaction (ΔH_r^{Θ}), i	n kJ mol ⁻¹ , for the oxidation
he elemen a) (i)	t sulfur has many ind Determine the stand of SO ₂ to SO ₃ .	dustrial uses. ard enthalpy of reaction (ΔH_r^{Θ}) , in Enthalpy of formation, ΔH_r^{Θ}	n kJ mol ⁻¹ , for the oxidation
he elemen a) (i)	t sulfur has many ind Determine the stand of SO ₂ to SO ₃ . Substance SO ₂	dustrial uses. ard enthalpy of reaction (ΔH_r°), i Enthalpy of formation, ΔH_r°	n kJ mol ⁻¹ , for the oxidation
he elemen a) (i)	t sulfur has many ind Determine the stand of SO ₂ to SO ₃ .	dustrial uses. ard enthalpy of reaction (ΔH_r^{Θ}) , in Enthalpy of formation, ΔH_r^{Θ}	n kJ mol ⁻¹ , for the oxidation

(b) The combustion of 0.1 moles of sulfur (S) was demonstrated in a school laboratory using the following apparatus in a fume cupboard.

(i) Calculate the enthalpy of combustion of sulfur, ΔH_c , in kJ mol⁻¹ from this data. Use sections 1 and 2 of the data booklet.

[2]

Mass of water (g) ±0.01	50.00
Initial temperature of water (°C) ±0.5	20.0
Final temperature of water (°C) ±0.5	35.0

Topic Chem 5 Q# 56/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)
Answer all questions. Answers must be written within the answer boxes provided.

Ammonium nitrate, NH₄NO₃, is used as a high nitrogen fertilizer.

(d)	Cold	d packs contain ammonium nitrate and water separated by a membrane.	
	(i)	The mass of the contents of the cold pack is 25.32g and its initial temperature is 25.2°C. Once the contents are mixed, the temperature drops to 0.8°C.	
		Calculate the energy, in J, absorbed by the dissolution of ammonium nitrate in water within the cold pack. Assume the specific heat capacity of the solution is 4.18 Jg ⁻¹ K ⁻¹ . Use section 1 of the data booklet.	[1]
	(ii)	Determine the mass of ammonium nitrate in the cold pack using your answer obtained in (d)(i) and sections 6 and 19 of the data booklet.	
	(ii)		[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]
	(ii)	obtained in (d)(i) and sections 6 and 19 of the data booklet. If you did not obtain an answer in (d)(i), use 3.11×10^3 J, although this is not the	[2]

(iii)	The absolute uncertainty in mass of the contents of the cold pack is ± 0.01 g and in each temperature reading is ± 0.2 °C. Using your answer in (d)(ii), calculate the absolute uncertainty in the mass of ammonium nitrate in the cold pack.	
	If you did not obtain an answer in (d)(ii), use 6.55 g, although this is not the correct answer.	[3]
(iv)	The cold pack contains 9.50 g of ammonium nitrate. Calculate the percentage error in the experimentally determined mass of ammonium nitrate obtained in (d)(ii).	
	If you did not obtain an answer in (d)(ii), use 6.55 g, although this is not the correct answer.	[1]

(v)	Calculate the standard entropy change, ΔS^{Θ} , for the dissolution of ammonium nitrate.	[1]
	$S^{\Theta}NH_4NO_3(s) = 151.1 \text{ J mol}^{-1} \text{ K}^{-1}$	
	$S^{\Theta}NH_4NO_3(aq) = 259.8 \text{ J mol}^{-1} \text{ K}^{-1}$	

	(vi)	Calculate the standard Gibbs free energy change, ΔG° , in kJ mol ⁻¹ , for the dissolution of ammonium nitrate at 298 K. Use sections 1 and 19 of the data booklet as well as your answer for question part (d)(v).	
		If you did not obtain an answer in (d)(v), use 102.3 J mol ⁻¹ K ⁻¹ , although this is not the correct answer.	[1]
• • •			
(f)	Soli	d ammonium nitrate can decompose to gaseous dinitrogen monoxide and liquid wate	r.
	(i)	Write the chemical equation for this decomposition.	[1]
	(ii)	Calculate the volume of dinitrogen monoxide produced at STP when a 5.00 g sample of ammonium nitrate decomposes. Use section 2 of the data booklet.	[2]
111			
553			
		SMASHING []]	

 (iii) Calculate the standard enthalpy change, ΔH^o, of the reaction. Use section 12 of the data booklet.

 ΔH_f^{Θ} ammonium nitrate = -366 kJ mol⁻¹

 ΔH_f^{Θ} dinitrogen monoxide = 82 kJ mol⁻¹

5.00	:		33		1	ै	100		53		33	ં	ै	ै	2	3.5	ĵ.	ं	0.75	0		3	i i	-	÷					<u> </u>	ě.	33	Ç.		ं	83	Į.		
									-																														
					ः			Ţ	28	20.		•	়		3.7		Ç				÷							 ٠			·	Ţ,		ं		5	į	्	į
																																				: CH			*3

(iv) Predict, with a reason, the signs for the entropy change, ΔS^{Θ} , and Gibbs free energy change, ΔG^{Θ} , of the reaction.

[2]

[2]

```
Entropy change:

Gibbs free energy change:
```

Topic Chem 5 Q# 57/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3. Ammonia is produced by the Haber-Bosch process which involves the equilibrium:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

The percentage of ammonia at equilibrium under various conditions is shown:

(b)	One	factor affecting the position of equilibrium is the enthalpy change of the reaction.	
	(i)	Determine the enthalpy change, ΔH , for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.	[3
* * *			
	(ii)	Outline why the value obtained in (b)(i) might differ from a value calculated using $\Delta H_{\rm f}$ data.	[1
040.404			

(c)	The	standard free energy change, $\Delta G^{\rm e}$, for the Haber–Bosch process is –33.0 kJ at 298 k	ζ.
	(i)	State, giving a reason, whether the reaction is spontaneous or not at 298 K.	[
513			
	580,000		
	(ii)	Calculate the value of the equilibrium constant, K, at 298 K. Use sections 1 and 2 of the data booklet.	
200			
	(iii)	Calculate the entropy change for the Haber–Bosch process, in J mol ⁻¹ K ⁻¹ at 298 K. Use your answer to (b)(i) and section 1 of the data booklet.	
79797			
20202			
200			
	(iv)	Outline, with reference to the reaction equation, why this sign for the entropy change is expected.	[
7.5.5			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Topic **Chem 5 Q# 58/** IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3. White phosphorus is an allotrope of phosphorus and exists as P₄.



An e	quilibrium exists	between PCl ₃ and	I PCl₅.	
		$PCl_3(g) + C$	$l_2(g) \rightleftharpoons PCl_5(g)$	
(i)	Calculate the s in kJ mol ⁻¹ .	tandard enthalpy o	change ( $\Delta H^{\Theta}$ ) for the forward reaction	on
		$\Delta H_{f}^{\Theta} PCl_{3}(g)$	$= -306.4  \text{kJ}  \text{mol}^{-1}$	
		$\Delta H_{f}^{\Theta} PCl_{5}(g)$	$= -398.9 \mathrm{kJ} \mathrm{mol}^{-1}$	[1]
 (ii)	Calculate the e	ntropy change, Δ	S, in JK ⁻¹ mol ⁻¹ , for this reaction.	CREATER REPORT
		Substance	Entropy JK ⁻¹ mol ⁻¹	
		PCl ₃ (g)	311.7	
		PCl ₅ (g)	364.5	
		Cl ₂ (g)	223.0	[1]
				263
 (iii)		bibbs free energy of ion 1 of the data b	change ( $\Delta G$ ), in kJ mol ⁻¹ , for this real cooklet.	ction at

Topic **Chem 5 Q# 59/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q7. www.SmashingScience.org :o)

7. Oxygen exists as two allotropes, diatomic oxygen, O2, and ozone, O3.



	(b)	Explain why there are frequencies of UV light that will dissociate O ₃ but not O ₂ .	[2]
	100.0		
	100.0		
	6204		
	(c)	Explain, using equations, how the presence of $CCl_2F_2$ results in a chain reaction that decreases the concentration of ozone in the stratosphere.	[2]
	1000		
	100		
	185.1		
Горі	Chem	<b>5 Q# 60/</b> IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)	
3.	200 200	netite, Fe ₃ O ₄ , is another ore of iron that contains both Fe ²⁺ and Fe ³⁺ .	
	(c)	Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.	
		Determine the specific heat capacity of iron, in J g ⁻¹ K ⁻¹ . Use section 1 of the data booklet.	[1]
	111		
	1/1/1		
	111		



Topic Chem 5 Q# 61/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3. An equation for the combustion of propane is given below.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

(a)	Determine the standard enthalpy change, $\Delta H^{\oplus}$ , for this reaction, using section 11 of the data booklet.	[3
250		
1,725		

(b)		Cal				sta	an	da	irc	d e	ent	tha	alp	ру	c	:ha	an	g	e,	Δ	H'	θ,	fo	r	th	is	re	a	cti	or	ı u	ISİ	ng	S	e	cti	or	1 1	12	0	ıf t	he	е	
		• •		• •	 			.51		*:	100		(***)	856				*	0.0	ž.	•	*		T .	197	*	•			***		•	•				* *					5.5		
				٠.		 				٠.		es.	K SEV								.72					÷			į													2.2	848	
5000	• •		-				* 7	- 1			20		159					*:)	535	•	•	•		*	107	٠			*		•	•	•	1					•			ं		
			0.	٠.									0.02									्	0.0		102	Ų:					٠						2.				120		10	



(c)	Predict, giving a reason, whether the entropy change, $\Delta S^{\Theta}$ , for this reaction is negative or positive.
****	
(d)	Calculate $\Delta S^{\Theta}$ for the reaction in J K ⁻¹ , using section 12 of the data booklet.
	The standard molar entropy for oxygen gas is 205 J K ⁻¹ mol ⁻¹ .
102010	
(e)	Calculate the standard Gibbs free energy change, $\Delta G^{\circ}$ , in kJ, for the reaction at 5°C, using your answers to (b) and (d). Use section 1 of the data booklet.
(e)	
(e)	using your answers to (b) and (d). Use section 1 of the data booklet.  (If you did not obtain an answer to (b) or (d) use values of -1952kJ and +113 J K ⁻¹

**Topic Chem 6 Chemical kinetics** Q# 62/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)



(c)	Chemists have a "rule of thumb" that raising the temperature by 10 °C doubles the
	reaction rate. Deduce the activation energy, in kJ mol ⁻¹ , assuming that a rise in
	temperature from 25°C to 35°C doubled the rate of this reaction. Use sections 1 and 2
	of the data booklet.

1		
1	1.21	
-	-01	

٠					-		٠	٠	•	٠	٠			2							-			٠	٠		٠			¥ .		-						•	*	•			4		*						٠					•
ં			૽	٠		93	Ţ	ै	7	3	Ž			૽	Ō	•	10			ै	ं	•	Ť	٥	•	ે		•	•	30		Ţ.	•	<u></u>	ŧ.		9.7	9.5	ં	2	2		3	20	•	1		0	ं	ै	•		ै	Č:	30	1
٠		٠			200				•	÷	٠	٠	٠	¥		•		 	•	•				¥			٠	•	•	۷,		-						•	٠	٠			3		×					-						23
ં				૽																																																				
٠		٠	٠		-			٠	•	÷	÷			2				 			-						٠		•	۷,	्	-		•				•	÷			 •	-	٠						-	٠	٠				
320				•																																																				50

Topic Chem 6 Q# 63/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2. Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium

$$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$$



- (f) The conversion of carbon dioxide to methanoic acid is usually carried out over an iridium-based catalyst.
  - Sketch, on the axes provided, energy profiles of the reaction both with and without a catalyst, indicating ΔH and the activation energies.

[3]



(ii)	State one change, other than carrying out the reaction over a catalyst at high
	temperature, that would increase the reaction rate.

[1]


Topic Chem 6 Q# 64/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2. The periodic table is a useful tool in explaining trends of chemical behaviour.

(e) (i)	The Habe	r process requires a catalyst. State how a catalyst functions.	[1]
******			
(ii)		Maxwell–Boltzmann distribution curve showing the activation energies without a catalyst.	[2]
	Fraction of particles		
		Kinetic energy (KE)	
(iii)	Suggest h	now the progress of the reaction could be monitored.	[1]

Topic **Chem 6 Q# 65/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o

5. Lignite, a type of coal, contains about 0.40 % sulfur by mass.



(d) Sodium thiosulfate reacts with hydrochloric acid as shown:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow S(s) + SO_2(aq) + 2NaCl(aq) + H_2O(l)$$

The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.



Suggest **two** variables, other than concentration, that should be controlled when comparing relative rates at different temperatures.

								-	-		•						-	-		•	•	-	•	•			•	-	•			•				•							•	•					•		•						•
	•		• •			÷	+	-			1			•					-		-		7					÷					•	+					-	÷	÷			+					•			-					-
						1												95					4					2		10							2																		-		
0.00	200						. 2										-						-20					-2		0.0	 				_						-			2.	0.1	-20	0		00								
7.70	200	2.70	300	973	70.57	::3	0.0		200			7	0	7.0	-	> 0			27	Ī	.0	000		-	-	7	-	G.T.	e fi	0.3	 - 17:			(E)	-	(T)(	033	ň.	7	70.	7	200		3.0	90	(7:1	Ē.	0	700	77.5	300	283	700	D.	30	0	



(iii) Annotate the Maxwell-Boltzmann distribution curve showing the activation energies,  $E_a$ , for the catalysed and uncatalysed reactions.

[1]



(iv)	Explain, referring to the Maxwell-Boltzmann distribution curve, the effect of a
	catalyst on a chemical reaction.

[1]

[2]

	Ç.	2	•	ă		٠		-	÷	٠	8	*			9		2			*	9	-	-		-	0			-	9			-	•	-		-	×			-	-	1	Ċ			÷	G		÷							•	-	1
0				្ត	20						÷	्	٠		્	R.C	200			ु	्					2	6				20.					÷	3	ं		.0			. 1	98															
	0.9		•	e in					+		×				0.		ol e	***	-0							*				 		•	•	*	4						• <		•00			e e			٠.	0.00	114	854	970			•	• (		

Topic Chem 6 Q# 67/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org

(d) lodomethane is used to prepare CH₃MgI. It can also be converted into methanol:

(ii) Outline the requirements for a collision between reactants to yield products.





Topic **Chem 6 Q# 68/** IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

(c) A graph of the volume of gas produced by reacting magnesium with a large excess of 1 mol dm⁻³ hydrochloric acid is shown.



(i)	Use the graph to deduce the dependence of the reaction rate on the amount of Mg.	[1]
-----	----------------------------------------------------------------------------------	-----

******************	

(ii)	The reaction is first order with respect to HCl. Calculate the time taken, in
	seconds (s), for half of the Mg to dissolve when [HCl] = 0.5 moldm ⁻³ .

T41
133


(iii) Carbonates also react with HCl and the rate can be determined by graphing the mass loss. Suggest why this method is less suitable for the reaction of Mg with HCl. [1]

 		 					 		 			- 1							<u>.</u> ??					13		়		ু			2
 	 ٠.	 ٠.		٠.	+ +	i Sc	 	*	 									٠,	•		-		-						÷		
		 :7.						ুঃ		٠	27.5					Ç.			٠,	200					٠	١		्			20

Topic **Chem 6 Q# 69/** IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q10. www.SmashingScience.org :07 **10.** Hybridization of hydrocarbons affects their reactivity.

(c) Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.

Experiment	[NaOH] (mol dm ⁻³ )	[C ₅ H ₁₁ Cl] (moldm ⁻³ )	Initial rate (moldm ⁻³ s ⁻¹ )
1	0.20	0.10	2.50 × 10 ⁻²
2	0.20	0.15	3.75 × 10 ⁻²
3	0.40	0.20	1.00 × 10 ⁻¹
4	0.60	0.25	8

	(i)	Deduce the rate expression for this reaction.	[1]
			20
5.5	••••		
1000			*
	(ii)	Deduce the units of the rate constant.	[1]
375			
2/28			20
5.5			-
	(iii)	Determine the initial rate of reaction in experiment 4.	[2]
**			10
-0			
**			6.0

Topic Chem 6 Q# 70/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

6. When dinitrogen pentoxide, N₂O₅, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:

$$N_2O_5(g) \to 2NO_2(g) + \frac{1}{2} O_2(g)$$

(a) Suggest how the extent of decomposition could be measured. [1]

 		• •	1		•	•	•			-			-		٠	*	•	•	•	•	6				-	-	-	•	़		•	•			7			

(b) Data for the decomposition at constant temperature is given.

$[N_2O_5] / 10^{-3}  mol  dm^{-3}$	Rate / 10 ⁻³ mol dm ⁻³ min ⁻¹
2.74	0.078
3.68	0.121
6.89	0.197
16.27	0.498
24.30	0.710



(i) Plot the missing point on the graph and draw the best-fit line.



 	 · · · · / / / · · · · · · · · · · · · ·

	Tiol tills reaction.	

(iv)	Calculate th	e value o	of the r	ate con	stant k	giving if	s units

																	*																								٠.																				
-	•	Ī	-		7	*	•							•		ं		-	•	•	•	•			1		•		ै		•	•	•	-	•	•	1	0						•		•	30									3	-	-	-		
-	-	-	-	-	-	-			-	•				-	-	-	-	-	-	-	-		-	-			•	-	-	-	-		•		-	-									-					-			-		-		-	-	*	•	
-	•	Ī	-	•	7	•	•			38		0	Š	1	8		Ť	-	•		•								Ō		1	•		B	•		Ų.				·		1			•	30	3			3					3	30	-	20	0	į.
-			-		+	-				•	8						4	-	-				-						-		-														-			-		-		8.8	 						-	•	-
		÷	d		7	٠.		30	•	300		0.5	85		35	e.				-	3					30	•	20	Ţ.	Ġ	ø		•	0.5	•	•		93	8	ु		3	35			0	339	23	8.8					8	2.3		52	50	20	50	3

Topic **Chem 6 Q# 71/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

- Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.
  - (a) The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.

Draw a distribution curve at a lower temperature ( $T_2$ ) and show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at  $T_1$ .

[2]

[3]





## (Question 4 continued)

(d) Consider the first stage of the reaction.

Bond enthalpy of  $CO = 1077 \,\text{kJ} \,\text{mol}^{-1}$ .

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

(i) Determine the enthalpy change,  $\Delta H$ , in kJ. Use section 11 of the data booklet.

•	•	-	2				•		-	 -	-		-	•	4	¥3	 -	2.,	- 32	٠		-				-		-				2	-0		٠	- (					8	•		- 3-			• •		٠.	-		
8	Ō.	्	2	•	335	285		ै		ି	•	•			ं	•		20		ij.	0	50	ķ			15	•	<b>.</b>	5//			ं	•	107	S.F.	10	•			7	7.5	85		: · ·	100		705			ं		ै
		-	9	÷	20	9		8	-	٠	-		2)	ं	9	¥3	 -	20	333	÷	×	-		-()-	-			-			200	2	-0		•	313	 -		<i>-</i>	4	2).	-	4	٠,			-0.	-		13	٠.	
3	Ť.		20	•	300	285	, č	•		ै	•					20		200		ijĒ.			3,5			15	•	7	500			1	Ť.	307	87	10				7	20		÷		0.5		985			্	- 1	ै
3	•	•	3	•	56		*	•	•	•	-	•			•	83		•	637	•	250	-89	 	63			-	-		÷		-	•		(*)	3	 -	•		1				<b>*</b> * *		•	• •	٠				





[3]

(Qu	estion	4 CO	ntinued)	
	(e)	Now	consider the second stage of the reaction.	
			$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(l)$ $\Delta H^{\Theta} = -129 \text{ kJ}$	
		(i)	The equilibrium constant, $K_c$ , has a value of 1.01 at 298 K.	
			Calculate $\Delta G^{\Theta}$ , in kJmol ⁻¹ , for this reaction. Use sections 1 and 2 of the data booklet.	[2]
i.		(ii)	Calculate a value for the entropy change, $\Delta S^{\Theta}$ , in J K ⁻¹ mol ⁻¹ at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.	
			If you did not get answers to (e)(i) use -1 kJ, but this is not the correct answer.	[2]
88		(iii)	Justify the sign of $\Delta S$ with reference to the equation.	[1]
(Qu	estion	4 co	ntinued)	
		(iv)	Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.	[1]

Topic Chem 6 Q# 72/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q7. www.SmashingScience.org :c

- 7. Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.
  - (a) The following experimental data was obtained.

Experiment	Initial [NO] / mol dm ⁻³	Initial [O ₂ ] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.0100	0.0300	2.13 × 10 ⁻²
2	0.0100	0.0600	4.26 × 10 ⁻²
3	0.0300	0.0300	1.92 × 10 ⁻¹

NO:		
O ₂ :		

Deduce the partial order of reaction with respect to nitrogen monoxide and oxygen.

## (Question 7 continued)

(b) Deduce, giving a reason, whether the following mechanism is possible.

First step:	$2NO(g) \rightarrow N_2O_2(g)$	slow
Second step:	$N_2O_2(g) + O_2(g) \rightleftharpoons 2NO_2(g)$	fast

[1]

[2]

	 ٠.	 ٠.				V.	 -	÷		-	-		*	÷		200		÷		 999			٠.	*					٠.			
0.50	 	 	 	 	 															 					 				 			
	 22	 				 4		40			4	o g	-	00	23			40		 020	 4	202	٠.				-20	201	٠.	20.	(4)	vs.



Topic Chem 6 Q# 73/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4. Nickel catalyses the conversion of propanone to propan-2-ol.



	(a) Outline how a catalyst increases the rate of reaction.	[1]
		-
	(b) Explain why an increase in temperature increases the rate of reaction.	[2]
	ic Chem 7 Equilibrium Q# 74/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4SmashingScience.org :o)	
4.	Carbon disulfide, CS ₂ , undergoes gas phase hydrolysis according to the overall equation	

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

(iii) Neglecting any entropy change, use your answer to 4(a)(i), section 1 and section 2 of the data booklet to estimate the equilibrium constant,  $K_c$ , at 500 K.

(If you did not obtain an answer to 4(a)(i), use a value of  $-50.0 \, \text{kJ} \, \text{mol}^{-1}$ , although this is not the correct answer.)

	-											2								0									्														8.5	٠	्	0	2					2				
ě	٠	•	•	-	•	•		•	٠	•			*	•	•		÷			3	•	٠	•		•	•			•	•	•	•		0			÷		•	•		÷	٠		٠	•	•	•	•		٠		÷		•	
្		00			Ç	-	200				়	į		ુ				્		्	ু		ु		ુ				ৃ	ु	20		88		Q.			į		Į.			85	٠	়	0	0				Ţ	2		Ç		.0
÷	٠	+		 -	٠	•		•	٠	•	•	+	*	•	•				٠	7	•		*		•	•		•	•	•	•	•			्र	•	*			•	•	•				٠		•		-	•	*	÷		•	•
्		3			٠		20		٠		़	ু		़		30		्	्	ৃ	्			ं	ु				ৃ	÷	30				्					्			8.5	٠	়	्	3			्	्	ु				

[2]

(iv) The concentrations of the species involved at equilibrium are:

CS ₂ (g)	H ₂ O (g)	CO ₂ (g)	H ₂ S(g)
0.0400 mol dm ⁻³	0.100 moldm ⁻³	$x  \text{mol dm}^{-3}$	$2x \mathrm{mol}\mathrm{dm}^{-3}$

Calculate the numerical value of x, the concentration of carbon dioxide at equilibrium, using your answer from 4(a)(iii).

8	(If you did not obtain an answer to 4(a)(iii), then use a value of 1.68 × 10°, although this is not the correct answer.)	[2]
		227
		• •
	n 7 Q# 75/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o) 023/w/TZ0/Paper 2/Higher Level/Q2(c) ethanoic acid can be produced by the hydrogenation of carbon dioxide according to e equilibrium	
	$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$	ra.
	) State the equilibrium constant expression for this reaction.	[1
		356 358
The en	by change, which was calculated in part (c) for this reaction is +5 kJ mol ⁻¹	
	Suggest why temperature has a very small effect on the value of the equilibrium constant.	[1]

Topic Chem 7 Q# 76/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2. The periodic table is a useful tool in explaining trends of chemical behaviour.

