
CAIE A Level Chemistry

Paper 4 Past Exam Questions Organised by Topic Number

Winter 2009 to March 2022 (32 Papers)

Name: Class:

For and electronic version of this Work Book Scan this code:

Contents

For and electronic version of this Work Book	2
Calendars and time management	
Planning your days	7
Paper 4: Analysis, notes and points of interest	11
Main syllabi changes discussion	11
Changes to this syllabus for 2025, 2026 and 2027	13
Notes on taking apart these exam papers and how they were separated	14
PAPER 4 Tables of analysis o <mark>f mark frequencies per topic</mark>	16
PAPER 5 Tables of analysis of mark frequencies for topics and experiment types	20
Paper 4 Data Processing - Graphs	21
Cambridge International AS & A Level Chemistry 9701 syllabus for 2022, 2023 and 2024. Sylla	abus overview30
Past Exam Questions	31
Topic: Chem 1 Q# 1	31
Topic: Chem 2 Q# 3	31
Topic: Chem 3 Q# 15	36
Topic: Chem 5 Q# 31	43
Topic: Chem 6 Q# 37	46
Topic: Chem 7 Q# 41	48
Topic: Chem 9 Q# 48	51
Topic: Chem 10 Q# 56	54

www.Smashing		Patrick Brannac	Page 3 of 703	SMASHINGI
•				
-				
-				
•				
Q# 15/ Topi	c: Chem 3			534
Q# 3/ Topic:	: Chem 2			533
Topic: Chem	n 36 Q# 453			427
•				
Topic: Chem	n 34 Q# 386			371
Topic: Chem	n 33 Q# 368			357
•				
Topic: Chem	n 30 Q# 339			331
Topic: Chem	n 29 Q# 325			325
Topic: Chem	n 28 Q# 277			255
Topic: Chem	n 27 Q# 254			242
Topic: Chem	n 26 Q# 233			207
Topic: Chem	n 25 Q# 188			165
Topic: Chem	n 24 Q# 154			124
Topic: Chem	n 23 Q# 124			92
Topic: Chem	n 22 Q# 113			84
Topic: Chem	n 20 Q# 110			82
Topic: Chem	n 17 Q# 104			79
Topic: Chem	n 16 Q# 101			78
Topic: Chem	n 15 Q# 97			75
Topic: Chem	n 14 Q# 89			69
Topic: Chem	n 13 Q# 68			60
Topic: Chem	n 11 Q# 60			56

Q# 104/ Topic: Chem 17	550
Q# 110/ Topic: Chem 20	
Q# 113/ Topic: Chem 22	
Q# 124/ Topic: Chem 23	
Q# 154/ Topic: Chem 24	
Q# 188/ Topic: Chem 25	
Q# 254/ Topic: Chem 27	
Q# 277/ Topic: Chem 28	
Q# 325/ Topic: Chem 29	620
Q# 339/ Topic: Chem 30	
Q# 354/ Topic: Chem 31	626
Q# 356/ Topic: Chem 32	626
Q# 368/ Topic: Chem 33	
Q# 386/ Topic: Chem 34	634
Q# 437/ Topic: Chem 35	
Q# 453/ Topic: Chem 36	654
Q# 501/ Topic: Chem 37	
2016 Data Booklet and Periodic Table	
Important values, constants and standards (2022 and after)	
Periodic table	

Calendars and time management

Organising your months in 2024

	January										
				Т							
7 14	1	2	3	4	5	6					
7	8	9	10	11	12	13					
14	15	16	17	18	19	20					
21 28	22	23	24	25	26	27					
28	29	30	31								

February									
S	М	Т	W	Т	F	S			
				1	2	3			
4	5	6	7	8	9				
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26								

March									
S	М	Т	W	Т	F	S			
					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28	29	30			
31									

April										
S	М	Т	W	Т	F	S				
	1	2	3	4	5	6				
7	8	9	10	11	12	13				
14	15	16	17	18	19	20				
21	22	23	24	25	26	27				
28	29	30								

Мау									
S	М	Т	W	Т	F	S			
			1	2	3	4			
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	29	30	31				
-									

June									
S	М	Т	W	Т	F	S			
						1			
2	3	4	5	6	7	8			
9	10	11	12	13	14	15			
16	17	18	19	20	21	22			
23	24	25	26	27	28	29			
2 9 16 23 30									

International Education

Cambridge IGCSE[™] Cambridge O Level Cambridge International AS & A Level

Cambridge Final Exam Timetable June 2024 Administrative zone 5

CAIE Chemistry 9701 A Level Chemistry Exam Timetable for Administrative Zone 5 (Time Zone 2):

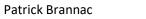
Paper 4

Neo	lnesday 08 May			
	Syllabus/Component	Code	Duration	Session
IG	Information & Communication Technology	0417/13	1h 30m	AM
IG	Global Perspectives	0457/13	1h 15m	AM
AS	Computer Science	9618/13	1h 30m	AM
AS	Information Technology	9626/13	1h 45m	AM

	Syllabus/Component	Code	Duration	Session
IG	English (as an Additional Language)	0472/22	1h	PM
IG	English (as an Additional Language)	0472/42	1h	PM
IG	First Language English (Oral Endorsement)	0500/12	2h	PM
IG	English as a Second Language (Speaking Endorsement)	0510/12	2h	PM
IG	English as a Second Language (Count-in Speaking)	0511/12	2h	PM
OL	English Language	1123/12	2h	PM
AL	Chemistry	9701/42	2h	PM

Paper 5

Weo	Wednesday 15 May										
	Syllabus/Component	Code	Duration	Session			Syllabus/ Component	Code	Duration	Session	
IG	Literature in English	0475/23	1h 30m	AM		IG	Computer Science	0478/12	1h 45m	PM	
IG	Literature in English	0475/33	45m	AM		IG	French	0520/22	1h	РМ	
IG	Literature in English	0475/43	1h 15m	AM		OL	Computer Science	2210/12	1h 45m	PM	
OL	Literature in English	2010/23	1h 30m	AM		OL	French	3015/02	1h	PM	
AL	Mathematics (Pure Mathematics 3)	9709/33	1h 50m	AM		AS	Chemistry	9701/22	1h 15m	PM	
						AL	Chemistry	9701/52	1h 15m	PM	


Organising your weeks

Week Starting	Wk #	Events	Topic Focus
11-Mar	9		
18-Mar	10		
25-Mar	11		
1-Apr	12		
8-Apr	13		
15-Apr	14		
22-Apr	15		
29-Apr	16	Thur 2 nd PM Paper 33 (TZ2)	
6-May	17	Wed 8 th PM Paper 4 (TZ2)	
13-May	18	Wed 15 th PM Paper 2 (TZ2) Wed 15 th PM Paper 5 (TZ2)	
20-May	11		
27-May	12	Thur 30 th PM Paper 34 (TZ2)	
3-Jun	13	Tues 4 th PM Paper 1 (TZ2)	
10-Jun	14		
17-Jun	15		
24-Jun	16		

SMASHING

11

iod Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
5:00 an	<u>ו</u>						
5:30 an	า						
6:00 an	า						
6:30 an	า						
7:00 am	า						
egstn 7:25 am	า						
7:50 an	า						
8:40 an	ו						
9:30 an	า						
10:20 a	m						
11:00 a	m						
unch 11:50 p	m						
1:10 pn	n						
2:00pm							
2:50 pn	n		1. 2.				
3:40 pn	n		1 anter				
4:20 pn				8			
5:00 pn							
5:30 pn				2	~		
6:00 pn	n		VSN	151	9		
6:30 pn	n	_					
7:00 pn							
7:30 pn	n				6		
8:00 pn	n						
8:30 pn	n						
9:00 pn	n						
9:30 pm							
10:00 pi							
10:30 pi	m						

Planning your days – v2.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
renou	5:00 am	Wonday	Tuesuay	weunesday	mursuay	Пау	Saturuay	Sunday
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn								
1	7:50 am							
2	8:40 am							
3	9:30 am							
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm			a the				
6	1:10 pm							
7	2:00pm				4			
8	2:50 pm			1 de Da	X			
9	3:40 pm			Correct.	<u> </u>			
	4:20 pm							
	5:00 pm							
	5:30 pm							
	6:00 pm			VSS				
	6:30 pm		0.0					
	7:00 pm							
	7:30 pm							
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Planning your days – v3.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am							
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm							
6	1:10 pm							
7	2:00pm							
8	2:50 pm			16 2 -				
9	3:40 pm			and the				
	4:20 pm			8, 28				
	5:00 pm							
	5:30 pm							
	6:00 pm			VS				
	6:30 pm							
	7:00 pm							
	7:30 pm							
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Planning your days – v4.0

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 am							
	5:30 am							
	6:00 am							
	6:30 am							
	7:00 am							
Regstn	7:25 am							
1	7:50 am							
2	8:40 am							
3	9:30 am							
4	10:20 am							
5	11:00 am							
Lunch	11:50 pm							
6	1:10 pm							
7	2:00pm							
8	2:50 pm			16 2 -				
9	3:40 pm			Contractor.				
	4:20 pm			- C				
	5:00 pm							
	5:30 pm							
	6:00 pm							
	6:30 pm							
	7:00 pm							
	7:30 pm							
	8:00 pm							
	8:30 pm							
	9:00 pm							
	9:30 pm							
	10:00 pm							
	10:30 pm							

Paper 4: Analysis, notes and points of interest

Paper 4		Paper 5	
A Level Structured Questions 100 marks	2 hours	Planning, Analysis and Evaluation 30 marks	1 hour 15 minutes
Structured questions		Questions based on the e	xperimental skills of
Questions are based on the A Leve	5	planning, analysis and eva	
content; knowledge of material fro Level syllabus content will be requ		The context of the question the syllabus content.	ons may be outside
Externally assessed		Externally assessed	
38.5% of the A Level		11.5% of the A Level	

Overview of main syllabi changes:

Changes in exam format, presentation, and explanation of syllabus across time:

- 2006 and before P5 (30marks, 90mins) is more like paper 3, so requires experimental work under exam conditions. Paper 6 also existed which were questions on the options.
- 2007 first year which had two versions of paper 3. 2007 Paper 5 went from 90minutes to 75minutes 30marks, but removed the practical experiment part, a format which continues to 2027.
- 2009 winter is the first session to have more than one Time Zone, with 2 time zones.
- 2010 introduced all the current Time Zones: 1, 2 and 3. These continue for winter and summer sessions to 2027.
- 2012w and before each question section in the Paper 5 mark scheme are given their "Experimental skills and investigations" label.
- 2013s and onwards no longer gives details about the Skill Sections being assessed by each question.
- 2015 winter was the last Paper 4 with a Section B (30marks) assessing only *Topic 11 Applications* of Chemistry.
- 2016 introduced the March series, which is always assigned only one Time Zone: 2.
- 2022 syllabus updates changed content and wording (almost no substantive changes)
- 2022 Data Booklet was no longer provided in Paper 1, 2 or 4 not given in any exams
- 2022 Paper 1 Section B (where answers A to D correspond to a range of combinations of options 1 to 3) was replaced with standard A to D multiple choice questions, and 15minitues was added to the total exam time (same number of marks however).
- 2025-2027 Exactly the same as 2022-2024 syllabi

Main syllabi changes discussion

Paper 4 The largest change has been a shift away from assessing AS content in Paper 4, which in exams 2015 and before represented almost 1 in 5 marks, since 2016 it is about 1 mark in 20. This shift could be explained by looking at the combined frequencies for Papers 4 and 5, where we see that the number of marks assigned to AS level remained stable. From 2009w to 2015w AS material in both papers was 26.6% of all marks and from 2016m to 2022m it was 27.9%. AS material then is still examinable, but it has been moved from Paper 4 to Paper 5.

The other major change at the topic level has been in Topic 28: Chemistry of transition elements which now is the single most important topic. In exams from 2015 and before, it was part of what was then described as *Topic 11 Applications of Chemistry* (e.g. in 2015 syllabus), which itself was a version of the Optional Topics from 2006 and before. Much of the material from the 2015 *T11 Applications of Chemistry* topic was removed, but transition metals was incorporated into the main syllabus from 2016. So it was larger syllabus restructuring and major deletion events that have indirectly lead to its increase in frequency.

Patrick Brannac

It was also the 2015 *Topic 11 Applications of Chemistry* material that explains the large amount of material that has been deleted from the syllabus in 2016 syllabi and later.

In addition, marks assigned to *Topic 23 Chemical Energetics* and *Topic 25 Equilibria* have more than doubled since 2016, and *Topic 27 Group 2* is now a larger part to more paper 4 exams.