	Outline what is meant by dy	namic equilibrium.	
/ii\	Doduce the K expression f	or the reaction in part (d)(i)	
(ii)	Deduce the K _c expression for	or the reaction in part (d)(i).	
(iii)	Determine the entropy char	nge, $\Delta S^{\Theta}$ for the forward reaction to <b>four</b> :	significant
(iii)	Determine the entropy char figures, using the data given	nge, $\Delta S^{\Theta}$ for the forward reaction to <b>four</b> :	significant
(iii)	Determine the entropy char figures, using the data given	nge, $\Delta S^{\Theta}$ for the forward reaction to <b>four</b> son.  Entropy ( $S^{\Theta}$ ) J K ⁻¹ mol ⁻¹	significant
(iii)	figures, using the data giver	n.	significant
(iii)	figures, using the data giver	Entropy (S ^o ) J K ⁻¹ mol ⁻¹	significant

(IV)	Calculate the temperature, in K, below which this reaction becomes spontaneous. Use section 1 of the data booklet. (If you were unable to obtain an answer for part (d)(iii) use -210.0 J K ⁻¹ mol ⁻¹ , but this is not the correct value.)	[2]
0.000.00		
* * * * * * *		
57777777		3
(v)	The value of $K_c$ for this reaction is $6.84 \times 10^{-5}$ at $500^{\circ}$ C. Suggest, with a reason, how lowering the temperature affects the value of $K_c$ .	[1]
(vi)	Calculate the standard Gibbs free energy change, $\Delta G^{\Theta}$ , in kJ mol ⁻¹ , for this reaction. Use sections 1 and 2 of the data booklet.	[2]
*****	***************************************	

Topic Chem 7 Q# 77/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)
Answer all questions. Answers must be written within the answer boxes provided.

Ammonium nitrate, NH₄NO₃, is used as a high nitrogen fertilizer.

(vii)	Calculate the value of the equilibrium constant for the dissolution of ammonium
	nitrate at 298 K using the answer to question part (d)(vi) and section 1 of the
	data booklet.

$$NH_4NO_3(s) \rightleftharpoons NH_4NO_3(aq)$$

If you did not obtain an a the correct answer.	answer in (d)(vi), use –7.84 kJ/mol, although t	this is not [2]
		*****
		22222222
(viii) Deduce, with a reason, t	he position of the equilibrium.	[1]



3. Ammonia is produced by the Haber-Bosch process which involves the equilibrium:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

The percentage of ammonia at equilibrium under various conditions is shown:



(a)	(i	)	Deduce the expression for the equilibrium constant, $K_c$ , for this equation.	
63638				
	(i	i)	State how the use of a catalyst affects the position of the equilibrium.	
****	(i	i)	SMASHINGITI	



	(iii)	With reference to the reaction quotient, Q, explain why the percentage yield increases as the pressure is increased at constant temperature.	[3
5.57			
nsw	(i) er to	Determine the enthalpy change, $\Delta H$ , for the Haber–Bosch process, in kJ. the enthalpy change of the forward reaction in (b)(i) is -93 kJ	

Topic Chem 7 Q# 79/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

- White phosphorus is an allotrope of phosphorus and exists as P₄.
  - (c) An equilibrium exists between PCl₃ and PCl₅.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$



	(iv)	Determine the equilibrium constant, $K$ , for this reaction at 25 °C, referring to section 1 of the data booklet.	
		If you did not obtain an answer in (c)(iii), use $\Delta G = -43.5 \mathrm{kJ}\mathrm{mol}^{-1}$ , but this is not the correct answer.	[2]
2			
5			
	(v)	State the equilibrium constant expression, $K_c$ , for this reaction.	[1]
2			
75			
	(vi)	State, with a reason, the effect of an increase in temperature on the position of this equilibrium.	[1]
5			
2			
1,570,67		<b>0/</b> IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o) sider the first stage of the reaction.	
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	
	(iii)	State the expression for $K_c$ for this stage of the reaction.	[1]
ā			
*			
	(iv)	State and explain the effect of increasing temperature on the value of $K_c$ .	[1]
2			
3		.,	

Topic Chem 8 Acids and bases Q# 81/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5.

www.SmashingScience.org :o)

- 5. Beryllium is a low-density metal that is used in specialized lightweight alloys.
  - (c) Beryllium forms a chloride, BeCl₂.
  - (d) Beryllium chloride, BeCl₂, partially dimerizes in the gas phase to produce this molecule:

(	ii)	Describe Lewis' ad			etwe	en th	e Be(	Cl ₂ m	onon	ners to	form	the o	dime	rin	[1
			 		. 25										
	8515		 	na dia											1.1

Topic Chem 8 Q# 82/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)
Answer all questions. Answers must be written within the answer boxes provided.

Methanoic acid (HCOOH) is the first member of the homologous series of carboxylic acids.



(a)	(i)	2.00 dm³ of a solution of methanoic acid was prepared, and 25.0 cm³ of this was found to require exactly 20.7 cm³ of 0.100 mol dm⁻³ aqueous sodium hydroxide to completely convert it to sodium methanoate, HCOONa. Calculate the mass of methanoic acid used to make the solution.	[2
	(ii)	Determine the pH of the methanoic acid solution. Use section 21 of the data booklet.	[3
2000			
	(iii)	Predict, using an equation, whether the pH of the solution of sodium methanoate formed would be greater than, less than or equal to 7.	[2



Topic Chem 8 Q# 83/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q8. www.SmashingScience.org :o)

8. A series of experiments were carried out at different temperatures and the rate of reaction, in mol dm⁻³ s⁻¹, was determined for each. The rate constant for the reaction of propanone (CH₃COCH₃) with iodine (I₂) was calculated and the processed data is represented in the following graph.



Determine the activation energy for this reaction, stating the units. Use sections 1 and 2 of the data booklet.

****		
	로마기 마루하다 하시네 다른 유리하는 사라 가다가 보다 하게 되었다.	

[3]

Topic Chem 8 Q# 84/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

SO ₂ :	
774 100000000000000000000000000000000000	
SO ₃ :	<b>3</b> 2





Ans	wer <b>al</b>	l ques	stions. Answers must be written within the answer boxes provided.	
1.	This	ques	tion is about acid–base properties.	
	(a)	(i)	Deduce the ionic equation, including state symbols, for the reaction of hydrogen chloride gas with water.	[2]
55	* * *			
	7.77			
200		(ii)	Calculate the pH of 0.50 mol dm ⁻³ hydrochloric acid.	[1]
	222			
	***			
37				,
		(iii)	Explain why a solution of ethanoic acid has a higher pH than hydrochloric acid of the same concentration.	[1]
	7.7.7			
	444			
	2.73			
		(iv)	A pH probe can be used to distinguish between the acids in part (a)(iii). Identify another simple instrumental method that could be used in a school laboratory to distinguish between the two acids.	[1]
	200			
277		(v)	Outline how the instrumental method identified in part (a)(iv) distinguishes between the acids in part (a)(iii).	[1]
				Dr.

Topic Chem 8 Q# 85/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org

:o)

Chemical test:									12
Expected result:									82
			*****						
(c) A neutraliz	zation curve	for a wea	nk acid, H	IA, and a	a strong	base is	given.		
	14								
	12								
	12								
	10								
	8								
표									
	6								
	4								
	2								
								1 7-	
	0 —		Volum	e of alka	li added				
			Volum	c or ainc	iii aaaca				
(i) Estin	mate the pK	of HA.							
							0.000 141 971 971 97		2000
									2000 2000
									-
(E) E				1.0					
	lain, using a Is to very littl							acid, HA,	
				M 2004-1-04-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-					
						20202000			

In a separate experiment,  $80\,\mathrm{cm^3}$  of  $0.1\,\mathrm{mol}$  dm⁻³ ammonia,  $\mathrm{NH_3(aq)}$ , was added to  $40\,\mathrm{cm^3}$  of  $0.1\,\mathrm{mol}$  dm⁻³ hydrochloric acid, HCl (aq).

	(	iii)	Determine the final pH of the solution. Use section 21 of the data booklet.	[4]
opio			/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o) /pe of coal, contains about 0.40% sulfur by mass.	
			an equation that shows how sulfur dioxide can produce acid rain.	[1]
			uss <b>two</b> different ways to reduce the environmental impact of energy production coal.	[2]

Topic Chem 8 Q# 87/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)
Answer all questions. Answers must be written within the answer boxes provided.

Ammonium nitrate, NH₄NO₃, is used as a high nitrogen fertilizer.



	(b)	State, with a reason, whether the ammonium ion is a Brønsted-Lowry acid or base.	[1]
	200		
	(c)	A 0.20 mol dm ⁻³ solution of ammonium nitrate is prepared.	
		(i) Calculate the pH of an ammonium nitrate solution with	
		$[H_3O^+] = 1.07 \times 10^{-5} \text{ mol dm}^{-3}$ . Use section 1 of the data booklet.	[1]
	20.		
		(ii) Ammonium nitrate is neutralized with sodium hydroxide. Write the equation for the reaction.	[1]
	(5.5)1 (4.4)4		
3			



(iii) A 20.00 cm³ sample of the 0.20 mol dm⁻³ solution of ammonium nitrate is titrated with a 0.20 mol dm⁻³ solution of sodium hydroxide. Determine the pH at the equivalence point, to two decimal places using section 1 and 21 of the data booklet.

[4]

	* *	*	•	*	*	1	*		-	•		*		-		*	*	-	*	*	*	-			•	•	•		-	*	•	•	*3	•	*		-	*	•	•	*	*	Ť.	ं		•	*	*	*		
• • •	 	٠	•	•	*	i i	Ť	73			•	•	٠				*	•	÷	*	*	-		•			•		*	*		•	×	*	**	35		٠	•	•	*	*	*	57	(is		×	•		1	
																																																	•	523	
	 ٠.			-	201		÷	-					•		Q.,	2	÷			4	¥	233				2		O	2		٠	-	Ç.				-					*		2.4		٠	Q.		23		
• • •																																																			
	 2.														۷,					4		2.0	 						2				Ç.						•			+		٠.			2		٠.,	4	

(iv) Sketch the pH curve that would result from the titration of a 0.20 mol dm⁻³ solution of ammonium nitrate with sodium hydroxide.

[2]



(v) State, with a reason, if bromothymol blue is an appropriate indicator for this titration. Use section 22 of the data booklet.

[1]

Topic Chem 8 Q# 88/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4. Ammonia is soluble in water and forms an alkaline solution:

$$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + HO^-(aq)$$

(a)	State	e the relationship between NH ₄ ⁺ and NH ₃ in terms of the Brønsted–Lowry theory.	
(b)	NH ₃	ermine the concentration, in mol dm ⁻³ , of the solution formed when 900.0 dm ³ of (g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm ³ of solution. Use ions 1 and 2 of the data booklet.	
* * * *		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
(c)	(i)	Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.	
(c)	(i)		
(c)	(i)		
(c)	(i)		
(c)	(i) (ii)		
(c)		pH = 9.3. Use sections 1 and 2 of the data booklet.  Calculate the concentration, in mol dm ⁻³ , of ammonia molecules in the solution	
(c)		pH = 9.3. Use sections 1 and 2 of the data booklet.  Calculate the concentration, in mol dm ⁻³ , of ammonia molecules in the solution	
(c)		pH = 9.3. Use sections 1 and 2 of the data booklet.  Calculate the concentration, in mol dm ⁻³ , of ammonia molecules in the solution	
(c)		pH = 9.3. Use sections 1 and 2 of the data booklet.  Calculate the concentration, in mol dm ⁻³ , of ammonia molecules in the solution	

(iii)	An aqueous solution containing high concentrations of both NH3 and NH4+ acts as
	an acid-base buffer solution as a result of the equilibrium:

$$NH_3(aq) + H^+(aq) \rightleftharpoons NH_4^+(aq)$$

	$NH_3(aq) + H^+(aq) \rightleftharpoons NH_4^+(aq)$	
	Referring to this equilibrium, outline why adding a small volume of strong acid would leave the pH of the buffer solution almost unchanged.	[2]
200		
55.5		
7.7.5		
2.4.2		
(d)	Magnesium salts form slightly acidic solutions owing to equilibria such as:	
	$Mg^{2+}(aq) + H_2O(l) \rightleftharpoons Mg(OH)^+(aq) + H^+(aq)$	
	Comment on the role of Mg ²⁺ in forming the Mg(OH) ⁺ ion, in acid-base terms.	[2]
***		
opic <b>Chem</b>	8 Q# 89/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) The presence of magnesium nitride can be demonstrated by adding water to the	
(u)	product. It is hydrolysed to form magnesium hydroxide and ammonia.	
	$_Mg_3N_2(s) + _H_2O(l) \rightarrow _Mg(OH)_2(s) + _NH_3(aq)$	
	(ii) Ammonia is added to water that contains a few drops of an indicator. Identify an indicator that would change colour. Use sections 21 and 22 of the data booklet.	[1]
1010		

5.		sphoric acid, H ₃ PO ₄ can form three different salts depending on the extent of tralisation by sodium hydroxide.	
	(a)	Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.	[1]
	22.		
	(b)	Formulate <b>two</b> equations to show the amphiprotic nature of H ₂ PO ₄ ⁻ .	[2]
	(c)	Calculate the concentration of H ₃ PO ₄ if 25.00 cm ³ is completely neutralised by the addition of 28.40 cm ³ of 0.5000 mol dm ⁻³ NaOH.	[2]
	13.7.7		
	(d)	Outline the reasons that sodium hydroxide is considered a Brønsted–Lowry and Lewis base.	[1]
	Brøi	nsted-Lowry base:	
	Lew	is Base:	

Topic Chem 8 Q# 90/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)



Topic Chem 8 Q# 91/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org 1-chloropentane reacts with aqueous sodium hydroxide. Identify the type of reaction. [1] (a) (ii) Outline the role of the hydroxide ion in this reaction. [1] (iii) Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency. [2] (b) The reaction was repeated at a lower temperature. Sketch labelled Maxwell-Boltzmann energy distribution curves at the original temperature  $(T_1)$  and the new lower temperature  $(T_2)$ . [2] Fraction of particles

Kinetic energy

11.	50.0 0.50	50.00 cm ³ of 0.75 mol dm ⁻³ sodium hydroxide was added in 1.00 cm ³ portions to 22.50 cm ³ of 0.50 mol dm ⁻³ chloroethanoic acid.						
	(a)	Calculate the initial pH before any sodium hydroxide was added, using section 21 of the data booklet.	[2					
		****************************						
	(b)	The concentration of excess sodium hydroxide was 0.362 mol dm ⁻³ . Calculate the pH of the solution at the end of the experiment.	[1]					
		(assisting)						

Topic **Chem 8 Q# 92/** IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q11. www.SmashingScience.org :o)





Topic **Chem 8 Q# 93/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q8. www.SmashingScience.org :o)

- Propanoic acid, CH₃CH₂COOH, is a weak organic acid.
  - (a) Calculate the pH of 0.00100 mol dm⁻³ propanoic acid solution. Use section 21 of the data booklet.

[3]



(b) Sketch the general shape of the variation of pH when 50 cm³ of 0.001 mol dm⁻³ NaOH(aq) is gradually added to 25 cm³ of 0.001 mol dm⁻³ CH₃CH₂COOH(aq).

[3]



Topic Chem 8 Q# 94/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2. Iron (II) sulfide reacts with hydrochloric acid to form hydrogen sulfide, H2S.

(i) State the formula of its conjugate base.	[
(ii) Saturated aqueous hydrogen sulfide has a concentration of 0.10 mol dm ⁻³ and a pH of 4.0. Demonstrate whether it is a strong or weak acid.	]
(iii) Calculate the hydroxide ion concentration in saturated aqueous hydrogen sulfide.	[
<ul> <li>(c) A gaseous sample of nitrogen, contaminated only with hydrogen sulfide, was reacted with excess sodium hydroxide solution at constant temperature. The volume of the gas changed from 550 cm³ to 525 cm³.</li> <li>Determine the mole percentage of hydrogen sulfide in the sample, stating one</li> </ul>	
assumption you made.	[
Molo porcontago U.S.	
Mole percentage H ₂ S:	
Assumption:	

Topic **Chem 8 Q# 95/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o Answer **all** questions. Answers must be written within the answer boxes provided.

Iron may be extracted from iron (II) sulfide, FeS.



	(e)	The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.	
		(iii) Suggest why this process might raise environmental concerns.	[1]
Topic	Chem	8 Q# 96/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)	
5.		udent performs a titration to determine the concentration of ethanoic acid, CH ₃ COOH, in gar using potassium hydroxide.	
915	(a)	Write a balanced equation for the reaction.	[1]
<u>-</u>			



(b) The pH curve for the reaction is given.



(i) Identify the major species, other than water and potassium ions, at these points. [2]

B:			
C:			

(ii) State a suitable indicator for this titration. Use section 22 of the data booklet. [1]


(iii) Suggest, giving a reason, which point on the curve is considered a buffer region. [1]


State the $K_a$ expression for ethanoic acid.	[1]
Calculate the $K_{\rm b}$ of the conjugate base of ethanoic acid using sections 2 and 21 of the data booklet.	[1]
In a titration, 25.00 cm ³ of vinegar required 20.75 cm ³ of 1.00 mol dm ⁻³ potassium hydroxide to reach the end-point.	
Calculate the concentration of ethanoic acid in the vinegar.	[2]
	Calculate the K _b of the conjugate base of ethanoic acid using sections 2 and 21 of the data booklet.  In a titration, 25.00 cm ³ of vinegar required 20.75 cm ³ of 1.00 mol dm ⁻³ potassium hydroxide to reach the end-point.

Topic Chem 8 Q# 97/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

(b) 2.67 g of manganese(IV) oxide was added to 200.0 cm³ of 2.00 mol dm⁻³ HCl.

 $MnO_2(s) + 4HCl(aq) \rightarrow Cl_2(g) + 2H_2O(l) + MnCl_2(aq)$ 

(c)	Chlorine gas reacts with	water to produce hypochlorous a	cid and hydrochloric acid.
-----	--------------------------	---------------------------------	----------------------------

$$Cl_2(g) + H_2O(l) \rightleftharpoons HClO(aq) + HCl(aq)$$

(i)	Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.	[1]
(ii)	State the formula of the conjugate base of hypochlorous acid.	[1]
(iii)	Calculate the concentration of $H^+(aq)$ in a HClO(aq) solution with a pH = 3.61.	[1]
19.02.1		

**Topic Chem 9 Redox processes** Q# 98**/** IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

Beryllium is a low-density metal that is used in specialized lightweight alloys.



(b) The production of beryllium is illustrated in the diagram.



 (i)	Outline why molten BeCl ₂ is considered an electrolyte.	[1
(ii)	Identify the electrode at which beryllium will be produced and the polarity of that electrode.	[1]
Electrode	c	
Polarity:		
(iii)	Write a balanced equation for the reaction occurring at the other electrode, to the one you identified in 5(b)(ii).	[1]
(iv)	Calculate the mass of beryllium that would be produced by the passage of $1.00 \times 10^8$ coulomb of electrical charge. Use sections 2 and 6 of the data booklet.	[2]
		- c



(f)	The standard electrode potential, E°,	of

$$Be^{2+}(aq) + 2e^{-} \rightleftharpoons Be(s)$$

(i) Calculate the cell potential for the reaction

$$Be(s) + 2H_2O(l) \rightarrow Be^{2+}(aq) + 2OH^{-}(aq) + H_2(g)$$

Use section 24 of the data booklet. [1]

(ii) Deduce, giving a reason, whether this reaction is thermodynamically spontaneous. [1]

 	"

Topic **Chem 9 Q# 99/** IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium

$$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$$

(g) Determine the oxidation state of carbon in methanoic acid. [1]



4.	Redox reactions can be used to produce electricity.								
,	(a)	State the oxidation state of sulfur in copper(II) sulfate.	[1]						
	(b)	A voltaic cell was constructed using a copper (II) sulfate/copper half-cell and a zinc sulfate/zinc half-cell.							
		<ul> <li>Outline why electrons flow from zinc to copper when these half cells are connected with a wire. Use section 25 of the data booklet.</li> </ul>	[1]						
	211								
		(ii) Formulate equations for the reactions taking place at each electrode.	[2]						
	Ano	de (negative electrode):							
	* * * *								
	Cat	ode (positive electrode):							
	(c)	(i) Calculate the standard cell potential for the voltaic cell in part (b). Use section 24 of the data booklet.	[1]						
	7.7.7								
		***************************************							
	7.7.7								
		<ul> <li>(ii) Calculate the standard Gibbs free energy change, ΔG^Θ, in kJ mol⁻¹, for this reaction. Use section 1 of the data booklet. (If you did not answer part (c)(i) use 1.05 V, but this is not the correct value.)</li> </ul>	[2]						

Topic **Chem 9 Q# 100/** IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)



(f) The diagram shows an unlabelled voltaic cell for the reaction:

$$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$$



(i)	Label the diagram with the species from the equation and the direction of electron flow.	[2]
(ii)	Write the half-equation for the reaction occurring at the anode (negative electrode).	[1]

Outline the function of the salt bridge.	[1]

The diagram includes a salt bridge that is filled with a saturated solution of KNO3.

(iv)	Predict the movement of <b>all</b> ionic species through the salt bridge.	[2
(v)	Calculate the standard cell potential, in V, for this cell. Use section 24 of the data booklet.	]
(vi)	Calculate the standard free energy change, in kJ, for the cell. Use your answer in (f)(v) and sections 1 and 2 of the data booklet.	
	If you did not obtain an answer in (f)(v), use 0.68 V, although this is not the correct answer.	[

Topic Chem 9 Q# 102/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)
Answer all questions. Answers must be written within the answer boxes provided.

Ammonium nitrate, NH₄NO₃, is used as a high nitrogen fertilizer.



(e) Predict, using the given values, the reaction that would take place at the anode and cathode for the electrolysis of an aqueous solution of ammonium nitrate using graphite electrodes.

[2]

	E [⊕] / V
$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^- \rightarrow H_2O(l)$	+ 1.23
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O(l)$	+ 0.96
$H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g)$	0.00

Cathode:	 	 	 	 	



(a)		gest an experiment that shows that magnesium is more reactive than zinc, giving observation that would confirm this.	
		***************************************	
(b)	Mag	nesium is sometimes used as a sacrificial anode to protect steel from corrosion.	
	(i)	Calculate the standard potential, in V, of a cell formed by magnesium and steel half-cells. Use section 24 of the data booklet and assume steel has the standard electrode potential of iron.	
	(ii)	Calculate the free energy change, $\Delta G^{\Theta}$ , in kJ, of the cell reaction. Use sections 1 and 2 of the data booklet.	
20,2020	(ii)		
	(ii)		
11.5	(ii)		
	(ii)		
	(ii)		
	(ii) 		
		This cell causes the electrolytic reduction of water on the steel. State the	

The presence of magnesium nitride can be demonstrated by adding water to the

product. It is hydrolysed to form magnesium hydroxide and ammonia.

Patrick Brannac

Topic Chem 9 Q# 103/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org

SMASHING [1]

(iii)	Determine the oxidation state of nitrogen in Mg ₃ N ₂ and in NH ₃ .	[
Mg ₃ N ₂ :		
NH ₃ :		
(iv)	Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.	[2
Acid-base:	Yes No	
Reason:		
Redox:	Yes No	
Reason:		

Topic Chem 9 Q# 105/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q8. www.SmashingScience.org :o)

The standard electrode potential of zinc can be measured using a standard hydrogen electrode (SHE).

Draw and annotate the diagram to show the complete apparatus required to measure the standard electrode potential of zinc.