Topic 36 Organic Synthesis has become less important in exams from 2016 and later largely because marks covering organic synthesis are easier to allocate to individual organic topics. In 2015 and before more marks required working and question parts assessing other organic topics, which became less common in 2016 and onwards.

If we combine all marks from both Papers 4 and 5, we can see that of the 4 main chemistry branches in this syllabus, Physical Chemistry (54.9% of all Paper 4 and 5 marks from 2016m onwards) not only is by far the dominant category, it has also grown substantially, by about 50%, largely by taking in all of the marks that were part of material no longer assessed from 2016 onwards (which had been given 12.8% of marks), but also by taking about a third of the 2015 and before marks of Organic Chemistry. Physical Chemistry is not only the dominant Paper 4 branch of chemistry (34.4% of Paper 4 marks) compared to Organic Chemistry (30.0% of Paper 4 marks), but it is also easily a major part of Paper 5. This substantial decrease in Organic Chemistry relevance has resulted in this topic now being less important in terms of mark frequency (being awarded 18.4% of 2026 and later marks) than even Inorganic Chemistry, which grew in importance in the same period (to 20.8%).

By looking at the various graphs gives an indication of the variability of this syllabus across time, but nearly all of this is actually just the result of 2 large changes to the syllabus structure, in 2007 and 2016, which both were part of a process to remove the Optional aspects to the course, which originated in a splendid, exciting new idea from the 1990s which didn't quite pan out. This itself gives a broader sense that historically across the decades, A level Chemistry has been a stable syllabus: it appears to resist change and English language Key Stage 5 (high school) syllabi like it are therefore trending towards a canonical content. Looking ahead, until 2027, there are no real changes, either to the structure, description, or content of the syllabus. The only single change to content, shown in the following section, is a single detail (using KCl instead of KBr) in an organic reaction.

Cambridge International AS & A Level Chemistry 9701 syllabus for 2025, 2026 and 2027. What else you need to know

Changes to this syllabus for 2025, 2026 and 2027

The syllabus has been updated. This is version 1, published September 2022.

You must read the whole syllabus before planning your teaching programme. We review our syllabuses regularly to make sure they continue to meet the needs of our schools. In updating this syllabus, we have made it easier for teachers and students to understand, keeping the familiar features that teachers and schools value.

Changes to syllabus
 Update to reagents in 15.1(c) and 16.2(b).
 content

Any textbooks endorsed to support the syllabus for examination from 2022 are still suitable for use with this syllabus.

2024 version:

- 15 Halogen compounds
- 15.1 Halogenoalkanes

Learning outcomes

- Candidates should be able to:
- 1 recall the reactions (reagents and conditions) by which halogenoalkanes can be produced:
 - (a) the free-radical substitution of alkanes by $C1_2$ or Br_2 in the presence of ultraviolet light, as exemplified by the reactions of ethane
 - (b) electrophilic addition of an alkene with a halogen, X₂, or hydrogen halide, HX(g), at room temperature
 - (c) substitution of an alcohol, e.g. by reaction with HX or KBr with H₂SO₄ or H₃PO₄; or with PCl₃ and heat; or with PCl₅; or with SOCl₂

16 Hydroxy compounds

16.1 Alcohols

- 2 describe:
 - (a) the reaction with oxygen (combustion)
 - (b) substitution to halogenoalkanes, e.g. by reaction with HX or KBr with H₂SO₄ or H₃PO₄; or with PC1₃ and heat; or with PC1₅; or with SOC1₂

2025-2027 version

- 15 Halogen compounds
- 15.1 Halogenoalkanes

Learning outcomes

Candidates should be able to:

- 1 recall the reactions (reagents and conditions) by which halogenoalkanes can be produced:
 - (a) the free-radical substitution of alkanes by Cl₂ or Br₂ in the presence of ultraviolet light, as exemplified by the reactions of ethane
 - (b) electrophilic addition of an alkene with a halogen, X₂, or hydrogen halide, HX(g), at room temperature
 - (c) substitution of an alcohol, e.g. by reaction with HX(g); or with KCI and concentrated H₂SO₄ or concentrated H₂PO₄; or with PCI₂ and heat; or with PCI₅; or with SOCI₂

16 Hydroxy compounds

16.1 Alcohols

- 2 describe:
 - (a) the reaction with oxygen (combustion)
 - (b) substitution to form halogenoalkanes, e.g. by reaction with HX(g); or with KCl and concentrated H₂SO₄ or concentrated H₂PO₄; or with PCl₂ and heat; or with PCl₅; or with SOCl₂

Notes on taking apart these exam papers and how they were separated

- AS level topics are separated from A2 topics so that you can see how often they are examined at A2 (increasingly less and less). So Topic 6 electrochemistry would be separated from Topic 24 Electrochemistry.
- The 2015 Syllabus *Topic 11: Applications of Chemistry* was removed in the march 2016 paper, so it was last examined in w2015. It represented 30% of Paper 4 and was examined in Section B part of the exam. Roughly a third was kept but placed into various other topics. However, essentially all *T11.1 The Chemistry of Life* was removed (except amino acids, moved into T35 in 2024 syllabus. *T11.3 Design and Materials* was also largely deleted.
- Last held in 2006, Paper 6 examined the 5 Options which then were transformed into the *T11 Applications of Chemistry* topic (and, for instance, in the Transition elements main topic), which then was examined in Section B of the changed Paper 5. You had to chose 2 questions from the 5 options in Paper 6. Afterwards the syllabus only used 5 exams, which continues to 2024.
- Mass spectroscopy was moved from A2 to AS content.
- NMR and rarely other analytical techniques (T37) are sometimes combined with T36: Organic synthesis, especially in earlier (before 2016) exam papers. Less common more recently.
- One question combined T25: Equilibria with T24: Electrochemistry (2020sP41Q7) in a way that could not be separated.
- Enzymes T8f (2015) was removed and is not found in 2024.
- T24 often has drawing and labelling electrochemical cells questions. Electrophoresis in T37 also requires diagrams. Otherwise, drawing is not a common question type (but is common in Paper 5 for instance).
- Side chains interacting with each other in polymer chains in T11.3 (2014) and in 21.3 Properties of Polymers (2021) is also removed.
- T13.4 (2024) chirality and especially identify the chiral carbon in a given molecule is often assessed when amino acids are examined.
- T23.1 Synthesis of Chiral Drug Molecules (2021) was removed.
- T28.2 (2024) Electrochemical potentials with regards to transition metals is a rare example of a topic appearing twice (mainly in T24). Where the question involves feasibility or direction of a reaction it is in 28.2, if the E_{cell} is instead required, it usually would go into T24.
- Cisplatin's mode of action by binding to DNA in T12.4 (2021) has bee removed from T28.4 (2024).
- One question combined T23 Entropy with T35 Polymerization (2018mP42Q7a). The idea was condensation polymers produce small molecules which increase entropy, addition polymers create a larger molecule from 2 smaller ones, decreasing entropy. Another really rare example of topics being combined in question parts in a way that cannot be separated.
- Generally, if there are 3 steps or more, or 3 parts to an Organic Synthesis it will be placed into T36. If only two parts, then the question part is assigned to the specific organic chemistry topic. The preference therefore is to assign to a specific topic rather than T36.
- 2018sP41Q4 asks about flame tests for Ca and Ba, which corresponds to "describe... the reactions for the elements with oxygen" in T10.
- In some exams 2015 and before, the Question 1 starts off easier and is, at least initially, AS material. But this is much less common in 2016 and after.
- T29 identifying functional groups usually involved one A2 group, like an amide or phenol group, but most of the groups are from T13, but in these cases, these marks cannot be untangled, so are just assigned to T29. In 2014wP41Q5b all the functional groups are from T13, the single exception.
- Section A and B were last seen in the w2015 exam paper.
- For exam papers 2009w to 2014s there are additional marks within questions, so within a 7mark question there are 8 marks possible (e.g. 2010sP41Q1b). This is separate from an essay style question where there are more marks possible to be awarded than the max because these additional marks are extended into other question parts. They do not have a big impact, but they are at least there and mean that there will be slightly more marks in the total analysis. Specifically, these papers have these extra marks: 09w has 3marks; 10s has 9marks;

10w has 5marks, 11s has 2marks, 11w has 5 marks, 12s has 4marks and 13s, 13w and 14s each have just 1 extra marks.

- Group IV in T9.3 (2015) was discontinued, marks assigned to this are written as topic x9.
- Marks regarding basicity of amines, where they accept H⁺ ions, for instance, are sometimes better assigned to T34, but arguably could be also in T7.
- For exam papers downloaded in June 2011 there are problems with how some small parts of the question appear on a pdf viewer, which are not found in the same exam paper or marks scheme downloaded later. This is a rare example indicating that not all exam papers available online are equal. These papers are affected: 10sP41Q5b(iv), 10wP41Q2b.
- In 2016-18 syllabus there is a section titled "Learning outcomes removed from the syllabus content" on page 95, indicating major changes. The group IV T9.3 in 2025 syllabus has been removed, but is not mentioned in this section, but I cannot understand why (possibly a mistake).
- In 2015 T11.2 x-ray crystallography is not found in 2024.
- Drug delivery T11.2 in 2015, including the changes that can happen to a molecule in the body (usually relates to hydrolysis of esters or amides and acidic conditions in stomach), has been removed.
- The largest change to the syllabus was in 2007 (removal of Paper 6, 40marks against 60marks in Paper 5) and in 2016 (removal of section B) are both related to this optional material that then became compulsory, that then was entirely incorporated into the main syllabus.
- Topic 5 in 2010 to 15 seemed to be common when I was assigning topics.
- Comparing the density (and fixed points) of a transition metal and Ca, a typical S block metal, was still in 2021, but removed in 2024.
- Ozone in T16 in 2021 was removed in 2024.
- Partition coefficient moved from T11.2 in 2015 to t25 in 2024.
- Nitrates in water and eutrophication previously in T13 in 2018 was removed.
- Organic synthesis almost never uses T21, it is most often assigned instead to T36. This may be an opportunity to fine tune in future editions.
- 2009s has only 1 time zone, 2009w has 2 and 2010s has 3 time zones.
- 2021 included T4 Ceramics, which was removed in 2022-24.

PAPER 4 Tables of analysis of mark frequencies per topic

Topic Number and Name	9w-22m	9w-15w	16m-22m
1 Atomic structure	0.1	0.2	0.0
2 Atoms, molecules and stoichiometry	0.9	1.5	0.4
3 Chemical bonding	1.3	1.6	1.2
4 States of matter	0.0	0.0	0.0
5 Chemical energetics	0.6	1.5	0.0
6 Electrochemistry	0.2	0.0	0.4
7 Equilibria	0.7	1.7	0.1
8 Reaction kinetics	0.0	0.0	0.0
9 The Periodic Table: chemical periodicity	1.0	2.4	0.1
10 Group 2	0.4	0.0	0.7
11 Group 17	0.2	0.5	0.1
12 Nitrogen and sulfur	0.6	1.5	0.0
13 An introduction to AS Level organic	0.0		
chemistry	1.1	1.3	1.0
14 Hydrocarbons	0.9	1.6	0.4
15 Halogen compounds	0.6	1.1	0.2
16 Hydroxy compounds	0.2	0.0	0.3
17 Carbonyl compounds	0.7	1.3	0.2
18 Carboxylic acids and derivatives	0.0	0.0	0.0
19 Nitrogen compounds	0.0	0.0	0.0
20 Polymerisation	0.2	0.3	0.1
21 Organic synthesis	0.0	0.0	0.0
22 Analytical techniques	1.1	1.2	1.0
AS TOTAL	10.8	17.7	6.2
23 Chemical energetics	5.9	2.3	8.4
24 Electrochemistry	8.1	8.0	8.2
25 Equilibria	7.6	4.3	9.8
26 Reaction kinetics	5.5	5.1	5.8
27 Group 2	3.7	1.4	5.3
28 Chemistry of transition elements	14.5	7.1	19.7
29 An introduction to A Level organic	0.9	1 1	0.7
chemistry 30 Hydrocarbons	0.8	1.1	
31 Halogen compounds	2.1	1.1	2.9 0.3
	0.2	0.0	0.3
32 Hydroxy compounds	2.0	2.0	2.0
33 Carboxylic acids and derivatives	2.6	1.8	3.2
34 Nitrogen compounds	6.7	5.2	7.8
35 Polymerisation	2.5	2.4	2.5
36 Organic synthesis	11.4	15.8	8.4
37 Analytical techniques	6.6	5.0	7.8
A2 TOTAL	80.2	62.6	92.8
Chemistry no longer assessed in 2024:	8.8	19.8	1.1