6.	Bioc	hemical oxygen demand (BOD) can be determined by the Winkler Method.	
	(a)	Outline what is measured by BOD.	[1]
	(b)	A student dissolved 0.1240 $\pm$ 0.0001 g of Na ₂ S ₂ O ₃ to make 1000.0 $\pm$ 0.4 cm³ of solution to use in the Winkler Method.	
		Determine the percentage uncertainty in the molar concentration.	[2]
	7.5.7		
	7.7.7		
	(c)	A 25.00 cm ³ sample of water was treated according to the Winkler Method.	
		Step I: $2Mn^{2+}(aq) + O_2(g) + 4OH^{-}(aq) \rightarrow 2MnO_2(s) + 2H_2O(l)$	
		Step II: $MnO_2(s) + 2I^-(aq) + 4H^+(aq) \rightarrow Mn^{2+}(aq) + I_2(aq) + 2H_2O(l)$	
		Step III: $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$	
		The iodine produced was titrated with $37.50\mathrm{cm^3}$ of $5.000\times10^{-4}\mathrm{moldm^{-3}Na_2S_2O_3}$ .	
2		(i) Calculate the amount, in moles of Na ₂ S ₂ O ₃ used in the titration.	[1]
		(ii) Deduce the mole ratio of $O_2$ consumed in step I to $S_2O_3^{\ 2-}$ used in step III.	[1]
	2.2.2		

Topic **Chem 9 Q# 106/** IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

(iii)	Calculate the concentration of dissolved oxygen, in moldm ⁻³ , in the sample.	[2]
(iv)	The three steps of the Winkler Method are redox reactions.	
	Deduce the reduction half-equation for step II.	[1]
(v)	Suggest a reason that the Winkler Method used to measure biochemical oxygen demand (BOD) must be done at constant temperature.	[1]
		(-2)

Topic Chem 9 Q# 107/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3. Magnetite, Fe₃O₄, is another ore of iron that contains both Fe²⁺ and Fe³⁺.



(d) A voltaic cell is set up between the Fe²⁺(aq) | Fe(s) and Fe³⁺(aq) | Fe²⁺(aq) half-cells.

Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.

ſ	2	1
L		J

Eq	uat	Ю																																		
					20.					 				٠.				٠.				:	 			20.	· 2			 			202	 		 ٠.
				• •	5.5	530	00	0.0	7.0	 	•	•	•	•	•	•	•	0.0	ST.		* *		ं	•	•	5) ?	<b>3</b>	25.5	•		T.	0			•	53
Ce	ll p	ote	enti	al:																																
* *				٠.			* *	• •	٠.	 •	• •		•		4		•	* · · ·	•	• >	٠.	•	 ٠.	•			٠		•			•			•	 
202							20	Ç										00								015			2.3	 	32					 ٠.

(e) The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.

[2]



Topic **Chem 9 Q# 142/** IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)
Answer **all** questions. Answers must be written within the answer boxes provided.

Iron may be extracted from iron (II) sulfide, FeS.

(Questi	on	1 continued)	
(e)		The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.	
1	1	(i) Write the equation for this reaction.	[1]
15.5			
<u></u>	3	(ii) Deduce the change in the oxidation state of sulfur.	[1]
2.2			
Topic <b>Che</b> r		Q# 108/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)  Copper plating can be used to improve the conductivity of an object.	
		State, giving your reason, at which electrode the object being electroplated should be placed.	[1
-			



The diagram shows an unlabelled voltaic cell for the reaction.

$$Pb^{2+}(aq) + Ni(s) \rightarrow Ni^{2+}(aq) + Pb(s)$$

Label the diagram with the species in the equation.



 ,		
	$\Delta G^{\Theta}$ , <b>in kJ</b> , for the co	ell using sections
1 and 2 of the data book	1 and 2 of the data booklet.	Calculate the standard free energy change, ΔG ^Θ , <b>in kJ</b> , for the contract 1 and 2 of the data booklet.

Suggest a metal that could replace nickel in a new half-cell and reverse the (iv) electron flow. Use section 25 of the data booklet.

Topic Chem 9 Q# 110/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org

(b) 2.67 g of manganese(IV) oxide was added to 200.0 cm3 of 2.00 mol dm-3 HCl.

$$\mathsf{MnO}_2(\mathsf{s}) + \mathsf{4HCl}(\mathsf{aq}) \to \mathsf{Cl}_2(\mathsf{g}) + \mathsf{2H}_2\mathsf{O}\left(\mathsf{l}\right) + \mathsf{MnCl}_2(\mathsf{aq})$$



[1]

(v)	State the oxidation state of manganese in MnO ₂ and MnCl ₂ .	[2
MnO ₂ :		
MnCl ₂ :		
(vi)	Deduce, referring to oxidation states, whether $\mathrm{MnO}_2$ is an oxidizing or reducing agent.	[1
		2

## Topic Chem 10 Organic chemistry Q# 111/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q6.

www.SmashingScience.org :o)

- 6. Phenylethanone is a fragrant compound that occurs naturally in fruits such as bananas and apples.
  - (a) Phenylethanone may be synthesised in a two-stage process from phenylethene:



(i)	Draw the structural formula of the intermediate compound [X].	[1]
(ii)	Outline why the intermediate compound, [X], can exhibit stereoisomerism.	[1]
ACCES OF DA		
(iii)	State the reagent required for the second stage of the synthesis, B.	[1]

(IV)	Determine the compound that will be formed as a minor product in this two-stage synthesis, and outline why this will occur.	

(b) When heated with a mixture of concentrated sulfuric and nitric acids, phenylethanone is nitrated, in a similar manner to benzene, to form 3-nitrophenylethanone.



(i)	Write the formula of the electrophile produced in this acid mixture.	[1]

(ii) Explain the mechanism of the reaction between phenylethanone and the nitrating agent, using curly arrows to represent the movement of electron pairs.

[4]



<b>3</b> .	Methanoic acid can be converted into methyl methanoate, HCOOCH ₃ .	
	(a) State the name of the reagent and catalyst required.	[2]
	Reagent:	
	(d) State the class of compounds to which methyl methanoate belongs.	[1]
Горіс <b>2</b> .	C Chem 10 Q# 113/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)  Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium	
	$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$	
	(a) Explain why this process has been extensively investigated in recent years.	[2
30		
	c Chem 10 Q# 114/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) swer all questions. Answers must be written within the answer boxes provided.	
1.	Methanoic acid (HCOOH) is the first member of the homologous series of carboxylic acids.	
	(a) Outline what is meant by the term "homologous series".	[1]
	***************************************	

(c)	Methanoic acid and ethanal ( $\mathrm{CH_3CHO}$ ) both contain a carbonyl group and have similar molar masses.	
	<ul> <li>(i) Explain why, in terms of the strongest intermolecular forces between the molecules, ethanal has a much lower boiling point than methanoic acid.</li> </ul>	[2]
***		
	(ii) Outline why ethanal and methanoic acid are both fully miscible with water.	[1]
	(iii) Predict, giving an explanation, the relative electrical conductivity of solutions of methanoic acid, ethanal and hydrochloric acid of the same concentration.	[3]
Rel	ative electrical conductivity:<<	
Exp	lanation:	
•••		
(d)	Methanoic acid acts as a weak monobasic acid in aqueous solution.	
	(iv) Explain why the two carbon–oxygen bonds in the methanoate ion are of equal length, and compare their length to the carbon–oxygen bonds in methanoic acid.	[2]
1.11		
5/3/5 galant		
*07.000		



Topic Chem 10 Q# 115/ IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

Alkanes form a homologous series.

(a)	(1)	100	Ou	itiin	ie t	ne	m	eai	nın	go	of r	ion	nol	log	ou	S S	eri	es.													
												010	20.20										200	 				2.2			
	• • •				• • •			٠.				855				٠.	٠.	• •	• •	• •	• •	* *	* * *	 •	•		***	• •	• •	* *	
					٠.																			 							
																														_	

(ii) State the preferred IUPAC name for the following compounds.

IUPAC name: ...



Identify one chiral carbon atom present in one of the following structures with an (iii) asterisk (*).



	(iv)	two repeat		ccu. Diaw a scc	non or the result	ng polymer showing	
(b)	Chlo	oroethane ca	an be co <mark>n</mark> verted i	nto ethanoic <mark>ac</mark> i	d in a two-step p	rocess.	
(b)	Chlo	proethane ca	an be converted i	nto ethanoic <mark>ac</mark> i	d in a two-step p	rocess.	
(b)		proethane ca		nto ethanoic <mark>aci</mark> o	- 20	rocess.  Ethanoic acid	
(b)					- 20		
(b)	Chlor	roethane			- 20		
	Chlor	roethane htify reagents	Step 1		- 20		
	Chlor	roethane	Step 1		- 20		
Ste	Chlor Iden	roethane htify reagents	Step 1		- 20		
Ste	Chlor	roethane htify reagents	Step 1		- 20		**************************************

(c)	(i)	Identify the type of reaction that takes place in step 1 of part (b).	[1]
222			
	(ii)	Sketch the mechanism of the reaction for step 1 in part (b), using curly arrows to show the movement of electron pairs.	[4]
	(iii)	Identify the products formed from the reaction of ethanol and ethanoic acid in the presence of an acid catalyst.	[1]
	(iii)		[1]



2-Bromobutane can react with cyanide, CN, in a nucleophilic substitution reaction.

$$\underset{\mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CH}_3}{\mathsf{Br}} \xrightarrow{\left[: \mathsf{C} \equiv \mathsf{N} :\right]^{\bigcirc}} \underset{\mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CH}_3}{\mathsf{CN}}$$

This reaction could proceed through either S_N1 or S_N2 mechanisms depending on the (a) reaction conditions. Sketch a graph of the rate versus nucleophile concentration, [CN], for each of the mechanisms.

[2]







(c)	State an instrument that could be used to determine whether the product was a single enantiomer or a racemic mixture.	[1
5.5.5		
(d)	$S_{\rm N}1$ and $S_{\rm N}2$ reactions are better conducted using different types of solvents. Identify <b>two</b> properties of a solvent most suited for the mechanism proposed in (b).	[1
1.00		
(e)	State, with a reason, how the rate of reaction of cyanide with 2-chlorobutane differs from its rate of reaction with 2-bromobutane under the same conditions.	[1
(f)	2-Bromobutane reacts with hydroxide via the same mechanism identified in (b). Explain this mechanism using curly arrows to represent the movement of electron pairs.	[3]
	The state of the s	



Topic Chem 10 Q# 117/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

 An organic compound, A, reacts with ethanoic acid to produce B using concentrated sulfuric acid as a catalyst.

(a) (i) Deduce the structural and empirical formulas of B.

Structural formula:

Empirical formula:

(ii) Explain, with reference to Le Châtelier's principle, the effect of using dilute rather than concentrated sulfuric acid as the catalyst on the yield of the reaction.

[3]

[2]

	(iii) Explain, with reference to intermolecular forces, why B is more volatile than A.	[2
		Ô
	(b) Compound A can also react with bromine. Describe the change observed if A is reacted with bromine.	[1]
_		



Topic **Chem 10 Q# 118/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

Chloroquine is a medication used to prevent and treat malaria.



(a)	Draw a circle around the secondary amino group in chloroquine.	[1]
(b)	State the number of sp ² hybridized carbons in chloroquine.	[1
7.7.		* * * * * * * * * * * * * * * * * * * *
(c)	Determine the index of hydrogen deficiency, IHD, of chloroquine.	[1

(d)			m gt																le	er	JÓ	gt	h	C	of	t	h	е	С	a	b	0	n	-n	iit	rc	g	eı	11	bo	on	d	ir	t	h	е	rii	ng	j t	0	th	ne	8			[1]
22				82	·						82						. 4			3		2		300						in.	10.						1				201		2			2.2	Ç.						10			
1913	• •	•	 		•		٠	•		•	-	*	•	•	• •	9.		1					*	٠		•			•		-	٠	•	-						•			*	•				•						 •		

(e) Chloroquine can be synthesized by reacting 4,7-dichloroquinoline with another reactant, B.

$$CI$$
  $+B$   $CI$   $N$   $N1$ 

4,7-dichloroquinoline

Deduce the structure of B

chloroquine

1.7	Dodaco dio ondonaro di 2.	[-]

Topic Chem 10 Q# 119/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

6. Nitric acid is usually produced by the oxidation of ammonia.



[2]

(i)	Write an equation for the reaction between the acids to produce the electrophile, $\mathrm{NO_2}^+$ .	]
(ii)	Draw the structural formula of the carbocation intermediate produced when this electrophile attacks benzene.	['
(iii)	Deduce the number of signals that you would expect in the ¹ H NMR spectrum of nitrobenzene and the relative areas of these.	[2
\$15 155		[2

A mixture of nitric acid and sulfuric acid can be used to convert benzene to



Topic Chem 10 Q# 120/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5. Organomagnesium compounds can react with carbonyl compounds. One overall equation is:

Compound B	
OH	)I
	OH

(a) (	i)	State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.	[1
****			
(	ii)	Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.	[1]
*****			
(	iii)	State the number of $\sigma$ (sigma) and $\pi$ (pi) bonds in Compound A.	[1]
σ:		π:	
(	iv)	Deduce the hybridization of the central carbon atom in Compound A.	[1]
77.77			
(	v)	Identify the isomer of Compound B that exists as optical isomers (enantiomers).	[1]



(b) Compound B can also be prepared by reacting an alkene with water.

- 1		\$250 ment of the state of the s			AND DESCRIPTION	ANDERSON STREET	
1	i)	Draw the	structural	formula	of the	alkene	required
۸	• 1	DIAW UIC	Suuctuiai	TOTTIGIA	OI UIC	airciic	required.

[1]

$$+ H_{2}O \rightarrow CH_{3}$$

$$Compound B$$

$$CH_{3} - C - CH_{3}$$

$$CH_{3}$$

(ii)	Explain why the reaction	n produces more (CH ₃ ) ₃ COH than (CH ₃ )	CHCH ₂ OH. [2]
------	--------------------------	-----------------------------------------------------------------------------	---------------------------

	 	 		****		 	 	 		 
20000000	 	 				 	 	 		 
Reflective 47										
2121212121	 					 	 	 		
10.101010101010		 - 7 - 7 - 7	2000	T. T. M. T.	***	7.507.50	7.7.7.7	 * * * * *	15.75	(5)

(iii)	Deduce the structural formula of the repeating unit of the polymer formed from
	this alkene

[1]



(c)	Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).	[1
***		
(d)	lodomethane is used to prepare CH ₃ MgI. It can also be converted into methanol:	
	$CH_3I + HO^- \rightarrow CH_3OH + I^-$	
	(i) Identify the type of reaction.	[1
5.5.5		
	(iii) Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.	[3]
	SMASHING !!!	

	burned, raising the temperature of 20.0 g of water by 57.3 °C.	
(b)	Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.	
(b)	formation of chloroethane from ethane.	
(b)		
(b)	formation of chloroethane from ethane.	
(b)	formation of chloroethane from ethane.	
(b)	formation of chloroethane from ethane.	
(b)	formation of chloroethane from ethane.	

Topic Chem 10 Q# 121/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q7. www.SmashingScience.org :o)

Alkanes undergo combustion and substitution.



(ii) Identify the hybridization of carbon in ethane, ethene and ethyne.

	Ethane	Ethene	Ethyne
Hybridization of carbon			

(b)		(i)		S	ta	te	, (	giv	/ir	ıg	а	re	ea	IS	or	١,	if	bı	ut	-1	-e	n	е	e)	kh	ib	its	C	is	-tı	a	ns	İS	0	m	er	sr	n.	3									_
										-														٠.			, v	-												7				-				
	-	33	:::	ः		25.3	7.7		ं	9.56	813				Ċ	33		ં							8			7.0	i i	38	ः	-10		2	30		÷	10	ं	0.0	0	ं	S	•	ः	ं	9,0	
	* *					Sign				٠	٠.	×			÷			٠			٠		:	٠.		*		•												ψ.	 *							
3.53				ः		25.3	ī	17.	ं		: :				Ċ	38		ં	67		Ž.		330		88			7.5	i di	33		•	ं				į.				ं	•	S	૽			2/2	

at room temperature	- [4]
at room temperature.	[1]



[1]

(iii)	Explain the mechanism of the reaction between but-1-ene with hydrogen iodide, using curly arrows to represent the movement of electron pairs.	[4]
(iv)	State, giving a reason, if the product of this reaction exhibits stereoisomerism.	[1]

(c) Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.

Experiment	[NaOH] (mol dm ⁻³ )	[C ₅ H ₁₁ Cl] (moldm ⁻³ )	Initial rate (moldm ⁻³ s ⁻¹ )
1	0.20	0.10	2.50 × 10 ⁻²
2	0.20	0.15	3.75 × 10 ⁻²
3	0.40	0.20	1.00 × 10 ⁻¹
4	0.60	0.25	8

	(d)		luce, with a reason, the mechanism of the reaction between 2-chloropentane and ium hydroxide.	[1]
	525			
	***			
	(e)	Disc	cuss the reason benzene is more reactive with an electrophile than a nucleophile.	[2]
	557			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	5.5.7			
	* * *			
opic 5 .			123/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :0) sobtained by the hydration of ethene, C_2H_4 .	
<u> </u>	(a)	(i)	State the class of compound to which ethene belongs.	[1]
		(ii)	State the molecular formula of the next member of the homologous series to which ethene belongs.	[1]
1				

(c)	Suggest two possible products of the incomplete combustion of ethene that would not be formed by complete combustion.	[1
1.7.5		
(d)	A white solid was formed when ethene was subjected to high pressure.	
	Deduce the type of reaction that occurred.	[1]
5,505 5,505		
(e)	Alternative synthetic routes exist to produce alcohols.	
	(i) Sketch the mechanism for the reaction of propene with hydrogen bromide using curly arrows.	[3]
	SMASHING !!	
	(ii) Explain why the major organic product is 2-bromopropane and not 1-bromopropane.	[2]
2.20		
2.2.7		
2.20		

(iii)	2-bromopropane can be converted directly to propan-2-ol. Identify the reagent required.	
11111111		
(iv)	Propan-2-ol can also be formed in one step from a compound containing a carbonyl group.	
	State the name of this compound and the type of reaction that occurs.	
Name of o	carbonyl compound:	
Type of re	eaction:	
	124/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o) and A is in equilibrium with compound B. OH OH B	
	mpound A and B are isomers. Draw two other structural isomers with the formula ${}^{1}_{6}$ O.	

	(f)	(i)	The equilibrium constant, K_c , for the conversion of A to B is 1.0×10^8 in water at 298 K.	
			Deduce, giving a reason, which compound, A or B, is present in greater concentration when equilibrium is reached.	[1
	33434			
		(ii)	Calculate the standard Gibbs free energy change, ΔG° , in kJ mol ⁻¹ , for the reaction (A to B) at 298 K. Use sections 1 and 2 of the data booklet.	[1
	(g)	Pro	panone can be synthesized in two steps from propene.	
		(i)	Suggest the synthetic route including all the necessary reactants and steps.	[3
_				

Patrick Brannac

		(ii)	Suggest why propanal is a minor product obtained from the synthetic route in (g)(i).	[2]
	100			
	111			
Горіс	Chem	10 Q# :	125/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)	
	(d)	(i)	State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.	[1]
§ 2		(ii)	Predict, giving a reason, whether ethane or chloroethane is more reactive.	[1]
	222			
	0.505			
	5,505			
		(iii)	Explain the mechanism of the reaction between chloroethane and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the movement of electron pairs.	[3]
			SMASHINGILI	

5.	Ber	yllium	is a low-density metal that is used in specialized lightweight alloys.	[1]
	(a)	Ben	yllium has a crystalline structure.	
81		(i)	State the technique that would be used to determine the crystal structure of beryllium.	[1]
Topic			127/ IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)	
	(c)		conversion of methanoic acid to methyl methanoate can be followed by changes ectra.	
		(i)	State one similarity and one difference you would expect in the infrared (IR) spectra of methanoic acid and methyl methanoate in the region of 1500–3500 cm ⁻¹ . Use section 26 of the data booklet.	[2]
8	Sim	ilarity:		
	Diffe	erence		
501	• • •			

Topic Chem 11 Measurement and data processing Q# 126/ IB Chem/2023/w/TZ0/Paper 2/Higher

Level/Q5. www.SmashingScience.org :0)

Removed for copyright reasons

 	 	 	 2010	 	 	 	 	 	 	 	1.2	
 	 	 	 	 	 	 	 	 	 	 	* * .	

Topic **Chem 11 Q# 128/** IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o) NOT with 2023/w/TZ0/Paper 2/Higher Level/Q2(c)

Methanoic acid can be produced by the hydrogenation of carbon dioxide according to the equilibrium

$$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g)$$

- (c) Bond enthalpies are a useful way of finding approximate enthalpy changes for reactions.
 - Determine the enthalpy change, ΔH^o, of this reaction, using section 11 of the data booklet.

Answer fir (c)(i) which is needed for (c)(ii): «bond breaking» C=O + H-H / 804 + 436 / 1240 «kJ» \checkmark «bond forming» C-H + C-O + O-H / 414 + 358 + 463 / 1235 «kJ» \checkmark ΔH° «= 1240 – 1235» = «+»5 «kJ mol⁻¹» \checkmark

,	tage uncertainty of the cald	culated enthalpy change of the reaction.
2011111111111111		
Chem 11 Q# 129/ IB Ch	 nem/2023/s/TZ1/Paper 2/Highe	er Level/Q7. www.SmashingScience.org :o)
The structural form	nulae of two esters of form	ula C ₃ H ₆ O ₂ are shown.
Ethyl n	nethanoate	Methyl ethanoate
H—C_0	H H 	H—C—C—H H—O—C—H
(a) (i) Deduc	e the number of signals yo h compound.	ou would expect to find in the ¹ H NMR spectrum
	110000	Number of signals
of eacl	///////////////////////////////////////	

Topic **Chem 11 Q# 130/** IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

6. The element sulfur has many industrial uses.

(b) The combustion of 0.1 moles of sulfur (S) was demonstrated in a school laboratory using the following apparatus in a fume cupboard.

(11)	improvement to reduce this error.	[2]
Source of	systematic error:	
Improvem	nent:	
(iii)	Calculate the percentage uncertainty in the temperature change to two significant figures.	[1]
(iv)	Suggest one way of reducing the percentage uncertainty in this experiment.	[1]
(v)	Calculate the overall percentage error of this experiment. Use part (b)(i) and section 13 of the data booklet. (If you did not obtain an answer for part (b)(i) use -50.0 kJ mol ⁻¹ , but this is not the correct value.)	[1]

Topic **Chem 11 Q# 131/** IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

- (g) (i) Deduce the number of signals and the ratio of areas under the signals in the ¹H NMR spectrum of 2-bromobutane.
- [2]

	of signals	s:						
Ratio of	areas:							

- (ii) Identify the splitting pattern of the signal of the hydrogen atoms on the circled carbon atoms in 2-bromobutane.
- [2]

Splitting pattern of the signal of the hydrogen atoms in circle A:
Splitting pattern of the signal of the hydrogen atoms in circle B :

Topic Chem 11 Q# 132/ IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

Consider the following reaction:

$$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$$

(b) The mass spectrum for copper is shown:

Show how a relative atomic mass of copper of 63.62 can be obtained from this mass spectrum.

Topic Chem 11 Q# 133/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

- Nitric acid is usually produced by the oxidation of ammonia.
 - (iv) State a technique used to determine the length of the bonds between N and O in solid HNO₃.

Topic Chem 11 Q# 134/ IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)
Answer all questions. Answers must be written within the answer boxes provided.

- When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.
 - (b) The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:

Mass of crucible and lid = 47.372 ± 0.001 g

Mass of crucible, lid and magnesium ribbon before heating = $53.726 \pm 0.001 \,\mathrm{g}$

Mass of crucible, lid and product after heating = 56.941 ± 0.001 g

[1]

[1]

(ii) Determine the percentage uncertainty of the mass of product after heating.	[2]

Topic Chem 11 Q# 135/ IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)
The following spectrums show the Infrared spectra of propan-1-ol, propanal and propanoic acid.

Spectrum	Identity	Reason
Α	150	
MC228		
В		
54908		
С		
	dict the number of ¹ H NMR signals, and splitting anone (CH ₃ COCH ₃) and propanal (CH ₃ CH ₂ COCH ₃) and propanal (CH ₃ CH ₂ COCH ₃	
	Number of Signals	opining pattern of -on,
propanone		
propanal		

	(b) (i) Justify why ethene has only a single signal in its ¹ H NMR spectrum.	[1]
		8
	(ii) Deduce the chemical shift of this signal. Use section 27 of the data booklet.	[1]
	c Chem 11 Q# 137/ IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o) wer all questions. Answers must be written within the answer boxes provided.	
1.	Iron may be extracted from iron (II) sulfide, FeS.	
	(d) Iron (II) sulfide, FeS, is ionically bonded.	
	(ii) State a technique that could be used to determine the crystal structure of the solid compound.	[1]
Topic	Chem 11 Q# 138/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)	
5.	A student performs a titration to determine the concentration of ethanoic acid, CH ₃ COOH, in vinegar using potassium hydroxide.	
	(f) Potassium hydroxide solutions can react with carbon dioxide from the air. The solution was made one day prior to using it in the titration.	
	(i) State the type of error that would result from the student's approach.	[1]
101	(ii) Predict, giving a reason, the effect of this error on the calculated concentration of ethanoic acid in 5(e).	[2]
		Ţ.

Compound A is in equilibrium with compound B.

(d) The IR spectrum of one of the compounds is shown:

Deduce, giving a reason, the compound producing this spectrum.

Topic Chem 11 Q# 140/ IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)
Answer all questions. Answers must be written within the answer boxes provided.

Chlorine undergoes many reactions.

[1]

(Question 1 continued)

(iv) The mass spectrum of chlorine is shown.

Outline the reason for the two peaks at m/z = 35 and 37.

[1]

(v) Explain the presence and relative abundance of the peak at m/z = 74. [2]

	1/200	

SMASHING []]

	(i	 Ethoxyethane (diethyl ether) can be used as a solvent for the 	
		Draw the structural formula of ethoxyethane.	[1]
	y	with Antimo tips NO-10 IVI BOSEGON IN VINCENSIAN LIB CODE OFFICENS APPLICATIONS	STORE BOTTON I
	(v		
		¹ H NMR spectrum of ethoxyethane. Use section 27 of the date	ata booklet. [3]
			7
187			
13.			
131			
1.			
		The second secon	
lark	Sch	eme	
TOTIC .	30110	eme	
			:0)
s not p			
+ 2/ C	1 10	1 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.c	org :o) [2] for correct final answer.
b		expected yield «=2.83 × 60.06 » = 3.69 «q» ✓	700000 REPART (19000 1000 1000 400
		Award	[0] for 60.8% (simple ratio of a and final masses).
		percentage yield «=100 × \frac{1.72}{3.69} » = 46.6 «%» √	5.30.50.50.30.50.50.50.50.50
		ALTERNATIVE 2	
		«amount of methanoic acid used = $\frac{2.83}{46.03}$ =» 0.0615 «mol» √	
		«expected amount of methyl methanoate = 0.0615 mol»	*
	1 1		
		actual amount of methyl methanoate = $\frac{1.72}{60.06}$ = 0.0286 mol	
		percentage yield «=0.0286 × 100» = 46.5% ✓	
 ! 3/ Che	 m 1 IF	l 3 Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org	:0)
b			[2] for correct final answer.
		«M _r of O in molecule = 2 x 16.00 = 32.00»	1
		«percentage O = 100 × $\frac{32.00}{46.03}$ » = 69.52% ✓	
	1 12	«percentage O = 100 x = 69.52% √	
	-	40.03	
4/ Che			:0)
4/ Che	em 1 IE	3 Chem/2023/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org «100-(7.09+5.11+16.22+14.91) =» 56.67 «%» ✓	:o)

5.	(a)	(iii)	n(N): 7.09g/14.01g mol⁻¹, n(H): 5.11g/1.01 g mol⁻¹, n(S): 16.22g/32.07 g mol⁻¹, n(Co): 14.91g/58.93 g mol⁻¹ and n(O): 56.67g/16.00 g mol⁻¹ OR n(N): 0.506, n(H): 5.06, n(S): 0.506, n(Co): 0.253 and n(O): 3.54 ✓	Award [3] for the correct final formula.	
			0.506/0.253, 5.06/0.253, 0.506/0.253, 0.253/0.253, 3.54/0.253 OR 2.00, 20.0, 2.00, 1.00 14.00 N ₂ H ₂₀ S ₂ CoO ₁₄		3
5.	(a)	(iv)	(NH ₄) ₂ Co(SO ₄) ₂ ·6H ₂ O <i>OR</i> Co(NH ₄) ₂ (SO ₄) ₂ ·6H ₂ O ✓	Accept (NH ₄) ₂ Co(SO ₄) ₂ (H ₂ O) ₆ .	1
5.	(b)	(i)	Ba ²⁺ (aq) + SO ₄ ²⁻ (aq) → BaSO ₄ (s) √	Accept single arrow in place of equilibrium sign.	1
5.	(b)	(ii)	«1.20g/395.29 g mol⁻¹ salt = 2 x 3.04 x10⁻³ «mol» SO₄²⁻ =» 6.08 x x10⁻³ «mol» ✓ «233.40 g mol⁻¹ x 6.08 x10⁻³ =» 1.42«g» ✓ OR «(1.20g/400) x 2 g mol⁻¹ =» 6.00 x 10⁻³ «mol» ✓ «233.40 g mol⁻¹ x 6.00 x10⁻³ =» 1.40«g» ✓	Award [2] for correct final answer. Accept x2 in any step. Award [1] for half the answer, 0.70«g».	2
# 5	/ Che	m 1	IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScienc	e.org :o)	
5.	(a)		«0.40% × 500.0 <i>g</i> = » 2.0 «g» ✓	Award [2] for correct final answer. Accept 0.063 «mol».	2
			«2.0 $g \times \frac{1 \text{ mol } S}{32.07 g}$ = 0.062 mol of S> = 0.062 «mol of SO ₂ » ✓		_
# 6,	/ Che	em 1	IB Chem/2022/w/TZ0/Pap <mark>er</mark> 2/Higher Level/Q1. www <mark>.Sma</mark> shingScience	e.org :o)	
1.	(a)	m 1	$ \frac{2 \times 14.01 g \text{mol}^{-1}}{(2 \times 14.01 g \text{mol}^{-1} + 4 \times 1.01 g \text{mol}^{-1} + 3 \times 16.00 g \text{mol}^{-1})} \times 100\% = 35.00 \text{w} \text{ w} \checkmark $ $ \text{IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience} $	org :0)	1
1.	a	i	2 Mg(s) + O ₂ (g) \rightarrow 2 MgO(s) \checkmark	Do not accept equilibrium arrows. Ignore state symbols.	1
1.	b	i	$((\frac{53.726 \mathrm{g} - 47.372 \mathrm{g}}{24.31 \mathrm{g} \mathrm{mol}^{-1}} = \frac{6.354 \mathrm{g}}{24.31 \mathrm{g} \mathrm{mol}^{-1}})) = 0.2614 $		1
1.	b	III	$\langle \langle 0.2614 \text{ mol } \times (24.31 \text{ g mol}^{-1} + 16.00 \text{ g mol}^{-1}) = 0.2614 \text{ mol } \times 40.31 \text{ g mol}^{-1} \rangle \rangle = 10.536 \text{ «g» } \checkmark$ $\langle \langle 100 \times \frac{9.569 \text{ g}}{10.536 \text{ g}} = 90.822 \rangle \rangle = 91 \text{ «%» } \checkmark$	Award 0.2614 mol x 40.31 g mol ⁻¹ . Accept alternative methods to arrive at the correct answer. Accept final answer in the range 90.5-91.5%. [2] for correct final answer.	2
1.	С	1	yes AND «each Mg combines with ² / ₃ N, so» mass increase would be 14x²/ ₃ which is less than expected increase of 16x OR 3 mol Mg would form 101g of Mg₃N₂ but would form 3 x MgO = 121 g of MgO OR 0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg₃N₂ ✓	Accept Yes AND "the mass of N/N ₂ that combines with each g/mole of Mg is lower than that of O/O ₂ " Accept YES AND "molar mass of nitrogen less than of oxygen".	1
1.	c	II	incomplete reaction OR Mg was partially oxidised already OR impurity present that evaporated/did not react ✓	Accept "crucible weighed before fully cooled". Accept answers relating to a higher atomic mass impurity consuming less O/O2. Accept "non-stoichiometric compounds formed". Do not accept "human error", "wrongly calibrated balance" or other non-chemical reasons. If answer to (b)(iii) is >100%, accept appropriate reasons, such as product absorbed moisture before being weighed.	1
1.	d	i	«1» $Mg_3N_2(s)$ + 6 $H_2O(l)$ → 3 $Mg(OH)_2(s)$ + 2 $NH_3(aq)$ ✓	\$ () () () () () () () () () (1

Q# 8/ Chem 1 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1. a	$ \frac{8.802 \text{ g}}{44.01 \text{ g mol}^{-1}} = \text{w} \ 0.2000 \text{ emol of C/CO}_2 \text{w} $ $ AND \ \frac{3.604 \text{ g}}{18.02 \text{ g mol}^{-1}} = \text{w} \ 0.2000 \text{ emol of H}_2 \text{Ow} / 0.4000 \text{ emol of H} \text{w} $ $ OR \ \frac{8.802 \text{ g}}{44.01 \text{ g mol}^{-1}} \times 12.01 \text{ g mol}^{-1} = \text{w} \ 2.402 \text{ eg of C} \text{w} $ $ OR \ \frac{3.604 \text{ g}}{44.01 \text{ g mol}^{-1}} \times 12.01 \text{ g mol}^{-1} = \text{w} \ 2.402 \text{ eg of C} \text{w} $	Award [3] for correct final answer.	3
	$\frac{3.604 \text{ g}}{18.02 \text{ g mol}^{-1}}$ ×2×1.01 g mol ⁻¹ =» 0.404 «g of H» ✓ «4.406 g − 2.806 g» = 1.600 «g of O» ✓ « $\frac{2.402 \text{ g}}{12.01 \text{ g mol}^{-1}}$ = 0.2000 mol C; $\frac{0.404 \text{ g}}{1.01 \text{ g mol}^{-1}}$ = 0.400 mol H;		2850
1. b	$\frac{1.600 \mathrm{g}}{16.00 \mathrm{g} \mathrm{mol}^{-1}} = 0.1000 \mathrm{mol} \mathrm{O}*$ $C_2 H_4 \mathrm{O} \checkmark$	C ₂ S ₂ if CS used.	
1. 6	$ \frac{88.12 \mathrm{g} \mathrm{mol}^{-1}}{44.06 \mathrm{g} \mathrm{mol}^{-1}} = 2 \times \mathrm{C_4H_8O_2} \checkmark $	C2S2 II CS USBG.	1

Q# 9/ Chem 1 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3.	а		1:2 ✓	Accept 2 Fe3+: 1 Fe2+ Do not accept 2:1 only	1	
----	---	--	-------	---	---	--

Q# 10/ Chem 1 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	b	i	« 2.87 g 86.94 g mol ⁻¹ = » 0.0307 «mol» ✓		1
1.	b	ii	«n _{HCl} = 2.00 mol dm ⁻³ x 0.2000 dm ³ » = 0.400 mol ✓ « $\frac{0.400}{4}$ =» 0.100 mol <i>AND</i> MnO ₂ is the limiting reactant ✓	Accept other valid methods of determining the limiting reactant in M2.	2
1.	b	iii	«0.0307 mol × 4 = 0.123 mol» «0.400 mol − 0.123 mol =» 0.277 «mol» ✓		1
1.	b	iv	«0.0307 mol × 22.7 dm³ mol⁻¹ =» 0.697 «dm³» ✓	Accept methods employing $pV = nRT$.	1

Q# 11/ Chem 2 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

-		 2			
5	h	frequency /wavelength of «the radiation at» convergence limit «is proportional to the ionization energy» <	Accept highest frequency/shortest wavelength.	1	

Q# 12/ Chem 2 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4	С	i	0.9x32 + 0.01x33 + 0.04x34 + 0.05x36 V	Award [2] for correct final answer.	
			«A _r =» 32.29 √	Do not accept 32.07 which is the data booklet value. M2 can only be awarded for answer with two decimal places.	2
4	С	ii	amount of ${}^{36}_{16}\text{S} = \frac{0.0100}{100} \times \frac{1.00}{32.07} = 3.12 \times 10^{-6} \text{ mol} \text{ mol} \text{ mol}$ $\text{number of atoms } = 3.12 \times 10^{-6} \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1} = 1.88 \times 10^{18} \text{ mol}$	Award [2] for correct final answer.	2

Q# 13/ Chem 2 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2. (a)	(i)	25 arrows AND identifies 2s AND 2p sub orbitals ✓	Accept "hooks" to represent the electrons.	1
2. (a)	(ii)	x x	P _{x,y} or z can be used. M2 cannot be awarded if labels of orbital types are missing or incorrect Node of p orbital must be at the origin	2

3.	(a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ OR [Ar]3d ⁶ ✓	1
3.	(c)	Cu ²⁺ AND fewer shielding electrons/less electron-electron repulsion «from same nuclear charge» OR Cu ²⁺ AND larger effective nuclear charge OR Cu ²⁺ AND more energy required to remove electron from positive ion than neutral parent atom OR Cu ²⁺ AND smaller radius OR	1
		Cu²+ AND electron is being lost from a lower energy/inner/3d orbital ✓	

	1	100			
3.	(d)		Alternative 1 $*E = 745 \text{ kJ } mol^{-1} \times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ atoms}} = *1.24 \times 10^{-21} \text{ kJ atom}^{-1} \text{ s} \checkmark$		
			«E = hv»		
			$\times 1.24 \times 10^{-21} kJ \times \frac{1000 f}{1 kJ} = 6.63 \times 10^{-34} Js \times vw$		
			$\ll \nu = 1.87 \times 10^{15} \ll s^{-1} \gg \checkmark$	Award [2] for correct final answer.	2
			Alternative 2		
			(E = hv) $(745 \times 10^{3} \text{ J mof}^{1} = 6.63 \times 10^{-34} \text{ J s } \times v)$		
			$ (U =) 1.12 \times 10^{39} \text{es}^{-1} \text{mor}^{-1}) \checkmark $		
			$\alpha = \frac{1.12 \times 10^{39} \text{s}^{-1}}{6.02 \times 10^{23}} \Rightarrow = 1.87 \times 10^{16} \alpha \text{S}^{-1} \text{s} \checkmark$		
3.	(e)		«iron atoms have 4» unpaired electrons ✓	For M1 accept diagrams showing unpaired electrons.	
			aligns with a magnetic field/paramagnetic	anjun ou orosa one.	
			OR		
			has a magnetic moment		2
			OR		
			ferromagnetic ✓		
	L 5/ CI	10000	2 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScier 1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁵ 3s ² 3p ⁵ 3d ¹⁰ 4s ¹	nce.org :o)	
2.	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓		1
	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience		1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓	ce.org :o) Accept all 2p electrons pointing	1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑	Ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	1
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience	Ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	
# 1	(e)	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑	Ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full	
# 1	(e)	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	
# 1 ;	(e)	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓ 1s ↑↓	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	
# 1 ;.	(e) L6/ Cl	hem	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓ 1s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	1
# 1 i.	(e) L6/ Cl a	hem i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ / 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ OR [Ar]4s ¹ 3d ¹⁰ / [Ar]3d ¹⁰ 4s ¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ 2s ↑↓ 1s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience Protons: 7 AND Neutrons: 7 AND Electrons: 10 ✓	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	1
# 1	(e) L6/ Cl a	hem i ii	1s²2s²2p⁵3s²3p⁵4s¹3d¹0 / 1s²2s²2p⁵3s²3p⁵3d¹04s¹ OR [Ar]4s¹3d¹0 / [Ar]3d¹04s¹ ✓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience 2p ↑ ↑ ↑ ↑ 2s ↑↓ 2 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience Protons: 7 AND Neutrons: 7 AND Electrons: 10 ✓ isotope*s> ✓	ce.org :o) Accept all 2p electrons pointing downwards. Accept half arrows instead of full arrows.	1 1

2. b	OR [Ar] 4s¹3d¹0 ✓ m 2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScient «ΔE = hv = 6.63 × 10 ⁻³⁴ J s × 5.09 × 10 ¹⁴ s ⁻¹ =» 3.37 × 10 ⁻¹⁹ «J» ✓ m 2 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience		1
2. b	1s ² 2s ² 2p ⁵ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ OR [Ar] 4s ¹ 3d ¹⁰ ✓ m 2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingSciene «ΔE = hv = 6.63 × 10 ⁻³⁴ J s × 5.09 × 10 ¹⁴ s ⁻¹ =» 3.37 × 10 ⁻¹⁹ «J» ✓	ce.org :o)	1000
0 00	1s²2s²2p⁵3s²3p⁶4s¹3d¹0 OR [Ar] 4s¹3d¹0 ✓ m 2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScien		1
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ OR	Accept configuration with 3d before 4s.	1
9. b ii	one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p _x , p _y p _z) ✓		
9. b i	1s 2s 2p 2p 1s AND 2s as spheres ✓		2
9. a	the space between nuclei is much larger than ⁴ He ²⁺ particles OR nucleus/centre is «very» small «compared to the size of the atom» ✓ Very few ⁴ He ²⁺ deviating largely from their path: nucleus/centre is positive «and repels ⁴ He ²⁺ particles» OR	Do not accept the same reason for both M1 and M2. Accept "most of the atom is an electron cloud" for M1. Do not accept only "nucleus repels "He2+ particles" for M2.	2
1. f	Any two of: subatomic particles «discovered» OR particles smaller/with masses less than atoms «discovered» OR «existence of» isotopes «same number of protons, different number of neutrons» charged particles obtained from «neutral» atoms OR atoms can gain or lose electrons «and become charged» atom «discovered» to have structure ✓ fission OR atoms can be split ✓ m 2 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9. www.SmashingScien Most ⁴He²⁺ passing straight through:	Accept atoms can undergo fusion «to produce heavier atoms». Accept specific examples of particles. Award [2] for "atom shown to have a nucleus with electrons around it" as both M1 and M3. Ce.org :0) Do not accept the same reason for both	2

Q# 21/ Chem 2 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	d	iii	1s² 2s² 2p⁵ 3s² 3p⁵ ✓	Do not accept "[Ne] 3s² 3p ⁶ ".	1
1.	d	iv	«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»√	Accept 2,8 (for O2-) and 2,8,8 (for S2-)	1
1.	d	v	allows them to explain the properties of different compounds/substances OR enables them to generalise about substances OR enables them to make predictions ✓	Accept other valid answers.	1
1.	е	i	$4FeS(s) + 7O_2(g) \rightarrow 2Fe_2O_3(s) + 4SO_2(g) \checkmark$	Accept any correct ratio.	1
1.	е	ii	+6 OR −2 to +4 ✓	Accept "6/VI". Accept "-II, 4/+4/IV". Do not accept 2- to 4+.	1
1.	е	iii	sulfur dioxide/SO₂ causes acid rain ✓	Accept sulfur dioxide/SO ₂ /dust causes respiratory problems Do not accept just "causes respiratory problems" or "causes acid rain".	1
1.	f		disrupts the regular arrangement «of iron atoms/ions» OR carbon different size «to iron atoms/ions» ✓ prevents layers/atoms sliding over each other ✓		2

Q# 22/ Chem 2 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6. a	$ ^{\alpha}E = \frac{745000\mathrm{Jmol^{-1}}}{6.02\times10^{23}\mathrm{mol^{-1}}} = ^{3} 1.24\times10^{-18}\mathrm{J}\checkmark $	Award [2] for correct final answer. Award [1] for 1.12x10 ³⁹ «Hz».	
	$\alpha E = hv$ $\alpha 1.24 \times 10^{-18} \text{ J} = 6.63 \times 10^{-34} \text{ J s} \times v$ $v = 1.87 \times 10^{15} \text{ (s}^{-1}/\text{Hz}$ \checkmark	1	2

1.	а	i	1s²2s²2p⁵3s²3p⁵ ✓	Do not accept condensed electron configuration.	1
1.	a	ii	Ct⁻ AND more «electron–electron» repulsion ✓	Accept Cl ⁻ AND has an extra electron.	1
1.	а	iii	Ct has a greater nuclear charge/number of protons/Z _{eff} «causing a stronger pull on the outer electrons» ✓ same number of shells OR same «outer» energy level OR similar shielding ✓		2

Q# 24/ Chem 3 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5	е	i	has a partially filled d sub-shell «in a common oxidation state» ✓		1
5	е	п	IE values of Fe gradually increase AND IE values of Be show a sudden rise ✓ first and second ionization energies close together therefore do not form a +1 oxidation state / singly charged ion ✓ further IEs of Fe are close to second IE, so the oxidation state/number of electrons Fe loses can vary «according to the oxidizing agents present» ✓	Accept Be always loses 2 electrons / forms Be ²⁺ / only has +2 oxidation state for M2.	3
# 2	g 25/ CI	hem :	nuclear charge / number of protons increases «for both» ✓ Li and Be «outer electrons have» same subshell/shielding ✓ electron in B lost from p-subshell whereas that in Be lost from s-subshell ✓ «outer electron in» B/p-subshell experiences greater shielding / has higher energy 3 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q9. www.SmashingScience	Do not accept explanations invoking distance of electrons from nucleus. e.org :o)	4
).	(a)		Zn²+ does not form coloured compounds/ has a complete d subshell/orbital ✓ 500 nm/«the setting on the colorimeter» in visible region AND no absorbance will be seen ✓		2
# 2	(b)	nem :	3 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience valence electron further from nucleus/«atomic» radius larger «down the group» ✓ «electron» more shielded/ less attractive force/easier to remove ✓	e.org :o)	2
4.	е		ALTERNATIVE 1 Property: variable oxidation state ✓ Comparison: Mn compounds can exist in different valencies/oxidation states AND Mg has a valency/oxidation state of +2 in all its compounds ✓ ALTERNATIVE 2 Property: coloured ions/compounds/complexes ✓ Comparison: Mn ions/compounds/complexes coloured AND Mg ions/compounds white/«as solids»/colourless «in aqueous solution» ✓ ALTERNATIVE 3 Property: catalytic activity ✓ Comparison: «many» Mn compounds act as catalysts AND Mg compounds do not «generally» catalyse reactions ✓	Accept valency. Accept for second statement "Mg «always» has the same oxidation state". Accept Mn forms coloured ions/compounds/complexes and Mg does not. For any property accept a correct specific example, for example manganate(VII) is purple. Do not accept differences in atomic structure, such as partially filled d sub- levels, but award ECF for a correct discussion.	2
# 2 1.	2 8/ Cl	hem :	3 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience aluminium/AL ✓	ee.o <mark>rg :o)</mark>	1
# 2 9.	b	hem :	3 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q9. www.SmashingScien chloride is lower in the spectrochemical series ✓ «ligand cause» decreased/lesser splitting «in d-orbitals compared to H₂O» ✓ frequency/energy of light absorbed is decreased OR wavelength of light absorbed is increased ✓	Accept chloride a weaker ligand than water/produces a smaller energy difference than water for M1. Award [2 max] for mentioning splitting of orbitals is changed AND frequency/ wavelength/energy of light absorbed are different/changed without mentioning correct decrease or	3

2.	а	increasing number of protons OR increasing nuclear charge ✓		
		«atomic» radius/size decreases OR same number of shells/electrons occupy same shell OR similar shielding «by inner electrons» ✓		2
3.	f f	m 3 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.Sr « Zn²+» has a full d-shell OR does not form « ions with» an incomplete d-shell	Do not accept "Zn is not a transition metal". Do not accept zinc atoms for zinc ions.	1
3.	g	ligands donate pairs of electrons to metal ions OR forms coordinate covalent/dative bond√ ligands are Lewis bases		2

Q# 32/ Chem 3 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

1. b	forms acidic oxides «rather than basic oxides» ✓ forms covalent/bonds compounds «with other non-metals» ✓	ward [1 max] for 2 correct non- hemical properties such as non- onductor, high ionisation energy, high lectronegativity, low electron affinity if o marks for chemical properties are warded.	2
1. c		Accept line/curve showing these rends.	2