Topic Number and Name 16m-22m 9w-22m 9w-15w 28 Chemistry of transition elements 19.7 14.5 7.1 25 Equilibria 9.8 7.6 4.3 23 Chemical energetics 8.4 5.9 2.3 36 Organic synthesis 8.4 11.4 15.8 24 Electrochemistry 8.2 8.1 8.0 7.8 34 Nitrogen compounds 6.7 5.2 37 Analytical techniques 7.8 6.6 5.0 26 Reaction kinetics 5.8 5.5 5.1 27 Group 2 5.3 3.7 1.4 33 Carboxylic acids and derivatives 3.2 2.6 1.8 2.9 30 Hydrocarbons 2.1 1.1 35 Polymerisation 2.5 2.5 2.4 32 Hydroxy compounds 2.0 2.0 2.0 1.2 3 Chemical bonding 1.3 1.6 1.1 Chemistry no longer assessed in 2024: 8.8 19.8 13 An introduction to AS Level organic 1.0 1.1 1.3 chemistry 22 Analytical techniques 1.0 1.1 1.2 0.7 10 Group 2 0.4 0.0 29 An introduction to A Level organic 0.7 0.8 chemistry 1.1 2 Atoms, molecules and stoichiometry 0.4 0.9 1.5 6 Electrochemistry 0.4 0.2 0.0 14 Hydrocarbons 0.4 0.9 1.6 16 Hydroxy compounds 0.3 0.2 0.0 31 Halogen compounds 0.3 0.2 0.0 0.2 15 Halogen compounds 0.6 1.1 0.2 17 Carbonyl compounds 0.7 1.3 7 Equilibria 0.1 0.7 1.7

Paper 4 ranked by most recent frequency trend (2016m to 2022w)

0.1

0.1

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Page 17 of 703

11 Group 17

20 Polymerisation

1 Atomic structure

4 States of matter

8 Reaction kinetics

5 Chemical energetics

12 Nitrogen and sulfur

19 Nitrogen compounds

21 Organic synthesis

18 Carboxylic acids and derivatives

9 The Periodic Table: chemical periodicity

1.0

0.2

0.2

0.1

0.0

0.6

0.0

0.6

0.0

0.0

0.0

2.4

0.5

0.3

0.2

0.0

1.5

0.0

1.5

0.0

0.0

0.0

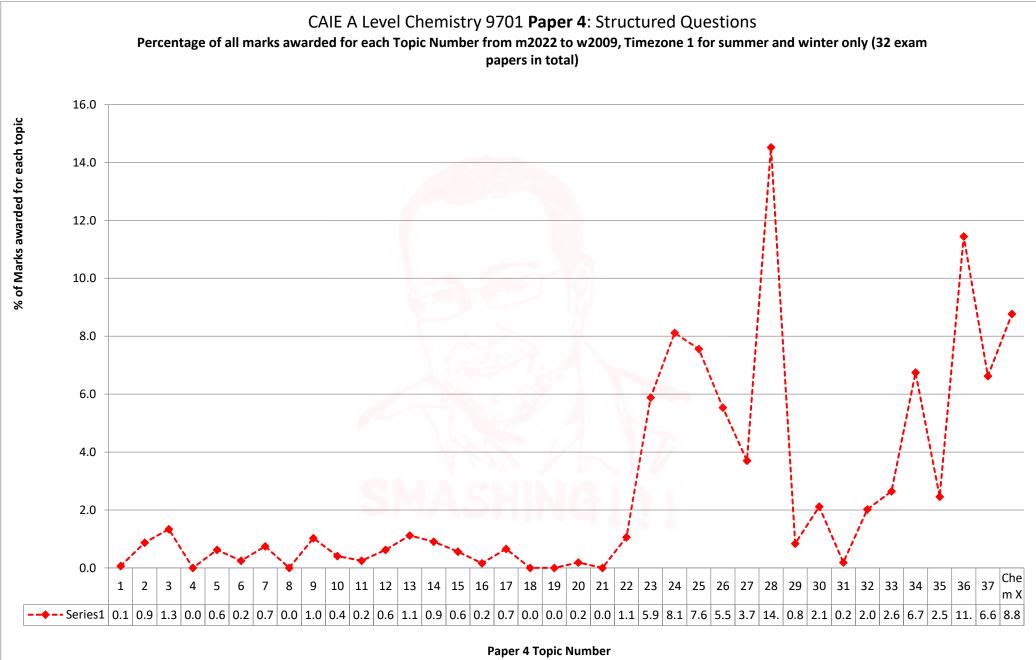
Paper <u>4 and 5</u> COMBINED Each topic described by frequency

Topic Number and Name	Paper 4 &5 09w-22m	Paper 4 ONLY 16m-22m	P4&5 09w-15w	Paper 4 & 5 16m-22m
1 Atomic structure	0.0	0.0	0.1	0.0
2 Atoms, molecules and stoichiometry	2.6	0.4	4.3	1.8
3 Chemical bonding	0.8	1.2	1.3	0.6
4 States of matter	2.9	0.0	2.3	3.1
5 Chemical energetics	3.1	0.0	2.1	3.6
6 Electrochemistry	3.7	0.4	0.9	5.0
7 Equilibria	4.2	0.1	4.9	3.8
8 Reaction kinetics	1.8	0.0	0.9	2.3
9 The Periodic Table: chemical periodicity	1.8	0.1	2.8	1.3
10 Group 2	1.2	0.7	0.0	1.8
11 Group 17	1.4	0.1	1.3	1.4
12 Nitrogen and sulfur	0.4	0.0	1.2	0.0
13 An introduction to AS Level organic chemistry	0.7	1.0	1.0	0.6
14 Hydrocarbons	1.2	0.4	1.3	1.2
15 Halogen compounds	0.4	0.2	0.8	0.1
16 Hydroxy compounds	0.1	0.3	0.0	0.1
17 Carbonyl compounds	0.4	0.2	1.0	0.1
18 Carboxylic acids and derivatives	0.0	0.0	0.0	0.0
19 Nitrogen compounds	0.0	0.0	0.0	0.0
20 Polymerisation	0.1	0.1	0.2	0.1
21 Organic synthesis	0.6	0.0	0.0	0.8
AS Total	27.5	5.1	26.6	27.9
22 Analytical techniques	0.7	1.0	1.0	0.5
23 Chemical energetics	4.9	8.4	4.4	5.1
24 Electrochemistry	8.6	8.2	7.3	9.2
25 Equilibria	6.0	9.8	3.4	7.2
26 Reaction kinetics	10.8	5.8	5.9	13.2
27 Group 2	4.7	5.3	4.7	4.6
28 Chemistry of transition elements	9.9	19.7	6.5	11.6
29 An introduction to A Level organic chemistry	0.5	0.7	0.8	0.4
30 Hydrocarbons	1.3	2.9	0.8	1.6
31 Halogen compounds	0.1	0.3	0.0	0.2
32 Hydroxy compounds	1.3	2.0	1.6	1.1
33 Carboxylic acids and derivatives	1.7	3.2	1.4	1.8
34 Nitrogen compounds	4.3	7.8	4.1	4.3
35 Polymerisation	1.6	2.5	1.9	1.4
36 Organic synthesis	7.2	8.4	12.5	4.6
37 Analytical techniques	4.5	7.8	4.0	4.7
Chemistry no longer assessed in 2024:	4.6	1.1	12.8	0.6
A2 Total	72.5	94.9	73.4	72.1

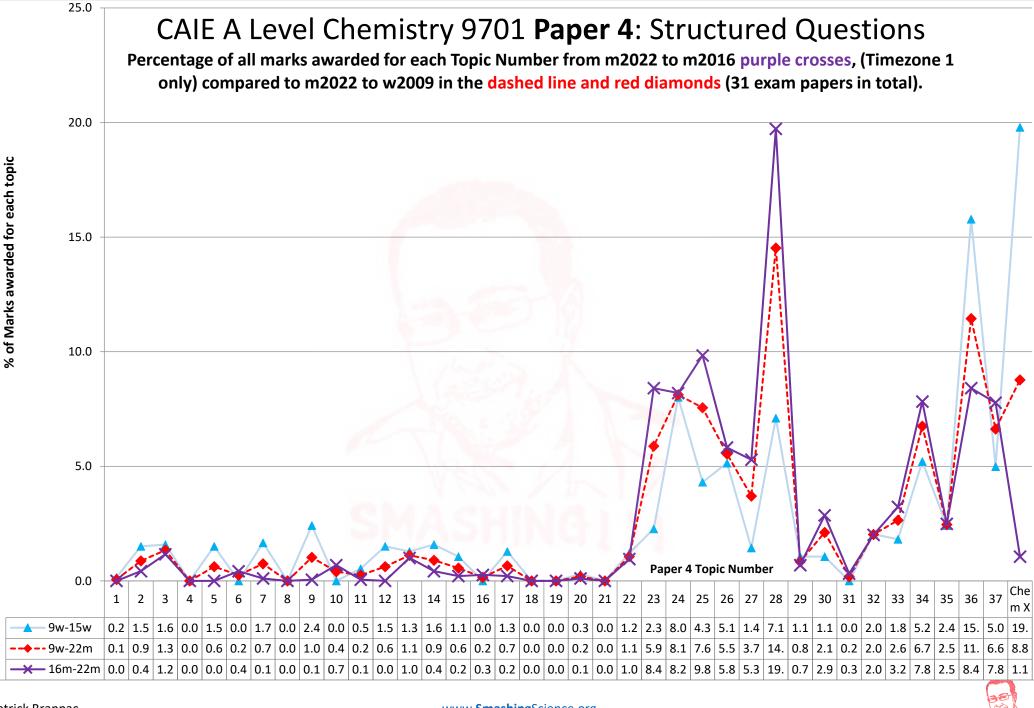
Paper <u>4 and 5</u> ranked by most recent frequency trend (2016m to 2022w)

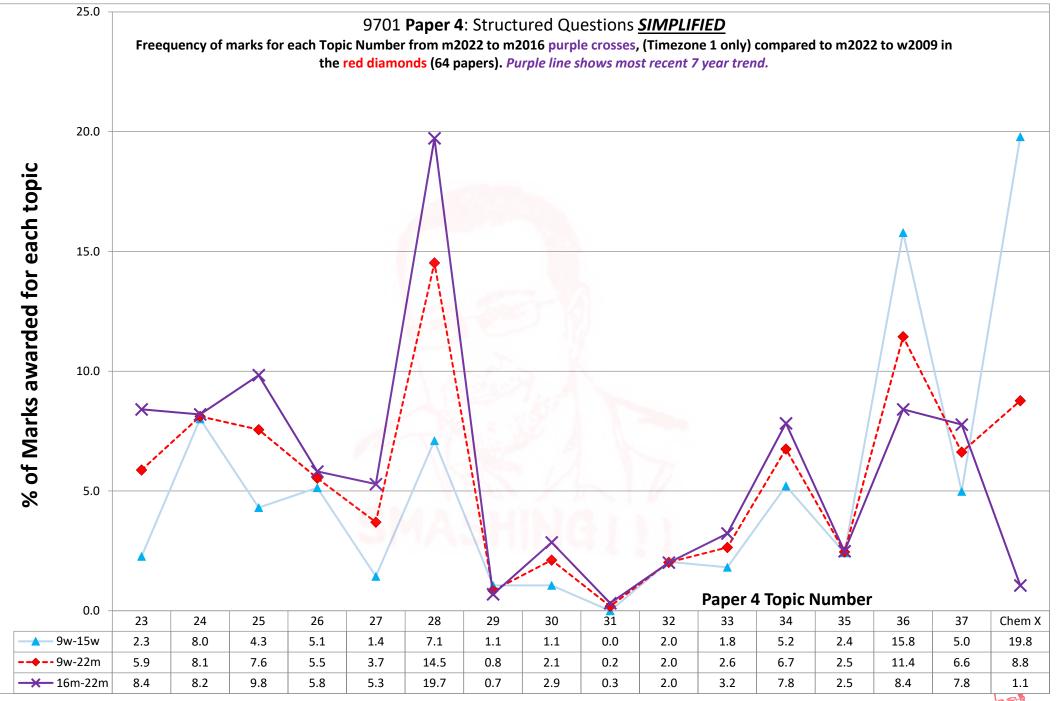
Topic Number and Name	Paper 4 &5 09w-22m	Paper 4 ONLY 16m-22m	Paper 4 & 5 16m-22m
26 Reaction kinetics	8.4	5.8	13.2
28 Chemistry of transition elements	10.9	19.7	11.6
24 Electrochemistry	8.1	8.2	9.2
25 Equilibria	6.0	9.8	7.2
23 Chemical energetics	5.8	8.4	5.1
6 Electrochemistry	2.8	0.4	5.0
37 Analytical techniques	4.9	7.8	4.7
27 Group 2	5.4	5.3	4.6
36 Organic synthesis	8.1	8.4	4.6
34 Nitrogen compounds	4.8	7.8	4.3
7 Equilibria	2.6	0.1	3.8
5 Chemical energetics	2.5	0.0	3.6
4 States of matter	2.1	0.0	3.1
8 Reaction kinetics	1.8	0.0	2.3
2 Atoms, molecules and stoichiometry	3.6	0.4	1.8
10 Group 2	0.8	0.7	1.8
33 Carboxylic acids and derivatives	1.9	3.2	1.8
30 Hydrocarbons			1.6
11 Group 17	1.5	2.9	1.4
35 Polymerisation	1.0	0.1	1.4
9 The Periodic Table: chemical	1.7	2.5	1.4
periodicity	1.4	0.1	1.3
14 Hydrocarbons	1.0	0.4	1.2
32 Hydroxy compounds	1.4	2.0	1.1
21 Organic synthesis	0.3	0.0	0.8
3 Chemical bonding	1.0	1.2	0.6
13 An introduction to AS Level organic	0.8	1.0	0.6
chemistry 22 Analytical techniques	0.8	1.0	0.5
29 An introduction to A Level organic	0.8	1.0	0.5
chemistry	0.6	0.7	0.4
31 Halogen compounds	0.1	0.3	0.2
15 Halogen compounds	0.4	0.2	0.1
16 Hydroxy compounds	0.1	0.3	0.1
17 Carbonyl compounds	0.5	0.2	0.1
20 Polymerisation 1 Atomic structure	0.1	0.1	0.1
12 Nitrogen and sulfur	0.0	0.0	0.0
18 Carboxylic acids and derivatives	0.4	0.0	0.0
19 Nitrogen compounds	0.0	0.0	0.0
	0.0	0.0	0.0

<u>PAPER 5</u> Tables of analysis of mark frequencies for topics and experiment types <u>Paper 5</u> Analysis by TOPIC number (descriptions relate to the subtopic the bulk of the questions deal with):

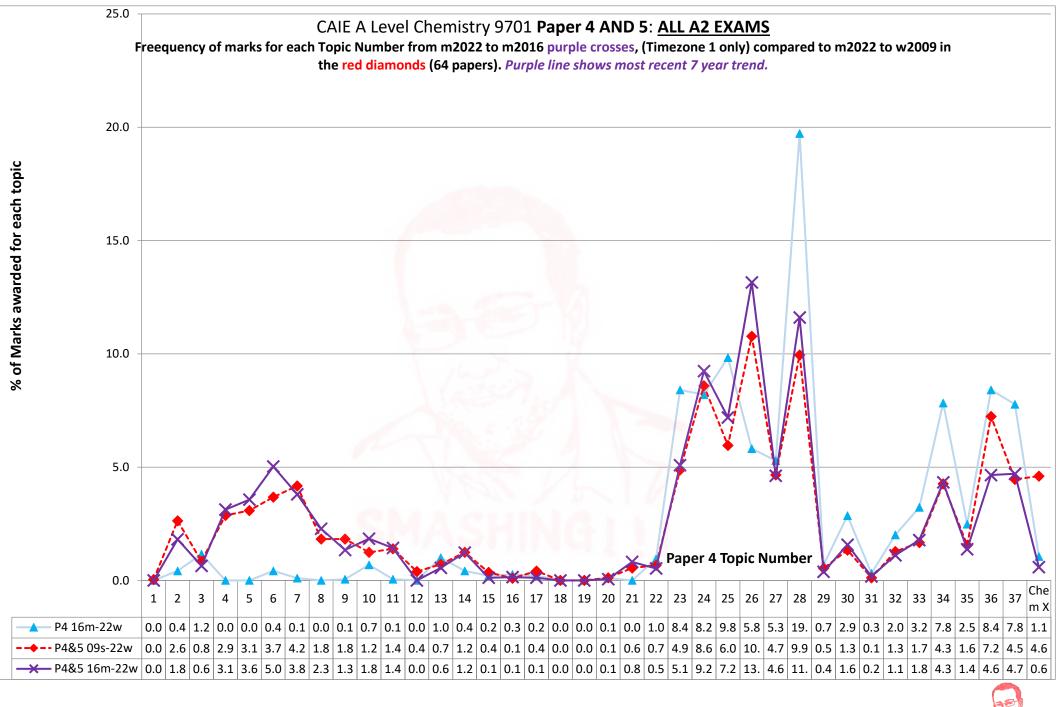

Topic Number and Name	02s to 23s	02s-06w	07s-13s	13w-23s
26 Rate A2	15.3	6.7	7.7	20.2
7 Acid base	7.2	10.1	0.0	11.2
24 Electrochemistry	7.9	0.0	3.9	10.5
6 Redox	9.2	15.8	7.7	9.8
4 States of matter	7.3	10.1	6.2	7.3
	7.0	14.8	7.7	7.3
5 Enthalpy				
27 Group 2 (thermal decomposition)	9.4	6.4	15.4	5.2
8 Rate AS	6.4	14.4	11.3	4.6
9 Periodicity	2.3	0.0	0.0	3.6
25 Equilibria	2.3	0.0	0.0	3.6
2 Stoichiometry	10.3	21.8	17.2	3.2
10 Group 2	1.9	0.0	0.0	3.0
11 Group 17 – halide precipitates	3.0	0.0	3.9	2.9
14 Organic chemistry	1.3	0.0	0.0	2.0
23 Lattice enthalpy	5.7	0.0	15.2	1.8
21 Organic synthesis	1.1	0.0	0.0	1.7
28 Transition elements	2.1	0.0	3.9	1.4
37 Chromatography	0.5	0.0	0.0	0.8
	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0
<u> </u>	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0
29	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0
31	0.0	0.0	0.0	0.0
32 33	0.0 0.0	0.0 0.0	0.0	0.0
33	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	0.0
31	100	INCI.		

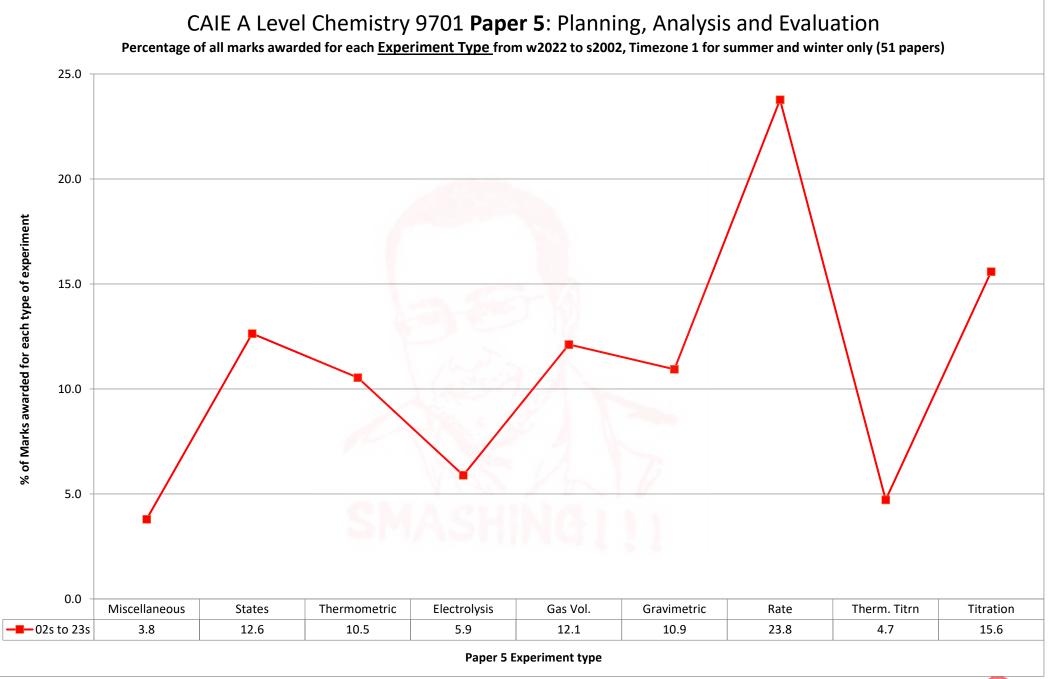
Paper 5 by EXPERIMENT type:


Experiment type	02s to 23s	02s-06w	07s-13s	13w-23s	Rank
Rate	23.8	21.1	19.0	26.9	1
Titration	15.6	19.8	3.9	19.5	2
Gas Volumes	12.1	10.1	11.8	13.0	3
States	12.6	5.0	21.6	11.2	4
Electrolysis	5.9	0.0	3.9	8.9	5
Thermometric	10.5	14.8	11.6	8.6	6
Miscellaneous	3.8	0.0	0.0	6.9	7
Gravimetric	10.9	15.1	24.4	3.2	8
Thermal Titration	4.7	14.1	3.9	1.8	9