Q# 33/ Chem 3 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6.	b	orange light is absorbed «and the complementary colour is observed» ✓	
		Any TWO from: partially filled d-orbitals ✓ «ligands/water cause» d-orbitals «to» split ✓ light is absorbed as electrons move to a higher energy orbital «in d–d transitions» OR light is absorbed as electrons are promoted ✓ energy gap corresponds to «orange» light in the visible region of the spectrum ✓	3

Q# 34/ Chem 4 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5	а	ii	«between a lattice of» cations AND delocalized electrons ✓	Do not accept metallic bonding on its own. Accept "sea of electrons" instead of "delocalized electrons".	1
5	b	i	«contains» mobile/free moving ions ✓	Accept has ions that can carry an «electric» current/charge.	1
5	b	ii	Electrode: cathode AND Polarity: negative ✓		1
5	С	i	:Čl:Be:Čl:		1
5	С	ii	«Be» does not have complete valence shell ✓	Accept incomplete octet / exception to octet rule / electron deficient.	1
5	d	i	sp² √	Accept the "2" as a subscript or normal character.	1
5	g		nuclear charge / number of protons increases «for both» ✓ Li and Be «outer electrons have» same subshell/shielding ✓ electron in B lost from p-subshell whereas that in Be lost from s-subshell ✓ «outer electron in» B/p-subshell experiences greater shielding / has higher energy	Do not accept explanations invoking distance of electrons from nucleus.	4
5	h		frequency /wavelength of «the radiation at» convergence limit «is proportional to the ionization energy» ✓	Accept highest frequency/shortest wavelength.	1

Q# 35/ Chem 4 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4	b	Molecular geometry CS ₂ : linear AND	Do not accept diagrams for M1 or M2.	
		Molecular geometry H₂S: bent/V-shaped ✓ Reason for difference: «central atom in» H₂S has «two» lone/non-bonding «electron» pairs OR CS₂ has two AND H₂S has four electron domains/negative charge centres «around central atom» ✓	Accept central atom sp hybridized in CS ₂ AND sp ³ hybridized in H ₂ S for M2.	2

Q# 36/ Chem 4 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q9, www.SmashingScience.org :o)

9. (b) (i) ${}^{\text{wO}_3(g)} \rightarrow {}^{\text{O}_2(g)} + {}^{\text{O}_4}(g) \times {}^{\text{wO}_2(g)} \rightarrow {}^{\text{wO}_2(g)} \times {}^{\text{wO}_2(g)} \rightarrow {$	Accept radicals without • if consistent throughout.	2
--	---	---

) (ii)	$\ll V = E/h = 4.02 \times 10^{-19}/6.63$	(10 ⁻³⁴ =» 6.06 x 10 ¹⁴	«Hz» ✓		1
(iii)	S	Tructure A	Structure B 1 2		1
	Oxygen 1	0	0		
	Nitrogen	+1	0]	
	Oxygen 2	-1	0		
) (iv)	No AND Structure B has all atoms of	formal charge 0√			1
150000	significant/large/0.8 difference oxygen «dipole partially» neg OR	e in <u>electronegativity/</u> gative/sulfur «dipole p	oxygen more <u>electronegative</u> artially» positive	And I was a comparable and the action of the action of the comparable and the comparable and the comparable and	2
Chem 4	1 IB Chem/2023/s/TZ1/Pa	per 2/Higher Leve	el/Q5. www.SmashingScie	Accept any combination of dots, crosses and lines. Double bonds do not have to be opposite each other. Do not penalise missing square brackets.	1
Chem 4	IB Chem/2023/s/TZ1/Pa	per 2/Higher Leve	el/Q2. www.SmashingScie	nce.org :o)	
(i)	tetrahedral ✓	1/6		3	1
(ii)	H:N:H N	H V		Accept a combination of dots /crosses /lines in the Lewis structure Lone pair not required for shape	2
20		JIME budeagan banda	s «phosphine does not» ✓	Accept converse argument.	
	(ii) (iii) (iv) (iv) (iv) (iv) (iv) (iv)	Oxygen 1 Nitrogen Oxygen 2 (iv) No AND Structure B has all atoms of them 4 IB Chem/2023/s/TZ1/Pa (iii) significant/large/0.8 difference oxygen wdipole partially negon oxygen more negative/higher Chem 4 IB Chem/2023/s/TZ1/Pa (i) (i) Chem 4 IB Chem/2023/s/TZ1/Pa Chem 4 IB Chem/2023/s/TZ1/Pa (ii) tetrahedral ✓	Oxygen 1 0 Nitrogen +1 Oxygen 2 -1 Oxygen 2 -1 Chem 4 IB Chem/2023/s/TZ1/Paper 2/Higher Level Oxygen word in the companion of the companion	Structure A Structure B Structure S Struc	Structure A Structure B Consider Consi

Do not penalise missing formal charges.

Q# 41/ Chem 4 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

Q# 42/ Chem 4 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6.	а	ii ii	: Ö +1 N—Ö: 1 : Ø: H bonds and non-bonding pairs correct ✓ formal charges correct ✓	Accept dots, crosses or lines to represent electron pairs. Do not accept resonance structures with delocalised bonds/electrons. Accept + and – sign respectively. Do not accept a bond between nitrogen and hydrogen. For an incorrect Lewis structure, allow ECF for non-zero formal charges.	2
6.	а	iii	Any three of: two N-O same length/order ✓ delocalization/resonance ✓ N-OH longer «than N-O» OR N-OH bond order 1 AND N-O bond order 1½ ✓	Award [2 max] if bond strength, rather than bond length discussed. Accept N-O between single and double bond AND N-OH single bond.	3

Q# 43/ Chem 4 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :0

5.	d	iv	iv	decreases/less polar AND electronegativity «of the halogen» decreases ✓	Accept "decreases" AND a correct comparison of the electronegativity of two halogens. Accept "decreases" AND "attraction for valence electrons decreases".	1
----	---	----	----	---	--	---

Q# 44/ Chem 4 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

1.	g	Substance	Bond type	How the valence electrons produce these bonds	Award [1] for all bonding types correct. Award [1] for each correct description. Apply ECF for M2 only once.	
		Magnesium	metallic AND	delocalized «throughout lattice attracted to cations» √ Accept reference to "sea"/flux of electrons «attracted to cations»		4
		Oxygen	covalent AND	shared «between atoms» √		
		Magnesium oxide	ionic ✓	transferred «from magnesium to oxygen» OR lost by magnesium AND gained by oxygen ✓		

Q# 45/ Chem 4 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3. a	а	i	OR :PP:	Accept any diagram with each P joined to the other three. Accept any combination of dots, crosses and lines.	1
3. a	i	ii	$P_4(s) + 6Cl_2(g) \rightarrow 4PCl_3(l) \checkmark$		1
3. b	i	i	Electron domain geometry: tetrahedral ✓ Molecular geometry: trigonal pyramidal ✓ Bond angle: 100 «°» ✓	Accept any value or range within the range 91–108«°» for M3.	3
3. b		ii	PCl ₅ is non-polar: symmetrical OR dipoles cancel ✓ PCl ₄ F is polar: P-Cl has a different bond polarity than P-F ✓ non-symmetrical «dipoles» OR dipoles do not cancel ✓	Accept F more electronegative than /different electronegativity to CI for M2.	3

Q# 46/ Chem 4 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q10. www.SmashingScience.org :0)

10.	a	i	Sigma (σ) bond: overlap «of atomic orbitals» along the axial / intermolecular axis / electron density	Accept a suitable diagram.	
			is between nuclei		
			OR		
			head-on/end-to-end overlap «of atomic orbitals» ✓		
					2
			Pi (π) bond:		
			overlap «of p-orbitals» above and below the internuclear axis/electron density above and below internuclear axis		
			OR		
			sideways overlap «of p-orbitals» ✓		

O# 47/	Chem 4 IB	Chem/2021/s/7	Z1/Paper 2	/Higher Level/Q7.	www.SmashingScience.or	g :0)
Q:: -77	CITCIII I ID		21/1 apc. 2	, i iigiici Ecvei, Q, .	WWW.Sinasiningscience.org	b .v,

7.	а	í	:ö_Ö_o: OR :o_Ö_ö: ✓	Accept any combination of lines, dots or crosses to represent electrons. Do not accept structures that represent 1.5 bonds.	1
7.	а	ii	both equal ✓ delocalization/resonance ✓	Accept bond length between 121 and 148 pm/ that of single O-O bond and double O=O bond for M1.	2

Q# 48/ Chem 4 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2.	a	i	H 'S 'H OR H- " - H V	Accept any combination of lines, dots or crosses to represent electrons.	1
2.	а	ii	bent/non-linear/angular/v-shaped✓		1

Q# 49/ Chem 4 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	а		mobile/delocalized < <sea of="">> electrons</sea>		1
1.	d	i	electrostatic attraction ✓ between oppositely charged ions/between Fe²+ and S²- ✓		2
1.	d	v	allows them to explain the properties of different compounds/substances OR enables them to generalise about substances OR enables them to make predictions ✓	Accept other valid answers.	1
1.	f		disrupts the regular arrangement «of iron atoms/ions» OR carbon different size «to iron atoms/ions» ✓		31

Q# 50/ Chem 4 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

prevents layers/atoms sliding over each other ✓

4.	С	4	hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✓				
			dipole–dipole «and London/dispersion are present in» propanone ✓				
			propan-2-ol less volatile AND hydrogen bonding/bonds stronger «than dipole—dipole »		3		
		OR propan-2-ol less volatile AND «sum of all» intermolecular forces stronger ✓					
4.	d	v	electrostatic attraction ✓ between «a lattice of» metal/positive ions/cations AND «a sea of» delocalized electrons ✓	Accept "mobile/free electrons".	2		

4. d	vi	Any of: malleability/hardness OR «tensile» strength/ductility OR density OR thermal/electrical conductivity OR melting point OR thermal expansion ✓	Do not accept corrosion/reactivity or any chemical property. Accept other specific physical properties.	1

Q# 51/ Chem 4 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2.	a	Electron domain geometry: tetrahedral ✓ Molecular geometry: bent/√-shaped ✓		2
2.	b	sp² ✓		1
2.	С	σ-bonds: 3 AND π-bonds: 1 ✓		1
2.	d	B AND C=O absorption/1750 «cm ⁻¹ » OR B AND absence of O–H /3200–3600 «cm ⁻¹ absorption» ✓	Accept any value between 1700–1750 cm ⁻¹ .	1

Q# 52/ Chem 4 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

•	.*			,	
1.	е	ì	«M(CCl ₂ F ₂) =» 120.91 «g mol ⁻¹ » √ $\frac{2 \times 35.45 \mathrm{g mol^{-1}}}{120.91 \mathrm{g mol^{-1}}} \times 100 \% =» 58.64 «%» √$	Award [2] for correct final answer.	2
1.	е	ii	Any of: research «collaboration» for alternative technologies «to replace CFCs» OR technologies «developed»/data could be shared OR political pressure/Montreal Protocol/governments passing legislations ✓	Do not accept just "collaboration". Do not accept any reference to CFC as greenhouse gas or product of fossil fuel combustion. Accept reference to specific measures, such as agreement on banning use/manufacture of CFCs.	1
1.	е	III	$O_3 + Cl \rightarrow O_2 + ClO \cdot \checkmark$ $ClO \cdot + O \rightarrow O_2 + Cl \cdot OR$ $ClO \cdot + O_3 \rightarrow Cl \cdot + 2O_2 \checkmark$	Penalize missing/incorrect radical dot (-) once only.	2

Q# 53/ Chem 5 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4	a	i	«Σ Δ H° (reactants) =» +88.7 + 2(-241.8) / -394.9 «kJ mol ⁻¹ » AND «Σ Δ H° (products) =» -393.5 + 2(-20.6) / -434.7 «kJ mol ⁻¹ » \checkmark Δ H° «= -434.7 – (-394.9)» = -39.8 «kJ mol ⁻¹ » \checkmark	Award [2] for correct final answer. Award [1] for +48.2 «kJ mof ¹ » (obtained using -285.8 kJ mof ¹ for H ₂ O(l)).	2
4	a	ii	moles «of gas» same on both sides of equation ✓		1

Q# 54/ Chem 5 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2	b		$*K_c = *\frac{[HCOOH]}{[CO_2][H_2]} \checkmark$		1
2	с	i	ALTERNATIVE 1 «bond breaking» C=O + H-H / 804 + 436 / 1240 «kJ» ✓ «bond forming» C-H + C-O + O-H / 414 + 358 + 463 / 1235 «kJ» ✓ ΔH ⁶ «= 1240 – 1235» = «+»5 «kJ mol⁻¹» ✓ ALTERNATIVE 2 «bond breaking» 2C=O + H-H / 2(804) + 436 / 2044 «kJ» ✓ «bond forming» C=O + C-H + C-O + O-H / 804 + 414 + 358 + 463 / 2039 «kJ» ✓	Award [3] for correct final answer.	3
_	10	1	ΔH [®] «= 2044 – 2039» = «+»5 «kJ mol ⁻¹ » ✓		-
2	С	II	ALTERNATIVE 1 sum of absolute uncertainties α = 0.804 + 0.436 + 0.414 + 0.358 + 0.463 =» 2.475 «kJ mol ⁻¹ » \checkmark percentage uncertainty α = 100 × $\frac{2.475}{5}$ = 49.5% = » 50 «%» \checkmark ALTERNATIVE 2 sum of absolute uncertainties α = 3(0.804) + 0.436 + 0.414 + 0.358 + 0.463 =» 4.083 «kJ mol ⁻¹ » \checkmark percentage uncertainty α = 100 × $\frac{4.083}{5}$ = 81.7%» = 80 «%» \checkmark	Award [2] for correct final answer.	2
2	С	iii	H-H AND it can only occur in the H₂ molecule ✓	Accept H-H AND does not require averaging.	1
2	d		enthalpy change is very small ✓	9	1
2	е		ΔSe«= ∑Se(products)-∑Se(reactants) = 251.0 J mol ⁻¹ K ⁻¹ – 130.7 J mol ⁻¹ K ⁻¹ - 213.8 J mol ⁻¹ K ⁻¹ » = -93.5 «J mol ⁻¹ K ⁻¹ » ✓	1	1

Q# 55/ Chem 5 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6.	(a)	(i)	$«\Delta H^{o}rxn = \Sigma \Delta H^{o}f$ (Products) $-\Sigma \Delta H^{o}f$ (Reactants) =» -395.8 - (-296.8)» = -99.0 «kJ mol ⁻¹ » \checkmark		1
6.	(b)	(i)	«q = -mcΔT = 50.00g x 4.18J K ⁻¹ g ⁻¹ x (35.0-20.0)°C =» -3140.0 «J» √ «(3140/0.1)/1000 =» -31.4 «kJ mol ⁻¹ » √	Award [1 max] for +31.4 kJ mol ⁻¹ Award [2] for correct final answer.	2

Q# 56/ Chem 5 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	(d)	(i)	$\alpha q = mc\Delta T = 25.32 \text{ g} \times 4.18 \text{ J g}^{-1}\text{K}^{-1} \times (25.2^{\circ}\text{C} - 0.8^{\circ}\text{C}) = 2580 \text{ d}$ √	Do not accept a negative value.	1
1.	(d)	(ii)	«2.58 × 10 ³ $J \times \frac{1 kJ}{1000 J} \times \frac{1 mol}{25.69 kJ}$ =» 0.100 «mol» ✓	Award [2] for the correct final answer. Accept range of 8.0 – 8.1 g.	2
			«0.100 mol × 80.06 g mol⁻¹ =» 8.01 «g» ✓	If 3.11 x 10 ³ J used then answer is 9.69 g.	

	1	E		1	
1.	(d)	(iii)	«fractional / % uncertainty in ∆T =» $\frac{0.4}{24.4}$ / 0.02 / 2«%» ✓	Award [3] for correct final answer. Accept range of 0.1 g = 0.2 «g».	
			«fractional / % uncertainty in $m = \frac{0.01}{25.32}$ / 0.0004 / 0.04«%» OR fractional / % uncertainty in m is much smaller than uncertainty in $\Delta T \checkmark$	If 6.55 g used then the answer is 0.1 «g».	3
			«2% x 8.01 g =» 0.2 «g» ✓		
1.	(d)	(iv)	$\alpha\%$ error = $\left \frac{9.50 g - 8.01 g}{9.50 g}\right \times 100 \% = x 15.7 \%$ ✓	Accept range 14.7 – 15.8«%». If 6.55 g used then answer is 31.1«%».	1
1.	(d)	(v)	$«ΔS° = 259.8 J mol^{-1} K^{-1} - 151.1 J mol^{-1} K^{-1} = * 108.7 «J mol^{-1} K^{-1}»$ ✓		1
1.	(d)	(vi)	« $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 25.69 \text{ kJ mol}^{-1} - 298 \text{ K} \left(108.7 \text{ J mol}^{-1} \text{ K}^{-1} \times \frac{1 \text{ kJ}}{1000 \text{ J}}\right) = -6.70 \text{ «kJ mol}^{-1} \text{»}$ ✓	If 102.3 J mol ⁻¹ K ⁻¹ is used then answer is –4.80 kJ mol ⁻¹ .	1
1.	(d)	(vii)	$\ll \Delta G^{\circ} = -RT \ln K \approx$ $\ll -6.70 \text{ kJ} \times \frac{1000 \text{ J}}{\text{kJ}} = -8.31 \text{ J} K^{-1} (298 \text{ K}) \ln K \approx$ $\ll \ln K = \approx 2.71 \text{ J}$ $\ll K = e^{2.71} = \approx 15.0 \text{ J}$	Award [2] for correct final answer. If –7.84 kJ is used then answer is 23.7.	2
1.	(d)	(viii)	product/right/solution/NH₄NO₃(aq) is favoured AND K>1 ✓	Accept K large. Accept other valid ways of justifying equilibrium position such as ΔG<0/i> spontaneous/ΔH<0 AND ΔS>0.	1
1.	(f)	(i)	$NH_4NO_3(s) \rightarrow N_2O(g) + 2H_2O(l) \checkmark$		1
1.	(f)	(ii)	«5.00 g ÷ 80.06 g mol ⁻¹ =» 0.0625 mol «NH ₄ NO ₃ » ✓ «1:1 mol ratio» «0.0625 mol N ₂ O × ^{22.7 dm³} / _{mol} =» 1.42 «dm ³ » ✓	Award [2] for correct final answer. Accept range 1.36 – 1.43 «dm³». Accept calculations based on PV=nRT.	2
1.	(f)	(iii)	2 x – 285.8 «kJ mol ⁻¹ » √ «1mol (82 kJ mol ⁻¹) + 2mol (– 285.8 kJ mol ⁻¹) – 1mol (– 366 kJ mol ⁻¹) =» –124 «kJ» √	Award [2] for correct final answer.	2
1.	(f)	(iv)	Entropy change: positive AND formation of gas «and liquid from solid» ✓		
			Gibbs free energy change: negative AND increase in entropy/∆S positive AND exothermic reaction/∆H negative ✓		2

Q# 57/ Chem 5 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3.	b	i	bonds broken: N≡N + 3(H-H) /«1 mol×»945 «kJ mol⁻¹» + 3«mol»×436 «kJ mol⁻¹» / 945 «kJ» + 1308 «kJ» / 2253 «kJ» √ bonds formed: 6(N-H) / 6«mol»×391 «kJ mol⁻¹» / 2346 «kJ» √ ΔH = «2253 kJ - 2346 kJ = » -93 «kJ» √	Award [2 max] for (+)93 «kJ».	3
3.	b	ii	«N-H» bond enthalpy is an average «and may not be the precise value in NH₃» ✓	Accept ΔH _r data are more accurate / are not average values.	1
3.	С	i	spontaneous AND ∆G < 0 ✓	1	1
3.	С	ii	$\ln K = \langle (-\frac{\Delta G}{R.T} =) \rangle - \frac{-33000}{8.31 \times 298} / \alpha + n \cdot 13.3 \checkmark$ $K = 6.13 \times 10^5 \checkmark$	Award [2] for correct final answer. Accept answers in the range 4.4×10 ⁵ to 6.2×10 ⁵ (arises from rounding of ln K).	2
3.	С	in	$\Delta G = \alpha \Delta H - T \Delta S = \text{w} - 93000 \text{ aJs} - 298 \text{aKs} \times \Delta S = -33000 $ $\Delta S = \langle \langle \frac{-93000 - (-33000)}{298 $	Do not penalize failure to convert kJ to J in both (c)(ii) and (c)(iii). Award [2] for correct final answer Award [1 max] for (+) 201 «J mot¹ K¹». Award [2] for -101 or -100.5 «J mof¹ K¹».	2
3	С	iv	«forward reaction involves» decrease in number of moles «of gas» ✓		1

				, ,	
3.	С	i	«-398.9 kJ mol⁻¹ - (-306.4 kJ mol⁻¹) =» -92.5 «kJ mol⁻¹» ✓		1
3.	С	ii	«∆S = 364.5 J K ⁻¹ mol ⁻¹ − (311.7 J K ⁻¹ mol ⁻¹ + 223.0 J K ⁻¹ mol ⁻¹) =» −170.2 «J K ⁻¹ mol ⁻¹ » ✓		1
				1	

3000	Visitation of the second of th		
Ш	«∆S =» −0.1702 «kJ mol ⁻¹ K ⁻¹ » OR	Award [2] for correct final answer. If -87.6 and -150.5 are used then	
	298 «K» ✓ «ΔG = −92.5 kJ mol⁻¹ − (298 K × −0.1702 kJ mol⁻¹ K⁻¹) =» −41.8 «kJ mol⁻¹» ✓	-42.8.	2
		OR 298 «K» ✓	OR 298 «K» ✓ If -87.6 and -150.5 are used then -42.8.