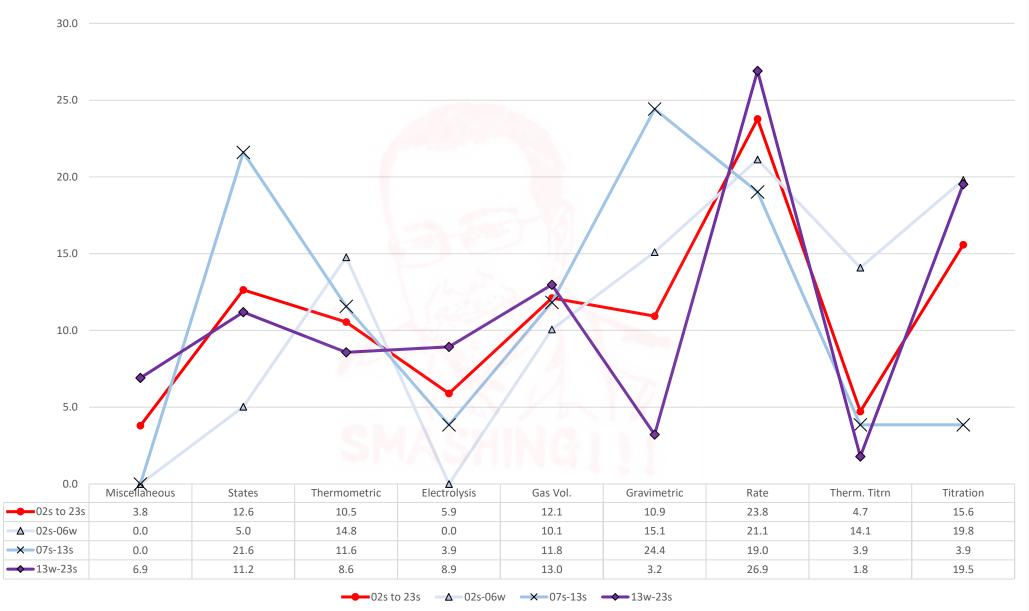
Paper 4 Data Processing - Graphs



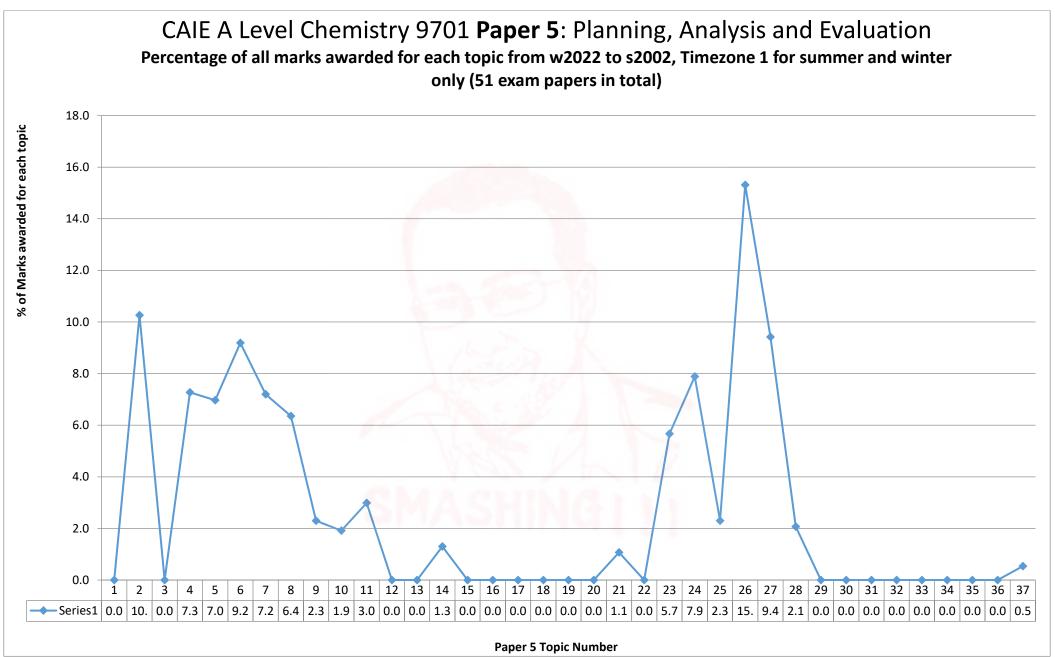


Patrick Brannac

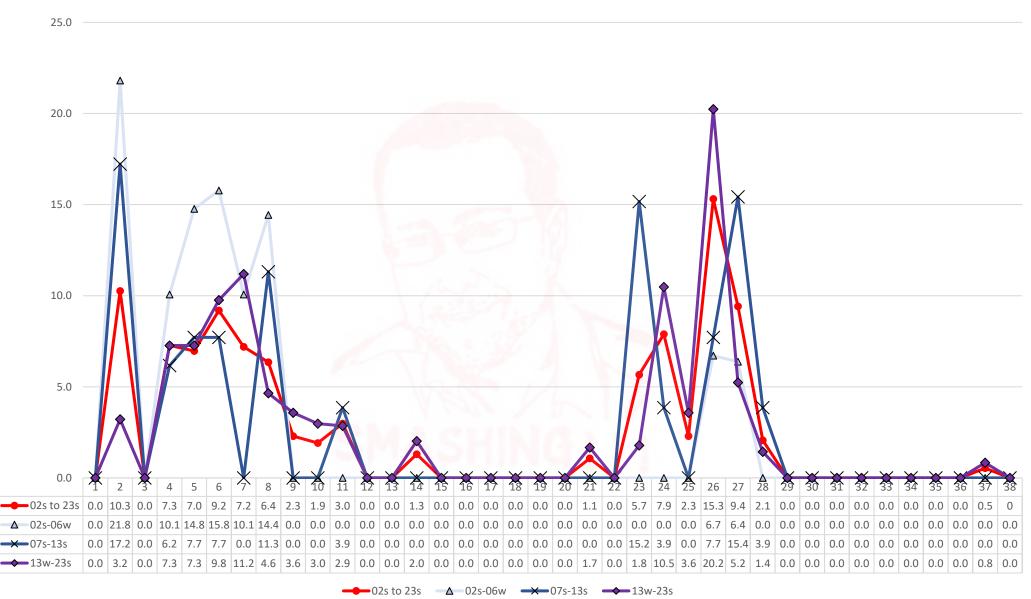
www.SmashingScience.org

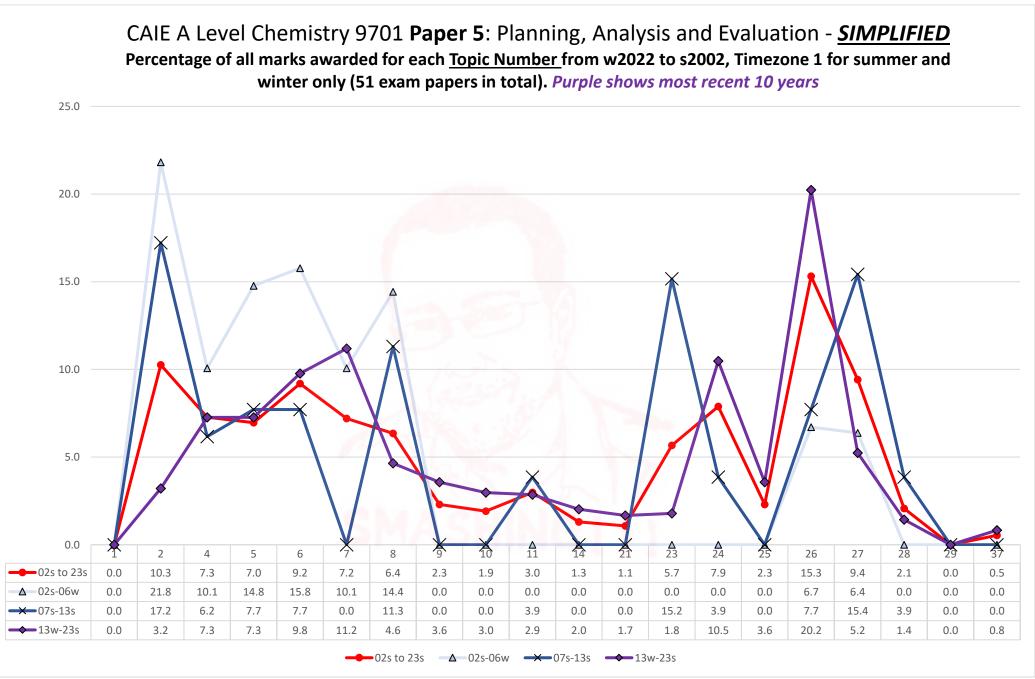


Patrick Brannac


CAIE A Level Chemistry 9701 **Paper 5**: Planning, Analysis and Evaluation Percentage of all marks awarded for each <u>Experiment Type</u> from w2022 to s2002, Timezone 1 for summer and winter only (51 exam papers in total). *Purple shows most recent 10 years trend*.

Patrick Brannac


www.SmashingScience.org



CAIE A Level Chemistry 9701 **Paper 5**: Planning, Analysis and Evaluation Percentage of all marks awarded for each <u>Topic Number</u> from w2022 to s2002, Timezone 1 for summer and winter only (51 exam papers in total). *Purple shows most recent 10 years trend*.

Cambridge International AS & A Level Chemistry 9701 syllabus for 2022, 2023 and 2024. Syllabus overview Content overview

AS Level subject content

Candidates for Cambridge International AS Level Chemistry study the following topics:

Physical chemistry

- 1 Atomic structure
- 2 Atoms, molecules and stoichiometry
- 3 Chemical bonding
- 4 States of matter
- 5 Chemical energetics
- 6 Electrochemistry
- 7 Equilibria
- 8 Reaction kinetics

Inorganic chemistry

- 9 The Periodic Table: chemical periodicity
- 10 Group 2
- 11 Group 17
- 12 Nitrogen and sulfur

Organic chemistry

- 13 An introduction to AS Level organic chemistry
- 14 Hydrocarbons
- 15 Halogen compounds
- 16 Hydroxy compounds
- 17 Carbonyl compounds
- 18 Carboxylic acids and derivatives
- 19 Nitrogen compounds
- 20 Polymerisation
- 21 Organic synthesis

Analysis

22 Analytical techniques

AS Level candidates also study practical skills.

Support for Cambridge International AS & A Level Chemistry

The School Support Hub is our secure online site for Cambridge teachers where you can find the resources you need to deliver our programmes, including schemes of work, past papers, mark schemes and examiner reports. You can also keep up to date with your subject and the global Cambridge community through our online discussion forums.

www.cambridgeinternational.org/support

8 www.cambridgeinternational.org/alevel

A Level subject content

Candidates for Cambridge International A Level Chemistry study the AS topics and the following topics:

Physical chemistry

- 23 Chemical energetics
- 24 Electrochemistry
- 25 Equilibria
- 26 Reaction kinetics

Inorganic chemistry

- 27 Group 2
- 28 Chemistry of transition elements

Organic chemistry

- 29 An introduction to A Level organic chemistry
- 30 Hydrocarbons
- 31 Halogen compounds
- 32 Hydroxy compounds
- 33 Carboxylic acids and derivatives
- 34 Nitrogen compounds
- 35 Polymerisation
- 36 Organic synthesis

Analysis

37 Analytical techniques

A Level candidates also study practical skills.

Back to contents page

Page 30 of 703

Past Exam Questions			Topic: Chem 2 Q# 5/ ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
Topic: Chem 1 Q# 1/ ALvI Chemistry/2015/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org	nce.org		1 Sodium oxide, Na ₂ O, is a white crystalline solid with a high melting point.	
1 (a) Calcium has atomic number 20.			(a) Write an equation for the reaction of sodium with oxygen, forming sodium oxide	
Complete the electronic structures for a			Include state symbols.	1
calcium atom, 1s²2s²2p [®]			Topic: Chem 2 Q# 6/ ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	[2]
calcium ion in the +2 oxidation state. 1s ² 2s ² 2p ⁶		5	(b) Explain why sodium oxide has a high melting point.	
Topic: Chem 1 Q# 2/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A	٥٥	Ξ		
Answer all the questions in the spaces provided.				
1 (a) Complete the electronic configurations of the following atoms.			ic	[2]
oxygen: 1s ²			 (a) Complete the diagrams to show the energies of the electrons in a carbon atom, a C⁺ ion and a C⁻ ion. 	ion and a
fluorine: 1s ²		III	+	
Topic: Chem 2 Q# 3/ ALvI Chemistry/2021/m/T2 2/Paper 4/Q# 2/www.SmashingScience.org (ii) Most naturally occurring samples of inon(III) oxide are found as the mineral wistite.	ince.org wüstite.	E	increasing	
			energy	
90% of the iron is present as Fe^{2*} and 10% is present as Fe^{3*} .				
Deduce the value of x.			rbon atom C ⁺ ion	
			Topic: Chem 2 Q# 8/ ALvl Chemistry/2015/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org 6 Boron forms many useful compounds.	[2]
			(a) The compound diborane, B_2H_6 , can be used as a rocket fuel. It can be prepared by the reaction of boron trifluoride, BF_3 , with sodium borohydride, NaBH ₄ .	ride, NaBH ₄ .
= *	E		Balance this equation.	
Topic: Chem 2 Q# 4/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org (b) Aluminium is extracted from Al ₂ O ₃ by electrolysis. Al ₂ O ₃ is dissolved in cryolite in this process (iii) Cryolite can be made from SiF ₄ .	org e in this process.		$\dots BF_3 + \dots NaBH_4 \rightarrow \dots B_2H_6 + \dots NaBF_4$	[1]
The first step in this conversion is the reaction of SiF $_4$ with ${ m H}_2{ m O}$, forming ${ m H}_2{ m SiF}_8$ and Si ${ m O}_2$	$H_2 SiF_{\theta}$ and SiO_{2} .			
Write an equation for this reaction.				
	[1]			
	[Total: 11]			
<u>www.SmashingScience.org</u>	Page 31 of 703	III DANIHISTANIS	www.SmashingScience.org Patrick Brannac Page 32 of 703	Carlington Severalington

				actually [3]	ock ate,		[2]	ock ate,	red ms,									[4]	C	LI I BNIHSWAS
ce.org bus Cu(NO ₃) ₂ is			161		e.org m phosphate(V) r 0°C. Calcium silic	rocess.	+ C0	e.org m phosphate(V) r 0 °C. Calcium silic	changed into the ties of the two for	solubility in	soluble		Insoluble		Iding					Page 34 of 703
ww.SmashingScien sample of anhydro					ww.SmashingScienc / by heating calciu tric furnace at 140 ducts.	sents the overall p	P ₄ +CaSiO ₃	ww.SmashingScienc / by heating calciu tric furnace at 140 ducts.	lite phosphorus is me of the propert	solubility in	insoluble		Insoluble	n each allotrope.	type of bonding					υ
a 2 (# 11/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.5mashingScience.org Describe what you would observe when a solid sample of anhydrous $Cu(NO_3)_2$ is strongly heated.		ion.			Chem 2 O# 12/ ALVI Chemistry/2010/s/TZ 1/Paper 4/O# 1/www.SmashingScience.org (b) White phosphorus, P ₄ , is produced commercially by heating calcium phosphate(V) rock with a mixture of silica, SiO ₂ , and coke in an electric furnace at 1400 °C. Calcium silicate, CaSiO ₃ , and carbon monoxide are the other products.	Balance the following equation which represents the overall process.	 C ↑	1 2 0# 13/ ALVI Chemistry/2010/s/T2 1/Paper 4/0# 1/www.SmashingScience.org White phosphorus, P ₄ , is produced commercially by heating calcium phosphate(V) rock with a mixture of silica, SiO ₂ , and coke in an electric furnace at 1400°C. Calcium silicate, CaSiO ₂ , and carbon monoxide are the other products.	When heated to 400 °C in the absence of air, white phosphorus is changed into the red form of the element. The following table lists some of the properties of the two forms, which are known as allotropes.	melting point	44	001	200	Suggest the type of structure and bonding in each allotrope.	ucture					Patrick Brannac
I Chemistry/2010/w/ at you would obse ted.		Write an equation for this reaction.			d Chemistry/2010/s/ phorus, P ₄ , is prod re of silica, SiO ₂ , a d carbon monoxide	e the following equ	$(_{4})_{2} + _{} SiO_{2} + _{}$	<pre>I Chemistry/2010/s/ phorus, P₄, is prod re of silica, SiO₂, a d carbon monoxide</pre>	When heated to 400 °C in the a form of the element. The follow which are known as allotropes.	electrical	none		none	st the type of struct	type of structure					ce.org
Topic: Chem 2 Q# 11/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (c) (i) Describe what you would observe when a solid sample of anhydrous C strongly heated.		(ii) Write an equ			Topic: Chem 2 O# 12/ ALVI Chemistry/2010/s/T2 1/Paper 4/O# 1/www.SmashingScience.org (b) White phosphorus, P ₄ , is produced commercially by heating calcium ph with a mixture of silica, SiO ₂ , and coke in an electric furnace at 1400 °C. CaSiO ₃ , and carbon monoxide are the other products.	(i) Balanc	Ca ₃ (PO ₄) ₂ +	Topic: Chem 2 Q# 13/ ALVI Chemistry/2010/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org (b) White phosphorus, P ₄ , is produced commercially by heating calcium ph with a mixture of silica, SiO ₂ , and coke in an electric furnace at 1400 °C. CaSiO ₂ , and carbon monoxide are the other products.	When heate form of the which are ki	allotrope	white		red	(ii) Sugges	allotrope	white	red			www. Smashing Science.org
Topic: Chem 2 Q# 9/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (c) Alloys of aluminium, titanium and vanadium are used in aerospace and marine equipment, and in medicine.	When a powdered sample of one such alloy is heated with an excess of aqueous NaOH, only the aluminium reacts, according to the following equation.	$2AI(s) + 2OH(aq) + 6H_2O(l) \rightarrow 2[AI(OH)_4](aq) + 3H_2(g)$	Reacting 100g of alloy in this way produced 8.0 dm³ of hydrogen, measured under room conditions.	Calculate the percentage by mass of aluminium in the alloy.				percentage =	Topic: Chem 2 Q# 10/ ALvl Chemistry/2010/w/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 The most typical oxides of tin and lead are SnO, SnO ₂ , PbO and PbO ₂ -	 The following two generalisations can be made about the oxides of the elements in Group IV. As the metallic character of the elements increases down the Group, the oxides become 	 The oxides of the elements in their higher oxidation states are more acidic than the 	oxides of the elements in their lower oxidation states.	(b) 'Red lead' is used as a pigment, and as a metal primer paint to prevent the corrosion of		Calculate to 3 significant figures the number of moles of oxygen and lead contained in a 100.0g sample of red lead. Hence calculate its empirical formula.				empirical formula:	www.SmashingScience.org Patrick Brannac Page 33 of 703

Topic: Chem 3 Q# 15/ ALvI Chemistry/2021/m/Tz 2/Paper 4/Q# 3/www.SmashingScience.org 3 lodates are compounds that contain the IO ₃ ⁻ anion.	(a) The IO ₃ ⁻ anion is shown.	Explain, with reference to the qualitative model of electron-pair repulsion, why the IO ₃ ⁻ anion has a pyramidal shape.	Topic: Chem 3 Q# 16/ ALvl Chemistry/2019/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 When C1NO2 reacts with NO an equilibrium is established. C1NO2(g) + NO(g) ← NO2(g) + C1NO(g)	In each CINO ₂ molecule the nitrogen atom is bonded to the chlorine atom and bonded to each of the oxygen atoms separately. (a) Draw a 'dot-and-cross' diagram for the CINO ₂ molecule.		 [2] Topic: Chem 3 Q# 17/ ALvI Chemistry/2019/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org (c) The variation in the thermal stability of Group 2 amides is similar to that of Group 2 nitrates. (d) Ba(NH₂)₂ contains the NH₂⁻ ion. Predict the bond angle of NH₂⁻. Explain your answer using the qualitative model of electron-pair repulsion. 	bond angle	[]] [Total: 9]	www.SmashingScience.org Patrick Brannac Page 36 of 703
									LI I DNIHSVMS
est by means of diagrams ach allotrope.			sphorus [2] [Total: 11] nashingScience.org rboxylic acid, malonic acid, The solid has the following 2%.	n these data.		[3] [Total: 10]			Page 35 of 703
has a valency of 3. Sugg tht be joined together in e			red phosphorus /T21/Paper4/Q#2/www.SmashingSo d to a solution of the dicarboxylic pitated as a white solid. The solid C, 252.2%; H, 1.4%; O, 45.2%.	a of calcium malonate froi	ı of malonic acid.				Patrick Brannac
(iii) In both allotropes, phosphorus has a valency of 3. Suggest by means of diagrams how the phosphorus atoms might be joined together in each allotrope.			 white phosphorus Ted phosphorus [Total: 11] Topic: Chem 2 Q# 14/ ALvI Chemistry/2009/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org (d) When a solution of CaCL₂ is added to a solution of the dicarboxylic acid, malonic acid, the salt calcium malonate is precipitated as a white solid. The solid has the following composition by mass: Ca, 28.2%; C, 25.2%; H, 1.4%; O, 45.2%. 	 Calculate the empirical formula of calcium malonate from these data. 	(ii) Suggest the structural formula of malonic acid.				<u>www.SmashingScience.org</u>

Topic: Chem 3 Q# 18/ ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Hydrogen cyanide, HCN, is a weak acid in aqueous solution. $K_a = 6.2 \times 10^{-10} \text{ mol dm}^{-3}$ HCN(aq) → H⁺(aq) + CN⁻(aq) Draw a 'dot-and-cross' diagram to represent the bonding in the hydrogen cyanide molecule. Show the outer shell electrons only. (ii)

[1]	(iii) State the hybridisation of the carbon and nitrogen atoms in hydrogen cyanide, and give the H–C–N bond angle.	hybridisation of C	hybridisation of N	H–C–N bond angle	Topic: Chem 3 Q# 19/ ALVI Chemistry/2017/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org
	(III)				The con

2NO + Br₂ ≓ 2NOBr (b) Nitrosyl bromide contains a trivalent nitrogen atom. Draw the 'dot-and-cross' diagram for NOBr. Show outer electrons only.

Two examples are molecules of cyanic acid, HOCN, and isocyanic acid, HNCO. The atoms are Topic: **Chem 3 Q# 20/** ALvI Chemistry/2017/s/T21/Paper 4/Q# 2/www.SmashingScience.org **2 (a)** One atom of each of the four elements H, C, N and O can bond together in different ways. bonded in the order they are written.

(i) Draw 'dot-and-cross' diagrams of these two acids, showing outer shell electrons only.

HOCN, cyanic acid HNCO, isocyanic acid	(ii) Suggest the values of the bond angles HNC and NCO in isocyanic acid .	HNC	
---	---	-----	--

Draw a three-dimensional diagram showing the shape of the chloride. Give the Ct-Si-Ct Topic: Chem 3 Q# 21/ ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 1(a)/www.SmashingScience.org bond angle. (!!!)

[2]

Ξ

[2]

Page **38** of **703**

Patrick Brannac

www.SmashingScience.org

Page **37** of **703**

Patrick Brannac

www.SmashingScience.org

Topic: Chem 3 Q# 24/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (b) Phosphorus reacts with chlorine to form a variety of chlorides. PCI_{5} is an example of a compound that exists as two structures depending on the conditions.	$2PCI_5(g) \rightleftharpoons [PCI_4]^+[PCI_6]^-(s)$ Draw a 'dot-and-cross' diagram to show the bonding in PCI_5 . Show the outer electrons	only. (ii) Draw diagrams to suggest the shapes of $[PCt_d]^+$ and $[PCt_d]^-$.		[PCl ₄] ⁺ [PCl ₆] ⁻ [3]	Phosphorus(III) oxide, P_4O_6 , contains no P–P or O–O bonds. In the P_4O_6 molecule, all oxygen atoms are divalent and all phosphorus atoms are trivalent. Sketch a structure for P_4O_6 .		[1]			gScience.org Patrick Brannac Page 40 of 703
Topic: Chem 3 Q# 3 (b) Phosph PCI ₅ is	(i) Dr	only. (ii) Draw di			(c) (i) Phosi In the Sketc	2	[1]	Ξ	Ξ	www.SmashingScience.org
le.	igh melting point whereas the	.SmashingScience.org er.	negative charge	2-		ule.		.ing.		Page 39 of 703
Silicon reacts with oxygen to form a high melting point oxide • Suggest the formula of the oxide.	Suggest, in terms of structure, why the oxide has a high melting point whereas the chloride has a low boiling point.	Topic: Chem 3 Q# 22/ ALvI Chemistry/2016/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org (c) Calcium cyanamide, CaCN ₂ , can be used as a fertiliser.	 Use the following key for the electrons. electrons from carbon electrons from nitrogen added electron(s) responsible for the overall negative charge 		o z	Topic: Chem 3 Q# 23/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) A compound of fluorine and oxygen contains three atoms in each molecule.	ula.	Draw a 'dot-and-cross' diagram to show its bonding.	Suggest the shape of this molecule.	Patrick Brannac
(iv) Silicon reacts with oxSuggest the form	 Suggest, in terms of structure, chloride has a low boiling point. 	Topic: Chem 3 Q# 22/ ALvi Chemi: (c) Calcium cyanamide,				Topic: Chem 3 Q# 23/ ALvl Chemi (b) A compound of fluo		(ii) Draw a 'dot-an	(iii) Suggest the sh	www.SmashingScience.org

Topic: Chem 3 Q# 27/ ALvI Chemistry/2012/s/TZ 1/Paper 4/O# 2/www.SmashingScience.org 2 Nitrogen monoxide, NO, is formed in a reversible reaction when air is heated to the temperature of a car engine.	Suggest a 'dot-and-cross' electronic structure for nitrogen monoxide.	[1] Topic: Chem 3 Q# 28/ ALvi Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.5mashingScience.org Section A Answer all questions in the spaces provided.	Taken together, nitrogen and oxygen make up 99% of the air. Oxygen is by far the more reactive of the two gases, and most of the substances that react with air combine with the oxygen rather than with the nitrogen. (a) State one reason why the molecule of nitrogen, N ₂ , is so unreactive.	 Topic: Chem 3 0# 29/ ALM Chemistry/2010/s/TZ 1/Paper 4/Q# 3/www.5mashingScience.org (c) The molecule dichlorocarbene, CC 1/2, can be produced under certain conditions. It is highly unstable, reacting with water to produce carbon monoxide and a strongly acidic solution. (i) Suggest the electron arrangement in CC 1/2 and draw a dot-and-cross diagram showing this. Predict the shape of the molecule. 	Construct an equation for the reaction of CCL_2 with water.	[Total: 8]
Topic: Chem 3 Q# 27/ ALvi Chemistry/2012/s/T2 1/Paper 4/Q# 2/ww/ 2 Nitrogen monoxide, NO, is formed in a reversible reaction of a car engine.	(a) (i) Suggest a 'dot-and-cross' electronic structure for	Topic: Chem 3 Q# 28/ ALVI Chemistry/2011/s/TZ 1/Paper 4/Q# 1/ww Section A Answer all questions in the spac	 Taken together, nitrogen and oxygen make up 99% of reactive of the two gases, and most of the substances oxygen rather than with the nitrogen. (a) State one reason why the molecule of nitrogen, N₂, 	Topic: Chem 3 Q# 29/ ALvI Chemistry/2010/s/T2 1/Paper 4/0# 3/www (c) The molecule dichlorocarbene, CC4, can be produ- highly unstable, reacting with water to produce carb solution. (i) Suggest the electron arrangement in CC4, a showing this. Predict the shape of the molecule.	(ii) Construct an equation for the reaction of CCI ₂	
1/Paper 4/Q# 1/www.SmashingScience.org Section A	Answer all the questions in the spaces provided.	Gaseous ammonia reacts with gaseous hydrogen chloride to form solid ammonium chloride. $NH_3 + HCl \rightarrow NH_4 Cl$ The bonding in ammonium chloride includes ionic, covalent and co-ordinate (dative covalent) bonds.	Complete the following 'dot-and-cross' diagram of the bonding in ammonium chloride. For each of the six atoms show all the electrons in its outer shell. Three electrons have already been included. Use the following code for your electrons.		2# 26/ ALVI Chemistry/2012/s/T2 1/Paper 4/O# 4/www.SmashingScience.org Describe and explain the trend in the volatilities of the Group IV chlorides CCI_{4} , $GeCI_4$ and $PbCI_4$.	[2]
Topic: Chem 3 Q# 25/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A	Answer all the que	 (a) Gaseous ammonia reacts with g chloride. NH₃ The bonding in ammonium chlor covalent) bonds. 	Complete the following 'dot-and-cross' di For each of the six atoms show all the el already been included. Use the following code for your electrons.	 electrons from chlorine x electrons from hydrogen o electrons from nitrogen n 	Topic: Chem 3 Q# 26/ ALvl Chemistry/2012/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (i) Describe and explain the trend in the volatilities of the Group IV $GeCI_4$ and $PbCI_4$.	