Q# 59/ Chem 5 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q7. www.SmashingScience.org :0)

7.	b	bond in O₃ is weaker OR O₃ bond order 1.5/< 2 ✓ lower frequency/longer wavelength «UV light» has enough energy to break the O–O bond in O₃ «but not that in O₂» ✓	Do not accept bond in O₃ is longer for M1. Accept "lower frequency/longer wavelength «UV light» has lower energy".	2
7.	С	$\begin{split} & \operatorname{CCl}_2F_2(g) \to {}^{\bullet}\operatorname{CCl}F_2(g) + \operatorname{Cl}{}^{\bullet}(g) \checkmark \\ & \operatorname{Cl}{}^{\bullet}(g) + \operatorname{O}_3(g) \to \operatorname{O}_2(g) + \operatorname{Cl}\operatorname{O}{}^{\bullet}(g) \\ & \text{AND} \\ & \operatorname{Cl}\operatorname{O}{}^{\bullet}(g) + \operatorname{O}_3(g) \to 2\operatorname{O}_2(g) + \operatorname{Cl}{}^{\bullet}(g) \checkmark \end{split}$	Do not penalize missing radical. $Accept: for \ M2: \\ Cl^{\bullet}(g) + O_3(g) \rightarrow O_2(g) + ClO^{\bullet}(g) \\ AND \\ ClO^{\bullet}(g) + O(g) \rightarrow O_2(g) + Cl^{\bullet}(g)$	2

Q# 60/ Chem 5 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org

3.	С		
		specific heat capacity « = $\frac{q}{m \times \Delta T} I \frac{1000 \text{ J}}{50 \text{ g} \times 44 \text{ K}}$ » = 0.45 «J g ⁻¹ K ⁻¹ » \checkmark	
		CHARLES AND THE SEES OF PROPERTY	

Q# 61/ Chem 5 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

	, , , , , , , , , , , , , , , , , , , ,	,	
a	Bonds broken: 8(C-H) + 2(C-C) + 5(O=O) / 8 × 414 «kJ mol ⁻¹ » + 2 × 346 «kJ mol ⁻¹ » + 5 × 498 «kJ mol ⁻¹ » / 6494 «kJ» ✓ Bonds formed: 6(C=O) + 8(O-H) / 6 × 804 «kJ mol ⁻¹ » + 8 × 463 «kJ mol ⁻¹ » / 8528 «kJ» ✓ «Enthalpy change = bonds broken – bonds formed = 6494 kJ – 8528 kJ =»	Award [3] for correct final answer.	3
b	-2034 «kJ» ✓ 4(-241.8 «kJ») AND 3(-393.5 «kJ») AND «1»(-105 «kJ») ✓ «ΔH ^Θ = 4(-241.8 «kJ») + 3(-393.5 «kJ») – «1»(-105 «kJ») =» -2043 «kJ» ✓	Award [2] for correct final answer. Award [1 max] for -2219 «kJ».	2
С	positive AND more moles «of gas» in products ✓		1
d	4 × 188.8 «J K ⁻¹ » AND 3 × 213.8 «J K ⁻¹ » AND «1 ×» 270 «J K ⁻¹ » AND 5 × 205 «J K ⁻¹ » \checkmark « $\Delta S^{\Theta} = 4(188.8 \text{ J K}^{-1}) + 3(213.8 \text{ J K}^{-1}) - [1(270 \text{ J K}^{-1}) + 5(205 \text{ J K}^{-1})] = $ » 102 «J K ⁻¹ » \checkmark	Award [2] for correct final answer.	2
е	«T = 5 + 273 =» 278 K \checkmark « Δ G ^e = −2043 kJ − (278 K × 0.102 kJ K ⁻¹) =» −2071 «kJ» \checkmark	Award [2] for correct final answer.	2
	b c d	2 × 346 «kJ mol ⁻¹ » + 5 × 498 «kJ mol ⁻¹ » / 6494 «kJ» ✓ Bonds formed: 6(C=O) + 8(O-H) / 6 × 804 «kJ mol ⁻¹ » + 8 × 463 «kJ mol ⁻¹ » / 8528 «kJ» ✓ «Enthalpy change = bonds broken – bonds formed = 6494 kJ – 8528 kJ =» –2034 «kJ» ✓ b 4(-241.8 «kJ») AND 3(-393.5 «kJ») AND «1»(-105 «kJ») ✓ «ΔH ⁶ = 4(-241.8 «kJ») + 3(-393.5 «kJ») – «1»(-105 «kJ») =» –2043 «kJ» ✓ c positive AND more moles «of gas» in products ✓ d 4 × 188.8 «J K ⁻¹ » AND 3 × 213.8 «J K ⁻¹ » AND «1 ×» 270 «J K ⁻¹ » AND 5 × 205 «J K ⁻¹ » ✓ «ΔS ⁶ = 4(188.8 J K ⁻¹) + 3(213.8 J K ⁻¹) – [1(270 J K ⁻¹) + 5(205 J K ⁻¹)] =» 102 «J K ⁻¹ » ✓	2 × 346 «kJ mol⁻¹» + 5 × 498 «kJ mol⁻¹» / 6494 «kJ» ✓ Bonds formed: 6(C=O) + 8(O=H) / 6 × 804 «kJ mol⁻¹» + 8 × 463 «kJ mol⁻¹» / 8528 «kJ» ✓ «Enthalpy change = bonds broken – bonds formed = 6494 kJ – 8528 kJ =» -2034 «kJ» ✓ 4 (-241.8 «kJ») AND 3(-393.5 «kJ») AND «1»(-105 «kJ») ✓ «ΔH² = 4(-241.8 «kJ») + 3(-393.5 «kJ») – «1»(-105 «kJ») =» – 2043 «kJ» ✓ Award [2] for correct final answer. Award [1 max] for –2219 «kJ». c positive AND more moles «of gas» in products ✓ d 4 × 188.8 «J K⁻¹» AND 3 × 213.8 «J K⁻¹» AND «1 ×» 270 «J K⁻¹» AND 5 × 205 «J K⁻¹» ✓ «ΔS² = 4(188.8 J K⁻¹) + 3(213.8 J K⁻¹) – [1(270 J K⁻¹) + 5(205 J K⁻¹)] =» 102 «J K⁻¹» ✓

Q# 62/ Chem 6 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

	n i incompiant	<u> </u>	
6 c	k1/k2 = 2 OR k1/k2 = 0.5 √	Award [3] for correct final answer.	
	$((\ln \frac{k_1}{k_2} = \ln 2) = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) = \frac{E_a}{8.31} \left(\frac{1}{298} - \frac{1}{308} \right)))$	Accept answers in the range 50 to 55 kJ mor ^{1.}	
		Accept k ₁ at 298 K and k ₂ at 308 K, if ratio inverted.	3
	A STATE OF THE PARTY OF THE PAR	Accept other methods of calculation.	
	1887	Award [2] for 0.504 kJ mol ⁻¹ (not converting temperatures to Kelvin).	
$\overline{}$			

Q# 63/ Chem 6 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2	f	I	Progress of reaction two curves, each passing through a maximum AND same finishing point ✓ endothermic enthalpy change labelled ✓ both activation energies correctly labelled ✓	Do not penalize curve showing multiple steps for the catalysis in M1. Accept double-headed arrows or lines in M2 and M3. Accept E _{cat} for catalysed E _a in M3. Award [1 max] for one curve drawn and correctly labelled.	3
2	f	ii	increase pressure ✓	Accept increase «reactant» concentration but not increase amount of reactant.	1

Q# 64/ Chem 6 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org alternate pathway AND lowers activation energy/E_a ✓ 2. (ii) Ignore any shading under the curve. (e) eof particles Fraction 2 correct shape curve starting at the origin, without touching the x axis at high (E_a) catalysed <(E_a) uncatalysed on x axis. ✓ 2. (e) (iii) change in AND Do not accept pH. Accept any valid method. volume OR pressure 1 OR temperature OR concentration of H₂/N₂ /reactants/NH₃ /product ✓ Q# 65/ Chem 6 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org Any two of: Accept same size flask. 5. (d) depth/volume «of solution» ✓ Accept position of observation/person observing. colour/darkness/thickness/size/background of mark < Accept same equipment/apparatus. 2 max intensity of lighting in the lab ✓ Do not accept catalyst/particle size/pressure/time. Q# 66/ Chem 6 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org (e) (iii) E_s (with catalyst) 1 Kinetic energy both E₂ values marked AND left one labelled catalysed ✓ 2. (e) (iv) increases rate AND there is a greater area under the curve past activation energy Do not award a mark for general OR statements about catalysts such as 1 "provides alternative pathway" or increases rate AND greater proportion of/more molecules have «kinetic» $E \ge E_a$ "lowers E.". «(cat) than E₂ (uncat)» ✓

5.	d	ii	energy/E ≥ activation energy/E₃ ✓	8
			correct orientation «of reacting particles» OR correct geometry «of reacting particles» ✓	2

Q# 67/ Chem 6 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org

Q# 68/ Chem 6 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2.	С	i	independent / not dependent ✓	Accept "zero order in Mg".	1
2.	С	ii	«2×170 s» = 340 «s» ✓	Accept 320 – 360 «s». Accept 400 – 450 «s» based on no more gas being produced after 400 to 450s.	1
2.	С	III	«relative/percentage» decrease in mass is «too» small/«much» less ✓	Accept "«relative/percentage» uncertainty in mass loss «too» great". OR "density/molar mass of H ₂ is «much» less than CO ₂ ".	1

Q# 69/ Chem 6 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q10. www.SmashingScience.org :o)

10.	c	i			1
10.	С	ii	mol ⁻¹ dm ³ s ⁻¹ ✓		1
10.	С	iii	ALTERNATIVE 1:	Award [2] for correct final answer.	2

Q# 70/ Chem 6 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6.	a		use colorimeter OR change in colour OR change in volume OR change in pressure ✓	Accept suitable instruments, e.g. pressure probe/oxygen sensor.	1
6.	b	1	0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000	Accept free hand drawn line as long as attempt to be linear and meets criteria for M2.	2

6.	b		greater frequency of collisions «as concentration increases» OR more collisions per unit time «as concentration increases» ✓	Accept "rate/chance/probability/likelihood" instead of "frequency". Do not accept just "more collisions".	1
6.	b	iii	rate = k[N₂O₅] ✓		1
6.	b	iv	$k = \frac{\Delta \text{ rate}}{\Delta [N_2 O_6]} \checkmark$ $wk = \frac{0.75 \times 10^{-3} \text{ «mol dm}^{-3} \text{ min}^{-1} \text{»}}{25 \times 10^{-3} \text{ «mol dm}^{-3} \text{»}} = \text{» 0.030 «min}^{-1} \text{»} \checkmark$ $min^{-1} \checkmark$	M1 can be awarded from correct M2 if not explicitly stated. Accept k = gradient. Accept values in the range 0.028–0.032. Award [3] for correct final answer.	3

Q# 71/ Chem 6 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4.	а		Catalyzed E _a E _a Energy	Do not penalize curve missing a label, not passing exactly through the origin, or crossing x-axis after Ea. Do not award M1 if curve drawn shows significantly more/less molecules/greater/smaller area under curve than curve 1. Accept Ea drawn to T1 instead of curve drawn as long as to left of marked Ea.	2
4.	b		curve higher AND to left of T₁ ✓ new/catalysed E₃ marked AND to the left of E₃ of curve T₁ ✓ methanoic acid/HCOOH/CHOOH OR	Accept "carbon dioxide/CO ₂ ".	1
4.	С	i	methanal/HCHO \checkmark CH ₄ (g) + H ₂ O(g) \rightleftharpoons CH ₃ OH(l) + H ₂ (g) \checkmark	Accept arrow instead of equilibrium sign.	1
4.	С	ii	amount of methane = $<$ $< \frac{8.00 \text{ g}}{16.05 \text{ g mol}^{-1}} = > 0.498 \text{ «mol} > \checkmark$ amount of hydrogen = amount of methane / 0.498 «mol» \checkmark volume of hydrogen = $< 0.498 \text{ mol} \times 22.7 \text{ dm}^3 \text{ mol}^{-1} = > 11.3 \text{ «dm}^3 > \checkmark$	Award [3] for final correct answer. Award [2 max] for 11.4 «dm3 due to rounding of mass to 16/moles to 0.5. »	3
4.	d	ı	Σ bonds broken = 4 × 414 «kJ» + 2 × 463 «kJ» / 2582 «kJ» \checkmark Σ bonds formed = 1077 «kJ» + 3 × 436 «kJ» / 2385 «kJ» \checkmark ΔH «= Σ bonds broken - Σ bonds formed =(2582 kJ - 2385 kJ)» = «+»197 «kJ» \checkmark	Award [3] for final correct answer. Award [2 Max] for final answer of -197 «kJ»	3
				-	

4.	е	i	« ΔG^{Θ} = − <i>RTInKc</i> » ΔG^{Θ} = − 8.31 «J K ⁻¹ mol ⁻¹ » × 298 «K» × In (1.01) / −24.6 «J mol ⁻¹ » ✓ = −0.0246 «kJ mol ⁻¹ » ✓	Award [2] for correct final answer. Award [1 max] for +0.0246 «kJ mol ⁻¹ ».	2
4.	е	ii		Award [2] for correct final answer. Award [1 max] for "-0.433 «kJ K" mor"»". Award [1 max] for "433" or "+433" «J K" mor"». Award [2] for -430 «J K" mor"» (result from given values).	2
4.	е	III	«negative as» product is liquid and reactants gases OR fewer moles of gas in product ✓		1
4.	е	iv	reaction «more» spontaneous/ΔG negative/less positive AND effect of negative entropy decreases/TΔS increases/is less negative/more positive OR reaction «more» spontaneous/ΔG negative/less positive AND reaction exothermic «so K, increases » ✓	Award mark if correct calculation shown.	1

Q# 72/ Chem 6 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q7. www.SmashingScience.org :0)

7.	a	NO: second ✓ O₂: first ✓	2
7.	b	not possible AND «proposed» mechanism does not match experimental rate law OR not possible AND «proposed» mechanism shows zero/not first order with respect to oxygen ✓	1

Q# 73/ Chem 6 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4.	а	provides an alternative pathway/mechanism AND lower E₃ ✓	Accept description of how catalyst lowers E _a (e.g. "reactants adsorb on surface «of catalyst»", "reactant bonds weaken «when adsorbed»").	1
4.	b	more/greater proportion of molecules with E≥ E₃ ✓	_	See.
		greater frequency/probability/chance of collisions «between the molecules» OR more collision per unit of time/second ✓		2

Q# 74/ Chem 7 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4	а	III	$\Delta G^{\circ} \ll \Delta H^{\circ} - T.\Delta S^{\circ} = -39.8 \text{ «kJ mol}^{-1} \text{»} \checkmark$ $\ll lnK_{c} = -\frac{\Delta G^{\circ}}{R.T} = \frac{39800 \text{ Jmol}^{-1}}{8.31 \text{ JK}^{-1} \text{mol}^{-1} \times 500 \text{ K}} = 9.58 \gg$ $K_{c} = 1.45 \times 10^{4} \checkmark$	Award [2] for correct final answer. Using -50.0 kJ mot^1 gives $K_c = 1.68 \times 10^5$. If student obtained $+48.2 \text{ kJ mot}^1$ for $4(a)$ then ECF gives $K_c = 9.16 \times 10^5$.	2
4	a	iv	$K_c \ll = 1.45 \times 10^4 = \frac{[CO_2] \times [H_2S]^2}{[CS_2] \times [H_2O]^2} \gg$ $= \frac{\times \times (2X)^2}{0.0400 \times (0.100)^2} / \frac{4X^3}{4.00 \times 10^{-4}} \checkmark$ $X \ll = \sqrt[3]{1.45} \gg = 1.13 \ll \text{mol dm}^{-3} \gg \checkmark$	Award [2] for correct final answer. Students who obtain K ~1 in 4(a)iii will obtain answers ~0.046 by ECF. Using 1.68 x 10 ⁶ gives 2.56 «mol dm³».	2

Q# 75/ Chem 7 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2	b		.0,
2	d	enthalpy change is very small ✓	

Q# 76/ Chem 7 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2.	(d)	(i)	«in a closed system» the rate of the forward reaction equals the rate of the reverse reaction. \checkmark		1
2.	(d)	(ii)	[NH ₂] ² /([N ₂][H ₂] ³) ✓		1
2.	(d)	(iii)	$ \Delta S^8 = \Delta S^8_{(products)} - \Delta S^9_{(reactants)} $ OR $ (2 \times 192.8 \text{ «J mol}^1 \text{ K}^{-1}\text{»}) - (3 \times 130.7 \text{ «J mol}^1 \text{ K}^{-1}\text{»} + 191.6 \text{ «J mol}^1 \text{ K}^{-1}\text{»}) \checkmark $ $ -198.1 \text{ «J K}^{-1} \text{ mol}^{-1}\text{»} \qquad \checkmark $	Award [2] for correct final answer with four significant figures.	2
2.	(d)	(iv)	« $\Delta G^6 = \Delta H^6 - T\Delta S^8$ » $\Delta S^9 = -0.1981 \text{ kJ K}^{-1} \text{ mol}^{-1}$ AND $\Delta H^6 = -92.0 \text{ kJ mol}^{-1} \checkmark$ « $0 \text{ kJ mol}^{-1} = (-92.0 \text{ kJ mol}^{-1}) - (\text{T K × -0.1981 kJ K}^{-1}\text{mol}^{-1})$ » 464 kK » \checkmark Alternate: $\Delta S^9 = -0.2100 \text{ kJ K}^{-1} \text{ mol}^{-1}$ AND $\Delta H^6 = -92.0 \text{ kJ mol}^{-1} \checkmark$ « $0 \text{ kJ mol}^{-1} = (-92.0 \text{ kJ mol}^{-1}) - (\text{T K× -0.2100 kJ K}^{-1}\text{mol}^{-1})$ » 438 kK » \checkmark «reaction» exothermic $AND K_c$ increases «as equilibrium moves right» \checkmark	M1 for conversion to common units for ΔH ⁹ and ΔS ⁹ . Award [2] for correct final answer.	2
2.	(d)	(vi)	« ΔG^{θ} = -RTIn K_c » « ΔG^{θ} = (-8.31J K ⁻¹ mol ⁻¹ × 773K × ln 6.84 ×10 ⁻⁵)/1000 =» «+» 61.6 «kJ mol ⁻¹ » ✓ OR « ΔG^{θ} = ΔH^{θ} - $T\Delta S^{\theta}$ » « ΔG^{θ} = -92.0 kJ mol ⁻¹ - 773 K × (-0.1981 kJ K ⁻¹ mol ⁻¹) =» +61.1 «kJ mol ⁻¹ » ✓	Award [2] for the correct final answer.	2

Q# 77/ Chem 7 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	(d)	(vii)	$\alpha \Delta G^{\circ} = -RT \ln K$ $\alpha - 6.70 \text{ kJ} \times \frac{1000 \text{ J}}{\text{kJ}} = -8.31 \text{ J K}^{-1}(298 \text{ K}) \ln K$ $\alpha = 2.71 \text{ J}$ $\alpha = 2.71 \text{ J}$	Award [2] for correct final answer. If -7.84 kJ is used then answer is 23.7.	2
1.	(d)	(viii)	product/right/solution/NH₄NO₃(aq) is favoured <i>AND K</i> >1 ✓	Accept K large. Accept other valid ways of justifying equilibrium position such as ΔG<0/ spontaneous/ΔH<0 AND ΔS>0.	1

0# 78/ Chem 7 IB Chem/2022/s/T71/Paper 2/Higher Level/03 www SmashingScience org ::0)

3.	а	i	$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} \checkmark$	8 8	1
3.	а	ii	same/unaffected/unchanged ✓		1
3.	а	iii	increasing pressure increases «all» concentrations OR increasing pressure decreases volume ✓ Q becomes less than K _c OR affects the lower line/denominator of Q expression more than upper line/numerator ✓ «for Q to once again equal K _c ,» ratio of products to reactants increases OR «for Q to once again equal K _c ,» equilibrium shifts to right/products ✓	Award [2 max] for answers that do not refer to Q.	3
3.	b	iii	increased temperature decreases yield «as shown on graph» ✓ shifts equilibrium in endothermic/reverse direction ✓		2

Q# 79/ Chem 7 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3.	С	iv		Award [2] for correct final answer. Accept range of 1.80×10^6 – 2.60×10^7 . If -43.5 is used then 4.25×10^7 .	2
3.	c	v	$\ll K = e^{16.9} = 2.19 \times 10^7 \checkmark$ $\ll K_c = \frac{[PCl_s]}{[PCl_3][Cl_2]} \checkmark$		1
3.	С	vi	«shifts» left/towards reactants AND «forward reaction is» exothermic/∆H is negative ✓		1
)# 8	30/ C	hem	7 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScien	ce.org :o)	
4.	d	iii	$K_c = \frac{[CO][H_2]^s}{[CH_4][H_2O]} \checkmark$		1
4.	d	iv	K _c increases AND «forward» reaction endothermic ✓		1
# 8 1	32/ C	hem	8 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScient [HCOOH] $\ll = 0.100 \ mol \ dm^{-3} \times \frac{20.7 \ cm^3}{25.0 \ cm^3} \approx = 0.0828 \ \mbox{4mol dm}^{-3} \ \mbox{4}$ mass HCOOH $\ll = 2.00 \ dm^3 \times 0.0828 \ mol \ dm^{-3} \times 46.03 \ g \ mol^4 \ \mbox{9} = 7.62 \ \mbox{9} \ \mbox{9}$	Accept answers in the range 7.60-7.65. Award [0] for 0.096 g - mass of acid in 25 cm ³ .	2
1	d	ii	K_a =10 ^{-3.75} /1.78 × 10 ⁻⁴ \checkmark [H*] «= $\sqrt{1.78 \times 10^{-4} \times 0.0828}$ = $\sqrt{1.47 \times 10^{-5}}$ =» 3.84 × 10 ⁻³ «mol dm ⁻³ » \checkmark pH = 2.42 \checkmark	Award [3] for correct final answer. Accept alternative methods of calculation. Accept answers in the range 2.35 - 2.45.	3
1	d	iii	NaHCOO(aq) + H₂O(l) → HCOOH(aq) + NaOH(aq) OR HCOO'(aq) + H₂O(l) → HCOOH(aq) + OH'(aq) ✓ methanoate ion acts as «Brønsted-Lowry» base AND pH >7 OR sodium hydroxide/NaOH/hydroxide ion/OH' makes solution alkaline AND pH >7 ✓	Accept arrows rather than equilibrium signs for M1. Do not accept the equation for the titration reaction for M1. Accept sodium methanoate is formed from a strong base and weak acid AND pH >7 for M2. The reason for M2 can be implied in the equation written without being separately stated.	2

Q# 83/ Chem 8 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q8. www.SmashingScience.org :o)

Q# 84/ Chem 8 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

<u> </u>	and if them one them 2020/0/122/1 aper 2/1 ingher zever do the morning order to the							
6.	(a)	(ii)	SO _{2 (sq)} + H ₂ O(I) H ₂ SO _{3 (sq)} AND	Accept single arrow for the first equation.	1			
			SO _{3 (aq)} + H ₂ O (I) → H ₂ SO _{4 (aq)} ✓					

Q# 85/ Chem 8 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	(a)	(i)	$H_2O_{(I)} + HCI_{(g)} \rightarrow CI_{(aq)} + H_3O_{(aq)} \checkmark \checkmark$	One for the equation and one for the state symbols. Do not accept H₂O(i) + H⁺(g) → H₃O⁺(sq) Do not accept equilibrium sign.	2
1.	(a)	(ii)	«pH = -log₁₀[H*] = -log₁₀0.5 =» 0.30 ✓		1
1.	(a)	(iii)	«Ethanoic acid» partially ionizes/dissociates/OWTTE OR Iower [H+] ✓	Do not accept weak acid only. Accept converse argument.	1
1.	(a)	(iv)	conductivity/conductance meter/probe OR ammeter «with power supply»	Ignore any reference to indicators or any chemical methods. Accept Cr or ethanoate ion selective probe.	1
1.	(a)	(v)	HCl higher conductivity «due to higher [ion]» ✓	Accept explanation if alternative given in a(iv). Accept converse argument. Apply ECF for incorrect method.	1

1.	(b)		Chemical test: use of carbonate/hydrogen carbonate/named metal AND Expected result: more bubbles per unit time/disappears faster/faster reaction in HCl _(aq) ✓ OR Chemical test: add alkali/hydroxide/metal oxide AND Expected result: higher temperature rise with HCl ✓ OR Chemical test: add silver nitrate «solution»/AgNO ₃ «(aq)» AND Expected result: white precipitate/ppt. with HCl ✓	Do not accept just metal. Accept active metal. Accept greater temperature change in place of more bubbles.	1
1.	(c)	(i)	4.8 ✓	Accept 4.7-4.9	1
1.	(c)	(ii)	ALTERNATIVE 1 HA + OH⁻ ➡ A⁻ + H₂O✓ added OH⁻ neutralized by HA OR strong base «OH⁻» replaced by weak base «A⁻»✓ ALTERNATIVE 2 HA ➡ A⁻ + H⁺ ✓ added OH⁻ neutralized by H⁺ OR strong base «OH⁻» replaced by weak base «A⁻»✓	Must show → for M1 Accept molecular equation. Allow reference to Châtelier principle for M2	2
1.	(c)	(iii)	$n(NH_3)_{nit} = *0.08 \text{ dm}^3 \times 0.1 \text{ mol dm}^{-3} = *0.008 \text{ mol}$ AND $n(HCI)_{init} = *0.04 \text{ dm}^3 \times 0.1 \text{ mol dm}^{-3} = *0.004 \text{ mol}$ $ n(NH_3)_{fin} = *0.008 \text{ mol} - 0.004 \text{ mol} = *0.004 \text{ mol} n(NH_4^*)_{fin} = 0.004 \text{ mol} v(NH_4^*)_{fin} = 0.004 \text{ mol} v(NH_3)_{fin} = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.12 \text{ dm}^3 = 0.033 \text{ mol dm}^{-3} v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.034 v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.04 v(NH_4^*) = v(NH_4^*)_{fin} = 0.004 \text{ mol}/0.04 v(NH_4^*) = v(NH_4$	Award [4] for the correct final answer. Accept alternate working.	4