Topic:	Topic: Chem 3 Q# 30/ ALvI Chemistry/2009/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A		Topic: Chem 5 Q# 33/ ALVI Chemistry/2012/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) When SiCI ₄ vapour is passed over Si at red heat, Si ₂ CI ₆ is formed. Si ₂ CI ₆ contains a Si-Si	gScience.org Si ₂ CI ₆ contains a Si-Si
	Answer all questions in the spaces provided.		The reaction of Si_2Cl_6 and Cl_2 re-forms $SiCl_4$.	
1 (3	(a) The Group IV oxides CO ₂ and SiO ₂ differ widely in their physical properties. Describe these differences and explain them in terms of their structure and bonding.	Describe	$Si_2Ct_6(g) + Ct_2(g) \rightarrow 2SiCt_4(g)$ Use bond energy data from the <i>Data Booklet</i> to calculate ΔH° for this reaction.	this reaction.
Topic	Topic: Chem 5 Q# 31/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Explain what is meant by the term <i>bond</i> energy.	E		kJ mol ⁻¹
Topic: (e) 1	Topic: Chem 5 Q# 32/ ALVI Chemistry/2013/w/TZ 1/Paper 4/Q# 4/www.5mashingScience.org (e) Ethane reacts with chlorine according to the following equation.	E	 Topic: Chem 5 Q# 34/ Alvl Chemistry/2012/s/TZ 1/Paper 4/O# 2/www.SmashingScience.org Nitrogen monoxide, NO, is formed in a reversible reaction when air is heated to the temperature of a car engine. (ii) The enthalpy change of formation of nitrogen monoxide is +90 kJ mol⁻¹. What is the enthalpy change for the following reaction? 	الحا Science.org s heated to the temperature s +90 kJ mol ⁻¹ . What is the
	$C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$ One of the steps during this reaction is the following process. $Cl^* + CH_3CH_3 \rightarrow HCl + CH_3CH_2^*$ (iii) Use the <i>Data Booklet</i> to calculate the enthalpy change, ΔH , of this step.		$2NO(g) \rightarrow N_2(g) + O_2(g)$ $\Delta H_r = \dots, kJmor^{-1}$ (iv) Using bond enthalpy values from the <i>Data Booklet</i> and your answer in (ii) above, calculate a value for the bond energy of nitrogen monoxide.	Δ <i>H_r</i> =kJ mol ⁻¹ [₁] 1 your answer in (ii) above, tide.
	<u>AH</u> =	kJ mol ⁻¹	bond energy = Topic: Chem 5 Q# 35/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A	=kJ mol ⁻¹ [2] gScience.org
U)	(iv) Use the <i>Data Booklet</i> to calculate the enthalpy change, ΔH , of the similar reaction: I• + $CH_3CH_3 \rightarrow HI + CH_3CH_2^{\bullet}$	tion.	Answer all questions in the spaces provided 1 (a) The halogens chlorine and bromine react readily with hydrogen.	led. en.
0	$\Delta H = \dots$ kJ mol ⁻¹ (v) Hence suggest why it is not possible to make iodoethane by reacting together iodine and ethane.	kJ mol ⁻¹ ner iodine 	$X_2(g) + H_2(g) \rightarrow 2HX(g)$ [X = Ci or Br]	5
3	<u>www.SmashingScience.org</u> Patrick Brannac Page 43 of 70 3	11 Johnsons	<u>www.SmashingScience.org</u>	Page 44 of 703

										[2]		٩	Contraction of the second seco
ingScience.org jor product is SC1 ₂ (Ct-S-C1).		thange, ΔH , for this reaction. I single ring by single bonds.			kJ mol ⁻¹ [2]	SmashingScience.org on states.	$_{\rm 2_2}$ and water. extract the $\rm I_2$.	acidic conditions.		ingScience.org Dn states.	L ₂ , and water. extract the L ₂ . : in water.		Page 46 of 703
/w/TZ 1/Paper 4/Q# 1/www.Smash pressure with chlorine, the ma	$S_8(g) + 8Cl_2(g) \rightarrow 8SCl_2(g)$	Use data from the <i>Data Booklet</i> to calculate the enthalpy change, ΔH , for this reaction. The eight sulfur atoms in the S ₈ molecule are all joined in a single ring by single bonds.			ΔH =	/2022/m/TZ 1/Paper 4/Q# 1/www. ounds in many different oxidatic	lodide ions, Γ_7 , react with acidified $H_2O_2(aq)$ to form iodine, Γ_2 , and water. This reaction mixture is shaken with cyclohexane, C_6H_{12} , to extract the Γ_2 -Cyclohexane is immiscible with water.	Identify the role of H ₂ O ₂ (aq) in its reaction with I ⁻ ions in acidic conditions.	or the reaction.	/m/TZ 1/Paper 4/Q# 1/www.Smash ounds in many different oxidatic	lodide ions, I ⁻ , react with acidified H ₂ O ₂ (aq) to form iodine, I ₂ , and water. This reaction mixture is shaken with cyclohexane, C_6H_{12} to extract the I ₂ . Cyclohexane is immiscible with water. Group 1 iodides all form stable ionic lattices and are soluble in water.		Patrick Brannac
Topic: Chem 5 Q# 36/ ALvl Chemistry/2010/w/Tz 1/Paper 4/Q# 1/www.SmashingScience.org (b) When sulfur is heated under pressure with chlorine, the major product is SCl_2 (CLS-CI).	S ₈ (g	Use data from the <i>Data Bo</i> c The eight sulfur atoms in the				Topic: Chem 6 Q# 37/ ALvl Chemistry/2022/m/T2 1/Paper 4/Q# 1/www.SmashingScience.org lodine is found naturally in compounds in many different oxidation states.	(a) lodide ions, Γ , react with acidified $H_2O_2(aq)$ to form iodine, I_2 , and water. This reaction mixture is shaken with cyclohexane, C_6H_{12} , to extract the I_2 Cyclohexane is immiscible with water.	(i) Identify the role of H_2O_2	Write an ionic equation for the reaction. role	Topic: Chem 6 Q# 38/ ALvl Chemistry/2022/m/Tz 1/Paper 4/Q# 1/www.SmashingScience.org 1 lodine is found naturally in compounds in many different oxidation states.	(a) lodide ions, I ⁻ , react with acidified $H_2O_2(aq)$ to form iodine, I ₂ , and we This reaction mixture is shaken with cyclohexane, C_6H_{12} , to extract th Cyclohexane is immiscible with water. (b) The Group 1 iodides all form stable ionic lattices and are soluble in water.		www.SmashingScience.org
u			T				T	[5]			1]15	(ITI DATAS
late the ΔH^{Φ} for this reaction			kJmol ^{−1}				o ΔH ^e values?		the ΔH^{Φ} of this reaction	k1	e, CH ₃ I. by this reaction. [3]15		Page 45 of 703
Use bond energy data from the <i>Data Booklet</i> to calculate the ΔH^{\oplus} for this reaction when			ΔH ^e =				$\Delta H^{\Phi} = \dots \Delta H^{\Phi}$ (iv) What is the major reason for the difference in these two ΔH^{Φ} values?		$CH_4(g) + X_2(g) \rightarrow CH_3X(g) + HX(g)$ Use bond energy data from the <i>Data Booklet</i> to calculate the ΔH^{\oplus} of this reactio for the situation where X is iodine, I.	ΔH ⁶ =	Hence suggest why it is not possible to make iodomethane, CH ₃ I, by this reaction		Patrick Brannac
) Use bond energy dat when	X = Cl,			X = Br.) What is the major rea	(b) Some halogens also react readily with methane.	$CH_4(g) + X_2(g) \rightarrow 0$ Use bond energy data from the <i>Dat</i> , for the situation where X is iodine, I.		fence suggest why it is r		www. Smashing Science.org
							(iv)	(b) Some	(ii)		III)		www.Sm

CE VIEW

Topi	(e) Methylamine is a Brønsted-Lowry base.	Write an equation showing how methylamine dissolves in water to give an alkaline solution. [1]	igscience.org the names of the function	$\lambda_3^{2-}(aq)$ is added. (b) The drug named ketamine readily reacts with protons as shown.	ketamine + $H^+ \rightarrow [ketamine-H]^+$	(i) State the role of ketamine in this reaction.	Topic: Chem 7 Q# 43/ ALVI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) Calcium nitrate, Ca(NO ₃) ₂ , is used in fertilisers and can be prepared by an acid-base reaction.	Write an equation for the preparation of calcium nitrate by an acid-base reaction.	[1] Topic: Chem 7 Q# 44/ ALvi Chemistry/2014/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	(c) Copper(I) oxide and copper(II) oxide can both be used in the ceramic industry to give blue, green or red tints to glasses, glazes and enamels.	The table lists the ΔH_{γ}^{e} values for some compounds.	compound $\Delta H_{\uparrow}^{\bullet}/kJ$ mol ⁻¹	Cu ₂ O(s) -168.6		Cu(NO ₃) ₂ (s) -302.9 NO ₂ (g) +33.2	(i) Copper(II) oxide can be produced in a pure form by heating copper(II) nitrate. Use suitable ΔH_{π}^{*} values from the table to calculate the ΔH^{*} for this reaction.	[1] $Cu(NO_3)_2(s) \rightarrow CuO(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$		ΔH ^a =kJ mol ⁻¹	
(c) The concentration of $Cu^{24}(aq)$ in a solution can be determined by the reaction of Cu^{24} ions with I ⁻ ions.	reaction 1 $2Cu^{2*} + 4I^- \rightarrow 2CuI + I_2$	The I_2 produced in reaction 1 is titrated against a solution containing thiosulfate ions, $S_2 O_3^{2-},$ using a suitable indicator.	reaction 2 $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$ (i) Δ 25 0 cm ³ nortion of a Cut ³⁴ (an) solution reacts with an excess of I-(an)		Calculate the concentration of Cu ²⁺ (aq) in the original solution.				concentration of Cu ²⁴ (aq) =	(ii) Identify a suitable indicator for the titration.	Topic: Chem 6 Q# 39/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 5b/www.SmashingScience.org	A three-step mechanism for this reaction is shown.	step 1 C10 ⁻ + $H_2O \rightarrow HC1O + OH^-$	step 2 I- + HC $iO \rightarrow$ HIO + C I -	step 3 HIO + OH ⁻ \rightarrow H ₂ O + IO ⁻ (iii) Identify a step that involves a redox reaction. Explain your answer.		Topic: Chem 6 Q# 40/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 The compound nitrosyl bromide, NOBr, can be formed by the reaction shown.	$2NO + Br_2 \rightleftharpoons 2NOBr$	(a) Using oxidation numbers, explain why this reaction is a redox reaction.	

(ii) Copper(I) oxide	e can be produ	Copper(I) oxide can be produced from copper(II) oxide.			(b) Nitrates and phosphates can enter water courses such as rivers or streams as a result	It
 Use suitab 	le ΔH ^e values	Use suitable ΔH_{f}^{a} values from the table to calculate ΔH^{a} for the reaction.	* for the reaction.		of human activity. Both of these ions are nutrients for algae.	
	2CuO(s	$2CuO(s) \rightleftharpoons Cu_2O(s) + \frac{1}{2}O_2(g)$			(i) What is the origin of these nitrates?	
					(ii) Suggest an origin for the phosphates found in water courses.	18
		7	ΔH* =kJ mol ⁻¹		(iii) What effect do nitrates and phosphates have on water courses?	
Hence sug production	igest whether of copper(I) o	Hence suggest whether a low or a high temperature of oxidation would favour the production of copper(I) oxide. Explain your reasoning.	of oxidation would favour the			
					[3] Topic: Chem 7 Q# 46/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
			[4]		3 (a) (i) Using the symbol HZ to represent a Brønsted-Lowry acid, write equations which show the following substances acting as Brønsted-Lowry bases.	
Topic: Chem 7 Q# 45/ ALvl	Chemistry/2013	Topic: Chem 7 Q# 45/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org	ashingScience.org			
8 In a world with a rapi many countries, grou <i>Groundwater</i> is wate beneath the Earth's	idly increasing undwater sourc er that exists i surface. The	In a world with a rapidly increasing population, access to clean drinking water is critical. For many countries, groundwater sources, rather than stored rainwater or river-water, are vital. <i>Groundwater</i> is water that exists in the pore spaces and fractures in rock and sediment beneath the Earth's surface. The World Health Organisation (WHO) provides maximum	nking water is critical. For er or river-water, are vital. es in rock and sediment /HO) provides maximum		cH ₃ OH + ↓ ↓	
(a) The geological n	entrations for a ature of the soil	recommended concentrations for different ions present in drinking water. (a) The geological nature of the soil determines the chemical composition of the groundwater.	water. ssition of the groundwater.		(ii) Using the symbol B ⁻ to represent a Brønsted-Lowry base, write equations which show the following substances acting as Brønsted-Lowry acids.	
The table shows	s some ions wh	I he table shows some ions which may contaminate groundwater.	iter.		NH ₃ + ↓	
	ion present	WHO maximum permitted concentration / mg dm ⁻³				
	Ba ²⁺	0.30			CH ₃ OH + →	
	C1-	250.00			[4]	. <u></u>
	NO ₃ -	50.00			(b) State briefly what is meant by the following terms.	
	Pb ²⁺	0.01			(1) manual in a start of the second sec	
	Na ⁺	20.00				
	S04 ²⁻	500.00				1274
(i) Nitrate, NO ₃ What is the	Nitrate, NO ₃ ⁻ , ions are diffic What is the reason for this?	Nitrate, NO $_3^-$, ions are difficult to remove from groundwater. What is the reason for this?			(ii) dynamic equilibrium	
(ii) State which treatment wi	ions in the ta th powdered lin	State which ions in the table above are likely to be removed from the water by treatment with powdered limestone, $CaCO_3$, giving reasons for each of your answers.	noved from the water by for each of your answers.		[2]	7 (19 <u>11</u> 9)
			[4]	C		
www. Smashing Science.org	.org	Patrick Brannac	Page 49 of 703	SMASHINGILL	www.SmashingScience.org Patrick Brannac Page 50 of 703	SMS