Q# 86/ Chem 8 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5.	(b)	$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq)$	1111	
		OR	4.1.1	
		$SO_2(g) + 1/2O_2(g) \rightarrow \ SO_3(g) \ \textit{AND} \ SO_3(g) + H_2O(l) \rightarrow \ H_2SO_4(aq)$	Accept ionized forms of acids.	1
		OR		
		$SO_2(g) + \frac{1}{2}O_2(g) + H_2O(l) \rightarrow H_2SO_4(aq)$		

5.	101	DX	Any two of:	Accept any valid method to wash coal and remove sulfur content for M1.	
5.	(e)		remove sulfur from coal ✓	Accept any valid combustion/post- combustion method to remove sulfur	
			add lime during combustion ✓	oxides.	
			not allow sulfur oxides to be released into the environment ✓	Accept any suggestion that would reduce the amount of coal that is burnt or would reduce the damage caused.	2 max
			reduce proportion/percentage of energy/power produced by «the combustion of» coal ✓	Do not accept answers that only reduce production of SO₂/CO₂ from other fuels.	
				Accept "improve efficiency of energy production from coal".	
				Accept "use coal of lower sulfur content" OR "cleaner coal".	
Q# 8	7/ Cł	nem 8	IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScier	nce.org :o)	
1.	(b)		«Brønsted-Lowry» acid AND can donate a proton/H* OR		
			«Brønsted-Lowry» acid AND cannot accept proton/H⁺ ✓		1
1.	(c)	(i)	«pH = – log (1.07 × 10 ⁻⁵) =» 4.97 ✓	8	1
			100 (1) 40 - 100 (1) (100 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
1.	(c)	(ii)	$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(aq) + H_2O(l)$	Accept NH4OH instead of NH3 + H2O.	
			OR		1
			$NH_4NO_3(aq) + NaOH(aq) \rightarrow NH_3(aq) + H_2O(l) + NaNO_3(aq) \checkmark$		1044
1.	(c)	(iii)	«n(NH ₄ NO ₃) = 0.20 mol dm ⁻³ × 0.02000 dm ³ =» 0.0040 «mol NH ₄ NO ₃ » ✓	Award [4] for correct final answer.	
			«[NH ₃] at equivalence point = $\frac{0.0040 mol}{0.04000 dm^3}$ =» 0.10 «mol dm ⁻³ » ✓	Accept a range of 11.11 – 11.14.	
			« $K_b = 10^{9 \text{Kb}} = 10^{-4.75} \cdot 1.8 \times 10^{-5}$ » « $[OH^-] = \sqrt{K_b[NH_3]} = \sqrt{1.8 \times 10^{-5}(0.10)} =$ » 0.0013 «mol dm³» √		4
			$^{*}(OH = -\log (0.0013) = 2.89$ $^{*}(OH = -\log (0.0013) = 2.89$ $^{*}(OH = -\log (0.0013) = 2.89$		
			«pOH = 14.00 – pOH =» 11.11 ✓		
1.	(c)	(iv)		D	
			16		
			10		
			I .	6	
					2
			2		2
			0 5 10 15 20 25 30 35 40 V(MaGNg) ran ²		
			non-symmetrical sigmoidal curve, starting pH 2–7 AND terminating pH>12 ✓		
			equivalence point pH approximately 11 AND at a volume 20 cm³ ✓		

1.	(c)	(v)	no AND the end point is not in the sharp part of the curve	
		100000	OR	
			no AND the equivalence point does not fall within the end-point/pH range of the indicator	
			OR	1
			no AND there is a large difference in volume between end point and equivalence point	
			OR	
			no AND no sharp rise in pH «near equivalence point» ✓	

Q# 88/ Chem 8 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org

4.	а		conjugate «acid and base» ✓		1
4.	b		amount of ammonia $\langle \langle = \frac{P.V}{R.T} = \frac{100.0 \text{ kPa} \times 900.0 \text{ dm}^3}{8.31 J \text{ K}^{-1} \text{mol}^{-1} \times 300.0 \text{ K}} \rangle \rangle$ = 36.1 «mol» \checkmark concentration $\langle \langle = \frac{n}{V} = \frac{36.1}{2.00} \rangle \rangle$ = 18.1 «mol dm ⁻³ » \checkmark	Award [2] for correct final answer.	2
4.	С	i	$[OH^{-}] \langle \langle = \frac{K_{w}}{[H^{+}]} = \frac{10^{-14}}{10^{-9.3}} = 10^{-4.7} \rangle \rangle = 2.0 \times 10^{-5} \langle \langle \text{mol dm}^{-3} \rangle \rangle \checkmark$		1
4.	С	ii	$K_b = \frac{[NH_4^+][0H^-]}{[NH_3]} / \frac{10^{-6.7} \times 10^{-4.7}}{[NH_3]} \langle \langle = 10^{-4.75} \rangle \rangle \checkmark$ $[NH_3] = \langle \langle = \frac{10^{-9.4}}{10^{-4.75}} = 10^{-4.65} \rangle \rangle = 2.24 \times 10^{-6} \text{ amol dm}^{-3} \text{ as } \checkmark$	Accept other methods of carrying out the calculation. Award [2] for correct answer.	2
4.	С	iii	equilibrium shifts to right/H⁺ reacts with NH₃ ✓ «as large excess» ratio [NH₃]:[NH₄⁺] «and hence pH» almost unchanged ✓	Accept "strong acid/H" converted to a weak acid/NH ₄ " «and hence pH almost unchanged».	2
4.	d		Lewis acid ✓ accepts «a lone» electron pair «from the hydroxide ion» ✓	Do not accept electron acceptor without mention of electron pair.	2

			8 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScie	nce.org :o)	
1.	d	ii	phenol red ✓	Accept bromothymol blue or phenolphthalein.	1

Q# 90/ Chem 8 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org

		92) 2.9	W.	
5.	а	$H_3PO_4(aq) + NaOH(aq) \rightarrow NaH_2PO_4(aq) + H_2O(l) \checkmark$	Accept net ionic equation.	1

5.	b	$H_2PO_4^-(aq) + H^+(aq) \rightarrow H_3PO_4(aq) \checkmark$ $H_2PO_4^-(aq) + OH^-(aq) \rightarrow HPO_4^{2-}(aq) + H_2O(l) \checkmark$	Accept reactions of $H_2PO_4^-$ with any acidic, basic or amphiprotic species, such as H_3O^+ , NH_3 or H_2O . Accept $H_2PO_4^-$ (aq) $\rightarrow HPO_4^{2-}$ (aq) $+ H^+$ (aq) for M2 .	2
5.	c	«NaOH $\frac{28.40 \text{ cm}^3}{1000} \times 0.5000 \text{ mol dm}^{-3} = 0.01420 \text{ mol}»$ « $\frac{0.01420 \text{ mol}}{3} = 0.004733 \text{ «mol}» \checkmark$ « $\frac{0.004733 \text{ mol}}{25.00 \text{ cm}^3} = 0.1893 \text{ «mol dm}^{-3}» \checkmark$	Award [2] for correct final answer.	2
5.	d	Brønsted–Lowry base: proton acceptor AND Lewis Base: e⁻ pair donor/nucleophile ✓		1

Q# 91/ Chem 8 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4.	a	i	«nucleophilic» substitution/S _N 2 ✓	Do not accept if "electrophilic" or "free radical" substitution is stated.	1
4.	a	II	«acts as a» nucleophile/Lewis base OR donates/provides lone pair «of electrons» OR attacks the «partially» positive carbon ✓		1
4.	a	Ш	bond enthalpy C–I lower than C–Cl OR C–I bond weaker than C–Cl ✓ «weaker bond» broken more easily/with less energy OR lower E _a «for weaker bonds» ✓	Accept the bond enthalpy values for C–I and C–Cl for M1.	2
4.	b		Kinetic energy peak at T ₁ to right of AND lower than T ₂ ✓ lines begin at origin AND T ₁ must finish above T ₂ ✓		2

1300
Town I
The
SMASHING!!!

3

pH = 3.94 √

quadratic).

Award [3] for correct final answer.

Award [3] for 3.96 (answer if solved by

Q# 94/ Chem 8 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2.	b	i	HS⁻✓		1
2.	b	ii	weak <i>AND</i> strong acid of this concentration/[H ⁺] = 0.1 mol dm ⁻³ would have pH = 1 OR weak <i>AND</i> [H ⁺] = 10 ⁻⁴ < 0.1 «therefore only fraction of acid dissociated» ✓		1
2.	b	iii	10 ⁻¹⁰ «mol dm ⁻³ » ✓		1
2.	С	Sc.	Mole percentage H ₂ S: volume of H ₂ S = $*550 - 525 = *25 \text{ cm}^3 \text{ V}$ mol % H ₂ S = $*\frac{25 \text{ cm}^3}{550 \text{ cm}^3} \times 100 = *4.5 \text{ cm}^3 \text{ V}$	Award [2] for correct final answer of 4.5	
			Assumption: «both» gases behave as ideal gases ✓	Accept "volume of gas α mol of gas". Accept "reaction goes to completion". Accept "nitrogen is insoluble/does not react with NaOH/only H2S reacts with NaOH".	3

Q# 95/ Chem 8 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

	 		o is electived by the state of	ismasimgserence.org .o/	
respiratory problems Do not accept just "cause	е	e iii	sulfur dioxide/SO₂ causes acid rain ✓	Accept sulfur dioxide/SO ₂ /dust causes respiratory problems Do not accept just "causes respiratory problems" or "causes acid rain".	1

Q# 96/ Chem 8 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5.	а		$CH_3COOH(aq) + KOH(aq) \rightarrow CH_3COOK(aq) + H_2O(l)$	Accept the ionic equation.	1
5.	b	i	B: CH₃COOH <i>AND</i> CH₃COO⁻✓ C: CH₃COO⁻✓	Accept names. Accept CH₃COOK for CH₃COO⁻	2
5.	b	ii	phenolphthalein ✓	Accept "phenol red" or "bromothymol blue".	1
5.	b	iii	B AND the region where small additions «of the base/KOH » result in little or no change in pH OR B AND the flattest region of the curve «at intermediate pH/before equivalence point » OR B AND half the volume needed to reach equivalence point OR B AND similar amounts of weak acid/CH₃COOH/ethanoic acid AND conjugate base/CH₃COO⁻/ethanoate ✓		1
5.	С		$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$	Accept H+ instead of H₃O+.	1
5.	d		$\alpha K_a = 10^{-4.76} = 1.7 \times 10^{-5}$ $\alpha K_w = K_a \cdot K_b = 1.0 \times 10^{-14} = 1.7 \times 10^{-5} \times K_b$ $\alpha K_b = 0.8 \times 10^{-10}$ \checkmark	Accept answers between 5.7–5.9 × 10 ⁻¹⁰ .	1
5.	е		«n(KOH) = 0.02075 dm³ × 1.00 mol dm⁻³ =» 0.0208 «mol» ✓ «n(KOH) = n(CH₃COOH)» «[CH₃COOH] = $\frac{0.0208 \text{ mol}}{0.02500 \text{ dm}^3}$ =» 0.830 «mol dm⁻³» ✓	Award [2] for correct final answer.	2
Q# 9	- ↓ 97/ CI	hem:	8 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScier	nce.org :o)	
1.	С	i	partially dissociates/ionizes «in water» ✓		1
1.	С	ii	CIO- ✓		1
1.	С	iii	«[H ⁺] = 10 ^{-3.61} =» 2.5 × 10 ⁻⁴ «mol dm ⁻³ » ✓	9/9	N

Q# 98/ Chem 9 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5	b	i	«contains» mobile/free moving ions ✓	Accept has ions that can carry an welectric» current/charge.	1
5	b	ii	Electrode: cathode AND Polarity: negative ✓		1
5	b	III	2 Cl ⁻ → Cl ₂ + 2 e ⁻ √	Accept $C\Gamma \rightarrow {}^{1}/_{2} CI_{2} + e^{-}$. Accept e for e^{-} . Do not apply ECF.	1
5	b	iv	amount of electrons $ \frac{1.00 \times 10^6 \text{ coulomb}}{9.65 \times 10^4 \text{ coulomb}} = 10.4 \text{ mol } \checkmark $ mass $ \text{w} = \frac{1}{2} \times 10.4 \text{ mol} \times 9.01 \text{ g mol}^{-1} \text{w} = 46.9 \text{ wg} \text{w} \checkmark $	Accept answers in the range 46.5 to 47.0. Award [1 max] for 93.37, as M1 met, even if amount of electrons not stated.	2

5	f	i	E° «= -0.83 - (-1.85)» = +1.02 «V» ✓		1	
5	f	ii	spontaneous AND E° positive/>0 ✓	Accept spontaneous AND ΔG negative.	1	

Q# 99/ Chem 9 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2	g	+2 ✓		Do not accept 2 or 2+.	
					1

Q# 100/ Chem 9 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q4. www.SmashingScience.org :o)

4.	(a)		+6/VI ✓	Do not accept 6/6+.	1
4.	(b)	(i)	Zinc more reactive/ < <better>> reducing agent/ <<more>> easily oxidized/loses electrons <<more>> easily. ✓</more></more></better>	Accept "zinc higher in the activity «series»". Accept "zinc has a negative electrode potential/Cu has a positive electrode potential".	1
4.	(b)	(ii)	Anode (negative electrode): $Zn_{(s)} \rightarrow Zn^{2*}_{(aq)} + 2e^{-} \checkmark$ Cathode (positive electrode): $Cu^{2*}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)} \checkmark$	Award [1 max] for equilibria. Award [1 max] for equations at the wrong electrodes. State symbols not required for mark.	2
4.	(c)	(i)	«E ⁸ cel = +0.34-(-0.76) = +» 1.10 «V» ✓	Accept ECF from 4 (b) (ii).	1
4.	(c)	(ii)	«ΔG ⁹ = -nFE ⁹ =» -2 x 9.65 x 10 ⁴ x 1.10 ✓ - 212.3 «kJ mol ⁻¹ » ✓ Alternate: «ΔG ⁹ =» -2 x 9.65 x 10 ⁴ x 1.05 ✓ -202.7 «kJ mol ⁻¹ » ✓	Award [2] for the correct final answer.	2

Q# 101/ Chem 9 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3.	(f)	(i)	all 4 species correctly labelled ✓ arrow showing electron flow from anode to cathode in the external circuit ✓	Accept any soluble salt of copper(II) for Cu ²⁺ and any soluble salt of iron(II) for Fe ²⁺ . Do not apply ECF for M2.	2
3.	(f)	(ii)	Fe(s) → Fe ²⁺ (aq) + 2e ⁻ √	Accept equilibrium arrow. Do not award ECF for Cu(s) → Cu ²⁺ (aq) + 2e ⁻ .	1
3.	(f)	(iii)	«keep» each half-cell/electrolyte «electrically» neutral ✓	Accept balance charges/ions. Accept allow ion flow «between cells».	1

3.	(f)	(iv)	NO₃⁻ to anode/Fe/left ✓ K⁺ «and Fe²⁺» to cathode/Cu/right ✓	Accept other specific anions in addition to nitrate for M1. Award [1 max] for "anions/negative ions to anode AND cations/positive ions to cathode".	2
3.	(f)	(v)	«E ⁹ = + 0.34 ∨ - (- 0.45 ∨) = +» 0.79 «∨» ✓		1
3.	(f)	(vi)	«∆G ^e = − nF E ^e = − 2 mol x (9.65 x10 ⁴ C mol ⁻¹) x (0.79 V) x =» −152 «kJ» ✓	Accept answers in the range 150 – 153.	1

Q# 102/ Chem 9 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

1.	(e)	Anode: H ₂ O(l) → 1/2O ₂ (g) + 2H*(aq) + 2e* ✓	Do not accept other equations.		
		Cathode: H*(aq) + e ⁻ → 1/2H ₂ (g) ✓		2	

Q# 103/ Chem 9 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2.	а		Alternative 1 put Mg in Zn²* (aq) ✓ Zn/«black» layer forms «on surface of Mg» ✓ Alternative 2 place both metals in acid ✓	Award [1 max] for "no reaction when Zn placed in Mg ²⁻ (aq)".	
			bubbles evolve more rapidly from Mg OR Mg dissolves faster ✓ Alternative 3 construct a cell with Mg and Zn electrodes ✓ bulb lights up OR shows (+) voltage OR size/mass of Mg(s) decreases < <over time="">> OR size/mass of Zn increases <<over time="">> ✓</over></over>	Accept "electrons flow from Mg to Zn". Accept Mg is negative electrode/anode OR Zn is positive electrode/cathode Accept other correct methods.	2
2.	b	i	Cell potential: «(-0.45 V - (-2.37 V)» = «+»1.92 «V»√	3 1 1 1	1
2.	b	ii	«∆G° = -nFE°» n = 2 OR ∆G° = «-»2×96500×1.92 / «-»370,560 «J» ✓ -371 «kJ» ✓	For n = 1, award [1] for –185 «kJ». Award [1 max] for (+)371 «kJ».	2
2.	b	III	2 H ₂ O + 2 e ⁻ → H ₂ + 2 OH ⁻ ✓	Accept equation with equilibrium arrows.	1

Q# 104/ Chem 9 IB Chem/2022/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

1.	d	iii		Do not Accept 3 or 3		
			AND NH _{3:} -3 ✓	700	1	

1.	d	iv	Acid-base: yes AND N³ accepts H*/donates electron pair«s» OR	Accept "yes AND proton transfer takes place"	
			yes AND H₂O loses H* «to form OH*»/accepts electron pair «s» ✓ Redox: no AND no oxidation states change ✓	Accept reference to the oxidation state of specific elements not changing. Accept "not redox as no electrons gained/lost".	2
				Award [1 max] for Acid-base: yes AND Redox: no, if no other mark is awarded."	

Q# 105/ Chem 9 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q8. www.SmashingScience.org :o)

Q# 106/ Chem 9 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :0)

6	а		«amount of» oxygen used to decompose the organic matter in water ✓		1
6.	b		$ \frac{0.0001 \text{ g}}{0.1240 \text{ g}} \times 100 \% = 0.08 \text{ g/w} $ OR $ \frac{0.4 \text{ cm}^3}{1000.0 \text{ cm}^3} \times 100 \% = 0.04 \text{ g/w} $ $ \frac{0.08 \% + 0.04 \% = 0.12/0.1 \text{ g/w}}{0.08 \% + 0.04 \% = 0.12/0.1 \text{ g/w}} $	Award [2] for correct final answer. Accept fractional uncertainties for M1, i.e., 0.0008 OR 0.0004.	2
6.	С	i	« 37.50 cm³ × 5.000 × 10⁻⁴ mol dm⁻³ =» 1.875 × 10⁻⁵ «mol» ✓		1
6.	c	II	1:4 🗸	Accept "4 mol S ₂ O ₃ 2-:1 mol O ₂ ", but not just 4:1.	1
6.	С	III	«1.875 × 10 ⁻⁵ mol × $\frac{1}{4}$ =» 4.688 × 10 ⁻⁵ «mol» ✓ « $\frac{4.688 \times 10^{-6} \text{ mol}}{25.00 \text{ cm}^3}$ =» 1.875 × 10 ⁻⁴ «mol dm ⁻³ » ✓	Award [2] for correct final answer.	2
6.	С	iv	$MnO_2(s) + 2e^- + 4H^+(aq) \rightarrow Mn^{2+}(aq) + 2H_2O(l) \checkmark$		1
6.	С	v	rate of reaction of oxygen with impurities depends on temperature OR rate at which bacteria/organisms grow/respire depends on temperature ✓	1/200	1

Q# 107/ Chem 9 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :o

			The state of the s	
3.	d	Equation: $2\text{Fe}^{3+}(\text{aq}) + \text{Fe}(\text{s}) \rightarrow 3\text{Fe}^{2+}(\text{aq}) \checkmark$ Cell potential: $\text{«+0.77 V} - (-0.45 \text{ V}) = +\text{»}1.22 \text{ «V»} \checkmark$	Do not accept reverse reaction or equilibrium arrow. Do not accept negative value for M2.	2
3.	е	Iron/Fe «cathode» Iron/Fe «cathode»	Accept an inert conductor for the anode. Accept specific zinc salts such as ZnSO4.	2

Q# 142/ Chem 9 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1.	е	i	$4FeS(s) + 7O_2(g) \rightarrow 2Fe_2O_3(s) + 4SO_2(g) \checkmark$	Accept any correct ratio.	1
1.	е	ii	+6 OR -2 to +4 ✓	Accept "6/VI". Accept "-II, 4/+4/IV". Do not accept 2- to 4+.	1

Q# 108/ Chem 9 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

			,	
6.	с	cathode/negative «electrode» AND Cu²+ reduced «at that electrode» ✓	Accept cathode/negative «electrode» AND copper forms «at that electrode».	1

Q# 109/ Chem 9 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4.	d	ı	Ni (s) Pb (s) Ni²* (aq) Pb²* (aq)	•	1
4.	d	ii	«-0.13 V - (-0.26 V) = +» 0.13 «V» ✓		1
4.	d	iii	$\alpha \Delta G^0 = -nFE^0 = -2 \times 96500 \times \frac{0.13}{1000} = -25 \text{ «kJ» ✓}$		1
4.	d	iv	Bi/Cu/Ag/Pd/Hg/Pt/Au ✓	Accept Sb OR As.	1

1.	b	v	MnO₂: +4 ✓ MnCl₂: +2 ✓	2
1.	b	vi	oxidizing agent AND oxidation state of Mn changes from +4 to +2/decreases ✓	1

Q# 6	1	/ Ch	OH CH CH3	ningScience.org :o) Accept C₀H₅- instead of benzene ring.	1
6	а	ii	it contains a chiral carbon atom ✓	Accept it contains an asymmetric carbon / carbon with 4 different groups attached. Accept its mirror image is non-superimposable.	1
6	а	III	acidified/H* AND potassium dichromate(VI)/K₂Cr₂O₂/Cr₂O₂²² OR potassium permanganate(VII)/KMnO₄/MnO₄² ✓		1
6	а	iv	CH2_C OH /phenylethanoic acid ✓ addition of water «in first step» produces primary alcohol «as a minor product» ✓	Accept phenylethanal / CH2 O H for M1. Accept anti-Markovnikov addition «of water» / water can add in opposite direction for M2.	2
6	b	i	NO ₂ * / *NO ₂ ✓	Do not accept equation for the equilibrium, as electrophile not identified.	1
6	b	ı	O _C CH ₃ O _C CH	Do not penalize if NO₂* is written. Award [3 max] for substitution at other positions on the benzene ring. Allow mechanism with corresponding Kekulé structures. Accept curly arrow going to either an atom or the charge on *NO₂ for M1. For M2 accept different variations of indicating delocalized electrons in ring.	4

Q# 112/ Chem 10 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :o)

3	а	Reagent: methanol ✓	Do not accept formula for M1.	
		Catalyst: «concentrated» sulfuric acid ✓	For M2 accept H₂SO₄/phosphoric acid/H₃PO₄/hydrochloric acid/HCl, but do not accept nitric acid.	2
	d	esters ✓		1
2	а	it removes CO₂ «from the atmosphere» ✓ CO₂ is a «major» contributor to climate change / global warming	Accept reduces CO ₂ emissions for M1. Award [1] for reactants are	

Q# 114/ Chem 10 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

1	а		Award [1] for two of the following: same functional group/family same general formula «successive members» differ by a common structural unit/CH ₂ ✓	Accept "different chain lengths" for "differ by a common structural unit".	1
1	С	i	«strongest intermolecular forces in» methanoic acid are hydrogen/H-bonds AND ethanal dipole-dipole forces ✓	Do not award marks for answers based on difference in polarity or molar mass.	
			hydrogen/H-bonds stronger «than dipole-dipole forces so methanoic acid has higher boiling point» <	Do not accept van der Waals' forces for dipole-dipole forces.	2
1	С	ii	«both can» form hydrogen bonds with water «molecules» ✓		1
1	С	III	Relative electrical conductivity: ethanal < methanoic acid < hydrochloric acid conductivity depends on concentration/amount of ions OR solutions contain increasing concentrations/amounts of ions «in this order» hydrochloric acid is a strong acid/fully dissociated AND methanoic acid is a weak acid/partially dissociated AND ethanal is not acidic/minimally dissociated/undissociated	M2 should be awarded if implied through addressing extent of dissociation/ionization in the compounds. Accept equations with appropriate arrows for M3.	3
	d	iv	the double/pi/π bond «in the methanoate ion» is delocalized OR resonance occurs ✓ shorter than the single bond AND longer than the double bond «in methanoic acid» / intermediate between single and double bond ✓	Accept drawing showing delocalization of the bond or resonance structures for M1.	2

Q# 115/ Chem 10 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3.	(a)	(i)	compounds of the same family AND general formula OR compounds of the same family AND differ by a common structural unit/CH ₂ ✓	Accept contains the same functional group for same family.	1
3.	(a)	(ii)	2-chlorobutane ✓ 1-chloro-2-methylpropane ✓	Accept 1-chloromethylpropane for M2, but not 2-methyl-1-choloropropane.	2
3.	(a)	(iii)	- Ca		1

3.	(a)	(iv)	CH ₃ CH ₄ CH ₃ CH ₃ CH ₅ CH ₄ CH ₅ CH ₃ CH ₆ CH ₇ CH ₇ H H H H H n	Allow any orientation of methyl groups. Ignore square brackets and "n". Continuation lines must be shown.	1
3.	(b)		Step 1: KOH _(aq) /NaOH _(aq) OH ⁻¹ _(aq) ✓ Step 2: KMnO ₄ <i>OR</i> acidified/H* <i>AND</i> K ₂ Cr ₂ O ₇ ✓	Do not accept H ₂ O for KOH _(aq) /NaOH _(aq) OH ⁻¹ _(aq) for M1. Accept potassium permanganate/MnO ₄ /dichromate/Cr ₂ O ₇ ² for M2. Accept H ₂ SO ₄ as acid. Do not allow any other acid.	2
3.	(c)	(i)	Nucleophilic AND substitution. ✓	Allow S _N 2. Do not allow S _N 1. Do not allow hydrolysis.	1
3.	(c)	(ii)	$\begin{array}{c} \text{HO} \\ \text{H}_3\text{C} - \text{C} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{HO} - \text{C} - \text{CI} \\ \text{H}_3\text{C} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H}_3\text{C} - \text{C} - \text{OH} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \\ \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \end{array} \longrightarrow \begin{array}{c} \text{H} \end{array} \longrightarrow$	Accept OH with or without the lone pair. Do not allow curly arrows originating on H in OH. Accept curly arrows in the transition state. Do not penalize if HO and Cl are not at 180°. Do not award M3 if OH–C bond is represented. If the answer in 3 (c) (i) is correct Award [3 max] for Sn1 mechanism. if answer in 3 (c) (i) is Sn1, award [4] for Sn1 mechanism.	4
3.	(c)	(iii)	ethyl ethanoate/CH₃CH₂OOCCH₃ AND water/H₂O. ✓	Accept structural/skeletal formulae.	1
# 1	16/	Chem	n 10 IB Chem/2022/w/TZ0/Pa <mark>pe</mark> r 2/Higher Level/Q6. www. <mark>S</mark> mashingSo	cience.org :o)	
6.	(a)		S _N 1 mechanism:		

6.	(a)	S _N 1 mechanism:		
		Rate [CN1] S _N 2 mechanism:		2
6.	(b)	S _N 2 AND S _N 2 «mechanism» occurs with inversion of configuration OR S _N 2 AND S _N 1 «mechanism» would create a racemic mixture ✓	Accept appropriate diagrams.	1
6.	(c)	polarimeter ✓		1
6.	(d)	aprotic AND polar ✓		1

6.	(e)	slower AND C-Cl bond is stronger «than C-Br» OR slower AND Br/Br is a better leaving group ✓	1
6.	(f)	arrow from C-Br bond to Br ✓ transition state representing the partially formed and partially broken bonds ✓ If S _N 1 was selected in 6 (b): □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	3

Q# 117/ Chem 10 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q4. www.SmashingScience.org :0)

4.	(a)	(i)	Structure: H H C C C O CH ₃ H H H ester functional group rest of structure Empirical Formula: C ₃ H ₅ O ✓	Accept condensed/skeletal formula.	3
4.	(a)	(ii)	dilute adds «excess» water OR water is a product ✓ shift left AND decreases yield ✓		2
4.	(a)	(iii)	A has hydrogen bonding/bonds «and dipole-dipole and London/dispersion forces» AND B has dipole-dipole «and London/dispersion forces» OR A has hydrogen bonding/bonds AND B does not ✓ intermolecular forces are weaker in B OR hydrogen bonding/bonds stronger «than dipole-dipole» ✓		2
4.	(b)		brown/orange/red/yellow to colourless ✓	Do not accept clear for colourless.	1

)# 1 2.	18/ (a)	Chem	n 10 IB Chem/2022/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingSo	cience.org :o)	
			CI N1		1
2.	(b)		nine/9 ✓		1
2.	(c)		seven/7 ✓		1
2.	(d)		«bond in ring is» shorter AND more electrons are shared OR «bond in ring is» shorter AND partial double/multiple bonding/bond order 1.5 ✓		1
2.	(e)	(i)	H₂N N primary amine/-NH₂ ✓ rest of structure ✓	Do not penalize using "N1".	2
# 1	19/ (hem	10 IB Chem/2022/s/TZ1/P <mark>a</mark> per 2/Higher Level/Q6. w <mark>ww.S</mark> mashingSci	ence.org :o)	
6.	b	i	HNO₃ + 2H₂SO₄ → NO₂* + H₃O* + 2HSO₄* ✓	Accept "HNO ₃ + H ₂ SO ₄ \rightleftharpoons NO ₂ * + H ₂ O + HSO ₄ ". Accept "HNO ₃ + H ₂ SO ₄ \rightleftharpoons H ₂ NO ₃ * + HSO ₄ " AND "H ₂ NO ₃ * \rightleftharpoons NO ₂ * + H ₂ O". Accept single arrows instead of equilibrium signs.	1
6.	b	ii	H NO ₂ H NO ₂	Accept any of the five structures. Do not accept structures missing the positive charge.	

1 max

b

iii

Number of signals: three/3 ✓ Relative areas: 2:2:1 ✓

5.	a	i	2-methylpropan-2-ol /2-methyl-2-propanol ✓	Accept methylpropan-2-ol/ methyl-2- propanol.	1
				Do not accept 2-methylpropanol.	310
	а	ii	dipole-dipole ✓	Do not accept van der Waals' forces.	1
	a	iii	σ: 9 AND π: 1 ✓		1
	а	iv	sp² ✓		1
5.	а	v	butan-2-ol/CH₃CH(OH)C₂H₅ ✓		1
5.	b	i	H_c=cCH ₃		1
5.	b	ii	carbocation formed from (CH₃)₃COH is more stable / (CH₃)₃C⁺ is more stable than (CH₃)₃CHCH₂⁺ ✓ «because carbocation has» greater number of alkyl groups/lower charge on the atom/higher e⁻ density OR «greater number of alkyl groups» are more electron releasing OR «greater number of alkyl groups creates» greater inductive/+I effect ✓	Do not award any marks for simply quoting Markovnikov's rule.	2
	b	III	CH ₃ H CH ₃ H In	Do not penalize missing brackets or n. Do not award mark if continuation bonds are not shown.	1
	С		no change «in colour/appearance/solution» ✓		1
5.	d	i	«nucleophilic» substitution OR SN2 ✓	Accept "hydrolysis". Accept SN1	1
5.	d	iii	Curly arrow going from lone pair/negative charge on O in OH to C curly arrow showing I leaving representation of transition state showing negative charge, square brackets and partial bonds	Accept OH with or without the lone pair. Do not allow curly arrows originating on H, rather than the -, in OH. Accept curly arrows in the transition state. Do not penalize if HO and I are not at 180°. Do not award M3 if OH–C bond is represented. Award [2 max] if S _N 1 mechanism shown.	3
# 1	21/	Chem	10 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q7. www.SmashingSc	ience.org :o)	
	а		$\alpha q = mc\Delta T = 20.0 \text{ g} \times 4.18 \text{ Jg}^{-1} ^{\circ}\text{C}^{-1} \times 57.3 ^{\circ}\text{C} = 3 \text{ 4790 } \alpha \text{J}$ ✓	Award [2] for correct final answer. Accept answers in the range –5470 to - 5480 «kJ mol ⁻¹ ».	2
			«△H _c = - 4790 J 1000 =» -5470 «kJ mol ⁻¹ » ✓ 8.75×10 ⁻⁴ mol	Accept correct answer in any units, e.g. – 5.47 «MJ mol ⁻¹ » or 5.47 x 10 ⁶ «J mol ⁻¹ ».	-

7. b	$Cl \cdot + C_2H_6 \rightarrow \cdot C_2H_5 + HCl \checkmark$ $\cdot C_2H_5 + Cl_2 \rightarrow Cl \cdot + C_2H_5Cl \checkmark$		
	$\cdot C_2H_5 + Cl \cdot \rightarrow C_2H_5Cl$ OR	Do not penalize incorrectly placed radical sign, eg C₂H₅·.	3
	$Cl \cdot + Cl \cdot \rightarrow Cl_2$		
	OR		
	·C ₂ H ₅ + ·C ₂ H ₅ → C ₄ H ₁₀ ✓		

Q# 122/ Chem 10 IB Chem/2021/w/TZ0/Paper 2/Higher Level/Q10. www.SmashingScience.org :o)

10.	b	i	no AND 2 groups on a carbon «in the double bond» are the same/hydrogen «atoms» OR no AND molecule produced by rearranging atoms bonded on a carbon «in the double bond» is the same as the original ✓		1
10.	b	ii	«electrophilic» addition ✓	Do not allow nucleophilic addition.	1
10.	b	III	H CH ₂ CH ₃ H CH	Penalize incorrect bond, e.gCH-H ₃ C or -CH ₃ C once only.	4
10.	b	iv	yes AND has a carbon attached to four different groups OR yes AND it contains a chiral carbon ✓	Accept yes AND mirror image of molecule different to original/non-superimposable on original.	1
10.	d		S _N 2 <i>AND</i> rate depends on both OH⁻ and 2-chloropentane ✓	Accept E2 AND rate depends on both OH ⁻ and 2-chloropentane.	1
10.	е		delocalized electrons/pi bonds «around the ring» OR molecule has a region of high electron density/negative charge ✓ electrophiles are attracted/positively charged AND nucleophiles repelled/negatively charged✓	Do not accept just "nucleophiles less attracted" for M2. Accept "benzene AND nucleophiles are both electron rich" for "repels nucleophiles".	2

Q# 123/ Chem 10 IB Chem/2021/s/TZ1/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

5.	a	i	alkene ✓		1
5.	а	ii	C₃H₅ ✓	Accept structural formula.	1
5.	С	10	carbon monoxide/CO <i>AND</i> carbon/C/soot ✓		1
5.	d		«addition» polymerization ✓		1

5.	е	i	H CH3 H CH	Award [2 max] for mechanism producing 1-brompropane.	3
5.	е	ii	«2-bromopropane involves» formation of more stable «secondary» carbocation/carbonium ion/intermediate OR 1-bromopropane involves formation of less stable «primary» carbocation/ carbonium ion/intermediate ✓ «increased» positive inductive/electron-releasing effect of extra –R group/–CH₃/methyl «increases stability of secondary carbocation» ✓	Award [1] for "more stable due to positive inductive effect". Do not award marks for quoting Markovnikov's rule without any explanation.	2
5.	е	iii	sodium hydroxide/NaOH/potassium hydroxide/KOH ✓	Accept «aqueous» hydroxide ions/OH	1
5.	е	iv	Name of carbonyl compound: propanone Type of reaction: reduction ✓	Accept other valid alternatives, such as "2-propyl ethanoate" for M1 and "hydrolysis" for M2.	2

Q# 124/ Chem 10 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :0)

2. e	Accept any two C ₃ H ₆ O isomers except for propanone and propen-2-ol: H H O H O C C C C H H H H H H H H H	Penalize missing hydrogens in displayed structural formulas once only.
	H H H H H H H H H H H H H H H H H H H	2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21
	н—с—с—с—о—н	

2.	f	i	B AND K₂ is greater than 1/large ✓	1
2.	f	ii	«ΔG0 = -RTlnK = 0.00831 kJ mol-1 K-1 (298 K) (ln 1.0 × 108) =» -46 «kJ mol-1» ✓	1
2.	g	i	H ₂ O «H ₂ SO ₄ /H ⁺ » H ₂ O/water «and H ⁺ » ✓ CH ₃ CH(OH)CH ₃ /propan-2-ol ✓ K ₂ Cr ₂ O ₇ /«potassium» dichromate(VI) <i>AND</i> H ⁺ <i>OR</i> KMnO ₄ / «acidified potassium» manganate(VII) ✓	3O ⁺ .
2.	g	n	primary carbocation «intermediate forms» OR minor product «of the water addition would be» propan-1-ol OR anti-Markovnikov addition of water ✓ primary alcohol/propan-1-ol oxidizes to an aldehyde/propanal ✓	2

Q# 125/ Chem 10 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :0)

l. d	d	i	«free radical» substitution/S _R ✓	Do not accept electrophilic or nucleophilic substitution.	1
1. d	1	II	chloroethane AND C-Cl bond is weaker/324 kJ mol⁻¹ than C-H bond/414 kJ mol⁻¹ OR chloroethane AND contains a polar bond ✓	Accept "chloroethane AND polar".	1
1. d			HÖ: CH ₃ CH ₂ CH: CH ₃ CH: CH ₃ CH ₂ CH: CH ₃ CH: CH: CH: CH: CH: CH: CH: CH: CH: CH:	Accept OH ⁻ with or without the lone pair. Do not accept curly arrows originating on H in OH ⁻ . Accept curly arrows in the transition state. Do not penalize if HO and CI are not at 180°. Do not award M3 if OH–C bond is represented.	3

Q# 126/ Chem 11 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q5. www.SmashingScience.org :o)

- 4	11.00			22	
5	;	a	ì	X-ray crystallography/diffraction ✓	1

Q# 127/ Chem 11 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q3. www.SmashingScience.org :0)

3	С	1	Similarity: «absorption at» 1700-1750 «cm ⁻¹ » OR absorption by the carbonyl/C=O bond OR «absorption at» 2850-3090 «cm ⁻¹ » OR absorption by carbon-hydrogen/C- H bond ✓ Difference: methanoic acid «has absorption at» 2500-3000 «cm ⁻¹ which is absent for methyl methanoate» OR methanoic acid has absorption by the hydroxyl/O-H bond «which is absent for methyl methanoate» ✓	Do not accept the bond without the wavenumber or reference to the spectrum (e.g. absorption, peak, trough). Do not accept absorption of C-O bond at 1050-1410 cm ⁻¹ for M1 as it is outside range. Do not accept hydroxide instead of hydroxyl for M2. Do not accept 3200-3600 cm ⁻¹ for M2 as O-H is in carboxylic acid.	2
3	С	ii	methyl methanoate AND the ratio «of areas under peaks» is 1:3 ✓	Accept methyl methanoate AND methanoic acid would have a 1:1 ratio. Do not accept answers in terms of	1

Q# 128/ Chem 11 IB Chem/2023/w/TZ0/Paper 2/Higher Level/Q2. www.SmashingScience.org :o)

2	С	ii	ALTERNATIVE 1 sum of absolute uncertainties «= 0.804 + 0.436 + 0.414 + 0.358 + 0.463 =» 2.475 «kJ mol⁻¹» ✓		
			percentage uncertainty «= 100 × 2.475 / 5 = 49.5% = » 50 «%» ✓ ALTERNATIVE 2 sum of absolute uncertainties «= 3(0.804) + 0.436 + 0.414 + 0.358 + 0.463 =» 4.083 «kJ mol⁻¹» ✓	Award [2] for correct final answer.	2
			percentage uncertainty «= 100 × 4.083 / 5 = 81.7%» = 80 «%» ✓		

Q# 129/ Chem 11 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q7. www.SmashingScience.org :o)

7.	(a)	(i)	(i) Name Number of signals Ethyl methanoate 3	(i)	(i)	(i)	(i) Name Number of signals	
				3	100			
			Methyl ethanoate	AND 2				
			1	199				
7.	(a)	(ii)	same types of bonds «present OR same wavenumbers absorbed		1			

Q# 130/ Chem 11 IB Chem/2023/s/TZ1/Paper 2/Higher Level/Q6. www.SmashingScience.org :o)

6.	(a)	(i)	«ΔH°rxn = ΣΔH°f (Products) – ΣΔH°f (Reactants) =» -395.8 - (-296.8)» = -99.0«kJ mol⁻¹» ✓		1
6.	(b)	(i)	«q = -mc∆T = 50.00g x 4.18J K⁻¹g⁻¹ x (35.0-20.0)°C =» -3140.0 «J» ✓ «(3140/0.1)/1000 =» -31.4 «kJ mol⁻¹» ✓	Award [1 max] for +31.4 kJ mol ⁻¹ Award [2] for correct final answer.	2
6.	(b)	(ii)	Source of systematic error: heat loss «to the surroundings» ✓ Improvement: insulate reaction apparatus/put a lid on the beaker OR use a bomb/calibrated calorimeter OR use of windbreak around the dish/apparatus ✓		2
6.	(b)	(iii)	$ \frac{\text{«1.0/15.0 x 100} = » 6.7 «%» }{OR} $ $ \frac{\sqrt{0.5^2 + 0.5^2}}{15.0} \times 100\% ≈ 5\% $	Do not allow 6.6% Accept "5%" if the formula $\sqrt{\Sigma(\Delta A)^2}$ is used.	1

6.	(b)	(iv)	v) more precise/more divisions per degree «on the thermometer» OR more precise balance	per degree «on the thermometer»	Do not accept more repetitions.	
			OR			1
			larger quantities of sulfur/wat OR			
			larger temperature change <			
6.	(b)	(v)	« -297 kJ mol ⁻¹ 31.4kJ mol ⁻	¹/-297 kJ mol⁻¹x 100 =» 89.4 «%» ✓		
			alternate:			1
	b		« -297 kJ mol-150.0 kJ mol	11/-297 kJ mol⁻¹x 100 =» 83.2 «%» ✓		
‡ 1 3	31/ C	hem	11 IB Chem/2022/w/TZ0,	/Paper 2/Higher Level/Q6. www.SmashingSc	ience.org :o)	
	(g)	(i)	Number of signals: 4 ✓			
					Accept ratio of areas in any order.	2
			Ratio of areas: 3:1:2:3 ✓			
6.	(g)	(ii)	Splitting pattern of the signal	of the hydrogen atoms in circle A:		
			doublet ✓			2
			Splitting pattern of the signal	of the hydrogen atoms in circle B:		2
	э - :	(— (c	triplet ✓		y .	
† 1 3	32/ C	hem	11 IB Chem/2022/w/TZ0,	/Pape <mark>r 2/Higher Level/Q3. ww</mark> w.SmashingSc	ience.org :o)	
•	(b)		(63 × 69) + (65 × 31)			
			100			
			OR			1
			65x + (1-x)63 = 63.62 AND	x = 0.31/31«%» AND 1 - x = 0.69 /69«%» ✓		
					1	
# 13	33/ C	hem	11 IB Chem/2022/s/TZ1/	Paper 2/Higher Level/Q6. www.SmashingSci	ence.org :o)	
6.	а	iv	X-ray crystallography ✓	160-1		
ц 4	24/6			Danis 2/11/ahar 1 a a 1/04 a a a a ƙasar ƙasar ƙasar ƙ		1
1.	54/ C	nem ii	mass of product « = 56.941 g	Paper 2/Higher Level/Q1. www.SmashingScions - 47.372 gw = 9.569 «qw √	ence.org :0) Award [2] for correct final answer	
	100	1.500	G. 42 92 95 1		Accept 0.021%.	2
			$\langle (100 \times \frac{2 \times 0.001g}{9.569 g} = 0.0209) \rangle =$	0.02 «%» ✓		
	35 / 6		44 10 61 /2024 / /770	/p	. 7/	
# 1: 1.	35/ C	.nem 	Spectrum Identity	/Paper 2/Higher Level/Q1. www.SmashingSc	Award [1 max] for correctly identifying	
he:			A Propan-1-ol	absence of carbonyl/C=O «absorption»/ no peak	all 3 compounds without valid reasons	
				in 1700 - 1750 «cm ⁻¹ » range	given. Accept specific values of wavenumbers	
				OR	within each range.	
				presence of hydroxyl/O-H in <u>alcohols</u> «absorption»/peak in 3200 – 3600 «cm ⁻¹ »		
				range ✓		
			B Propanoic	ALTERNATIVE 1:		
			acid	carbonyl/C=O AND hydroxyl/O-H «in carboxylic acids absorptions»		
				OR		2
				«strong» peaks in 2500 – 3000 «cm ⁻¹ » AND		3
				1700 – 1750 «cm⁻¹» ranges ✓		
				ALTERNATIVE 2		
				ALTERNATIVE 2: O-H in carboxylic acids «absorption» AND 2500		
				- 3000 «cm⁻¹» range ✓		
				ALTERNATIVE 3:		
			ii I	1.1-1		

Page **202** of **204**

strong/broad «peak» AND 2500 - 3000 «cm⁻¹»

			С	1 A a a	resence of carbonyl/C=O «absorption»/ 700 – 1750 «cm ⁻¹ » range AND absence of hydroxyl/O-H «in carboxylic acbsorption»/ no «broad» peak in 2500 – 3 cm ⁻¹ » range ✓	ids	
1.	d		Compound	Number of signals	Splitting pattern of -CH ₃		
			propanone	1	singlet		2
			propanal	3	triplet		
1.	е		CH ₃ O ⁺			Accept any structure i.e. "CH₂OH ⁺ ".	1
(# 1	.36/	Chem	11 IB Chem/2	021/s/TZ1/Pa	per 2/Higher Level/Q5. www.Sma	shingScience.org :o)	
5.	b	i	hydrogen atoms/protons in same chemical environment ✓ A			Accept "all H atoms/protons are equivalent". Accept "symmetrical"	1
5.	b	ii	4.5 to 6.0 «ppn	ı» √		Accept a single value within this range.	1
	_		ACTOR GROUND PART THE TANKS	cor sec	aper 2/Higher Level/Q5. www.Sm	ashingScience.org :o)	
5.	f	i	systematic «emo	cor sec	aper 27 mg/rer zever/ qor www.om	l l l l l l l l l l l l l l l l l l l	1
5.	f	ii	[CH ₃ COOH] woo	uld be higher ✓	1 100 5 K		3
					value in calculation»		
			OR		needed to neutralize the acid ✓	Accept KOH partially neutralised by (from air.	2 CO ₂
Q# 1	39/	Chem	11 IB Chem/2	020/w/TZ0/P	aper 2/Higher Level/Q2. www.Sm	ashingScience.org :o)	
2.	d		B AND C=O abs OR B AND absence	A.	m⁻¹» 3600 «cm⁻¹ absorption» ✓	Accept any value between 1700–1750 cm ⁻¹ .	1
Q# 1	40/	ı Chem	ı ı 11 IB Chem/2	020/w/TZ0/Pa	aper 2/Higher Level/Q1. www.Sm	ashingScience.org :o)	
1.	а	iv	«two major» i	sotopes «of ator	mic mass 35 and 37» ✓		1
1.	a	v	«diatomic» m	olecule compos	ed of «two» chlorine-37 atoms ✓		
			chlorine-37 is	the least abund	lant «isotope»		

low probability of two $^{37}{\rm Cl}$ «isotopes» occurring in a molecule \checkmark

Q# 141/ Chem 11 IB Chem/2020/w/TZ0/Paper 2/Higher Level/Q1. www.SmashingScience.org :o)

1.	d	iv	H H H H H C C C O C C H H H H H / CH₃CH₂OCH₂CH₃ ✓	Accept (CH₃CH₂)₂O.	1
1.	d	v	2 «signals» ✓ 0.9–1.0 AND triplet ✓ 3.3–3.7 AND quartet ✓	Accept any values in the ranges. Award [1] for two correct chemical shifts or two correct splitting patterns.	3