THE REAL PROPERTY OF

2 (a) St	the second	meant by	the follow	wing tern	ls.					Section A
(j)	reversible reaction	uo								Answer all the questions in the spaces provided.
(ii)	dynamic equilibrium	rium							1	 (a) Write down what you would see, and write equations for the reactions that occur, when silicon(IV) chloride and phosphorus(V) chloride are separately mixed with water.
										silicon(IV) chloride
Topic: Chel (ii)	Topic: Chem 9 Q# 48/ ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 1(a)/www.5mashingScience.org (ii) Silicon forms a low boiling point chloride which reacts with water.	hemistry/2 boiling poi	2017/m/Tz	2/Paper	1/Q# 1(a)/	www.Sma	shingScie	ıce.org	[2]	
	Write an equation to show the reaction of the chloride with water.	o show the	e reaction	of the chlc	ride with v	vater.		Ξ		phosphorus(V) chloride
Topic: Chem 5 2 (a) Co ga	Topic: Chem 9 Q# 49/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Complete the table to show the number of unpaired electrons in the outer shell of each of the gaseous atoms, Na to Ar.	stry/2015/v show thi o Ar.	w/TZ 1/Pa _l e numbei	oer 4/Q# : of unpa	2/www.Sn ired elec	ashingSci trons in t	ience.org	shell of ea	ch of the	
	number of	Na	Mg	Al	Si	٩	S	CI	Ar	Topic: Chem 9 Q# 51/ ALvI Chemistry/2012/s/TZ 1/Paper 4/O# 1/www.SmashingScience.org (d) Write equations, including state symbols, for the reactions, if any, of the following two oxides with water. Suggest values for the PH of the resulting solutions.
: 5	unpaired electrons									oxide equation pH of resulting solution
									[]]	Na ₂ O
(i) (q)	Complete the table for the reactions of two Period 3 chlorides with water.	ble for the	: reaction	s of two	Period 3	chlorides	s with wat	er.		MgO
	Period 3 chloride	Iride		obser	observations		p Hq	pH of solution formed	formed	
	SiC14									[Total: 12] Topic: Chem 9 Q# 52/ ALVI Chemistry/2011/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) State and explain the variation in the oxidation numbers of the chlorides of the elements Na, Mg, A <i>l</i> and Si.
	PC15								-	
(1)	Write an equation for the reaction between $SiCl_4$ and H_2O .	n for the I	eaction t	Jetween	SiC14 and	1H ₂ O.	-			 (b) Describe the reaction of phosphorus(V) chloride with water, and write an equation for the reaction
									[1] [Total: 7]	
									G	
www.Sm	www.SmashingScience.org		ď	Patrick Brannac	nac		Page	Page 51 of 703	LI IDNIHSYMS	www.SmashingScience.org Patrick Brannac Page 52 of 703

Topic: Chem 9 Q# 50/ ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

Topic: Chem 7 Q# 47/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

LI I BNIHS

(c) When microwave radiation is passed through phosphorus(III) chloride, PCt₃, at low pressure, a new chloride of phosphorus, B, is formed. B contains 69.6% by mass of chlorine and 30.4% by mass of phosphorus, and its M_r is approximately 200.

Topic: Chem 9 Q# 54/ ALvl Chemistry/2010/s/TZ 1/Paper 4/O# 1/www.SmashingScience.org

Answer all questions in the spaces provided.

Section A

(I)	(i) Calculate the empirical and molecular formulae of B.	÷	(a) E	Phosphorus and sulfur are two non-metallic elements on the right hand side of the Periodic Table. For each of these elements describe the observations you would make when it burns in air, and write a balanced equation for the reaction.
				phosphorus
	. A comina shaceharus and shlarina chau thair turinal valancias. Arou tha diselaved		0	observation
Ē			U	equation
				sulfur
			0	observation
			Ű	equation
(III)	Calculate the oxidation number of phosphorus in B .	Topic:	c: Chem	[4] Topic: Chem 9 Q# 55/ ALvI Chemistry/2009/w/T2 1/Paper 4/O# 1/www.SmashingScience.org (c) Lead(III) oxide reacts with both acids and bases.
(iv)	 One mole of B reacts with four moles of water. Suggest the structure of the phosphorus-containing product of this reaction. 		Ξ	What is the name given to oxides that have this property?
			(II)	Write a balanced equation for the reaction between PbO and NaOH.
			ā	[2]
	[6] [Total: 10]	lopido	c: Cher (b) (j)	I optic: Chem 10 Q# 56/ ALvI Chemistry/2020/w/T21/Paper 4/Q# 2/www.SmashingScience.org (b) (i) Write an equation for the reaction between BaO and H ₂ O. Include state symbols.
Topic: Chem S	Topic: Chem 9 Q# 53/ ALvI Chemistry/2010/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org Section A			
	Answer all the questions in the spaces provided.			
1 (a) Wi	(a) Write a balanced equation for the reaction of each of the following chlorides with water.			
hq	phosphorus(V) chloride			
sil	silicon(IV)chl oride. 2			

[1]

Page **54** of **703**

Patrick Brannac

www.SmashingScience.org

Patrick Brannac

www.SmashingScience.org

Contraction

Page **53** of **703**

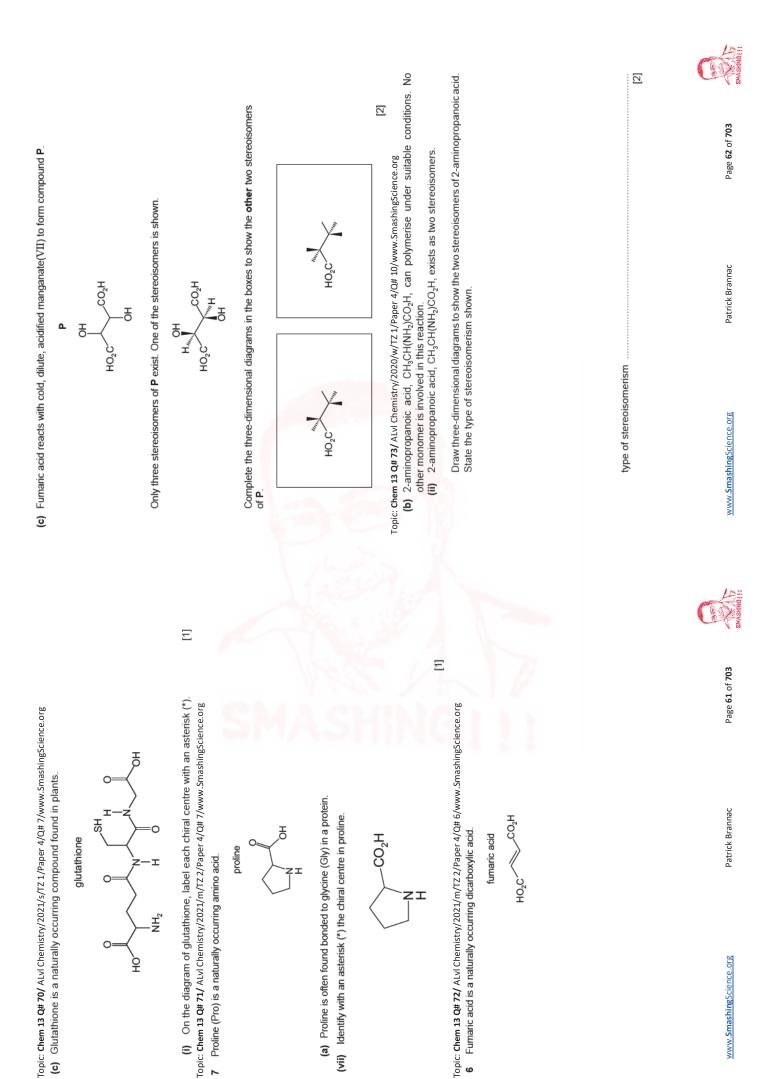
Topic: Chem 6 The el	Topic: Chem 10 Q# 57/ ALvl Chemistry/2019/w/TZ 1/Paper 4/0# 6/www.SmashingScience.org 6 The elements in Group 2 include magnesium, calcium, strontium and barium.	(b) Element A is in the same period as silicon. Element A react nitrate. This nitrate decomposes on heating to form an oxide.	(b) Element A is in the same period as silicon. Element A reacts with dilute nitric acid to form a nitrate. This nitrate decomposes on heating to form an oxide.	nitric acid to form a
(a) (i)	Write an equation for the change representing the first ionisation energy of magnesium. Include state symbols.	(i) Write an equation for the decomposition of the nitrate	omposition of the nitrate.	[2]
	[1]	(ii) The oxide of element A has a high melting point	high melting point.	
(ii)) Write an equation for the reaction of strontium with cold water. Include state symbols.	Suggest the structure and bor	Suggest the structure and bonding present in the oxide of A .	
	[1]			[1]
(III)) Describe and explain the trend in reactivity observed in the reactions of these Group 2 metals with cold water.	[Total: 9 Topic: Chem 11 Q# 60/ ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 lodates are compounds that contain the IO ₃ - anion.	:ry/2021/m/TZ 2/Paper 4/Q# 3/www.Sn n the IO ₃ - anion.	[Total: 9] mashingScience.org
		(a) The IO ₃ ⁻ anion is shown.		
L (q)	(b) The Group 2 metal nitrates decompose when heated.	(b) The reaction of iodine and hol hot acueous sodium budroxide	D The reaction of iodine and hot aqueous sodium hydroxide is similar to that of chlorine and hot aqueous sodium hydroxide Sodium iodate NaIO. is formed as one of the products	lar to that of chlorine and
(i)	Describe fully what is seen when anhydrous calcium nitrate is heated in a test-tube and decomposition occurs.	Suggest an equation for the re-	Suggest an equation for the reaction of iodine and hot aqueous sodium hydroxide.	lium hydroxide.
	E	Topic: Chem 11 Q# 61/ ALvI Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (d) Describe how the colours of the silver halides, and their relative solubilities in can be used to distinctuish between solutions of the halide ions <i>C1</i> - Br- and 1-	:: Chem 11 Q# 61/ $ALvI$ Chemistry/2012/ $w/T2$ 1/Paper 4/O# 2/ www .SmashingScience.org Describe how the colours of the silver halides, and their relative solubilities in $NH_3(aq)$, can be used to distinguish between solutions of the halide ions CT - $Br-$ and T -	[1] gScience.org solubilities in NH ₃ (aq), - Br- and T-
(ii)	Write an equation for the decomposition of calcium nitrate.			
Topic: Chem 4 (a) D	Topic: Chem 10 Q# 58/ ALvl Chemistry/2018/s/T21/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Describe what you would see when calcium and barium are heated separately with oxygen.			
ŭ	calcium			
a ⊻ (c)	Magnesium carbonate was heated in an open test-tube. It was difficult to see whether a thermal decomposition reaction took place.			
Ш	Explain why.			[4]
	[2]			
Topic: Chem <u>www.Sn</u>	[Total: 7] Topic: Chem 10 Q# 59/ ALvI Chemistry/2017/m/T2 2/Paper 4/Q# 1(a)/www.SmashingScience.org www.SmashingScience.org Page 55 of 703	www.SmashingScience.org	Patrick Brannac	Page 56 of 703
	SMASHING11			

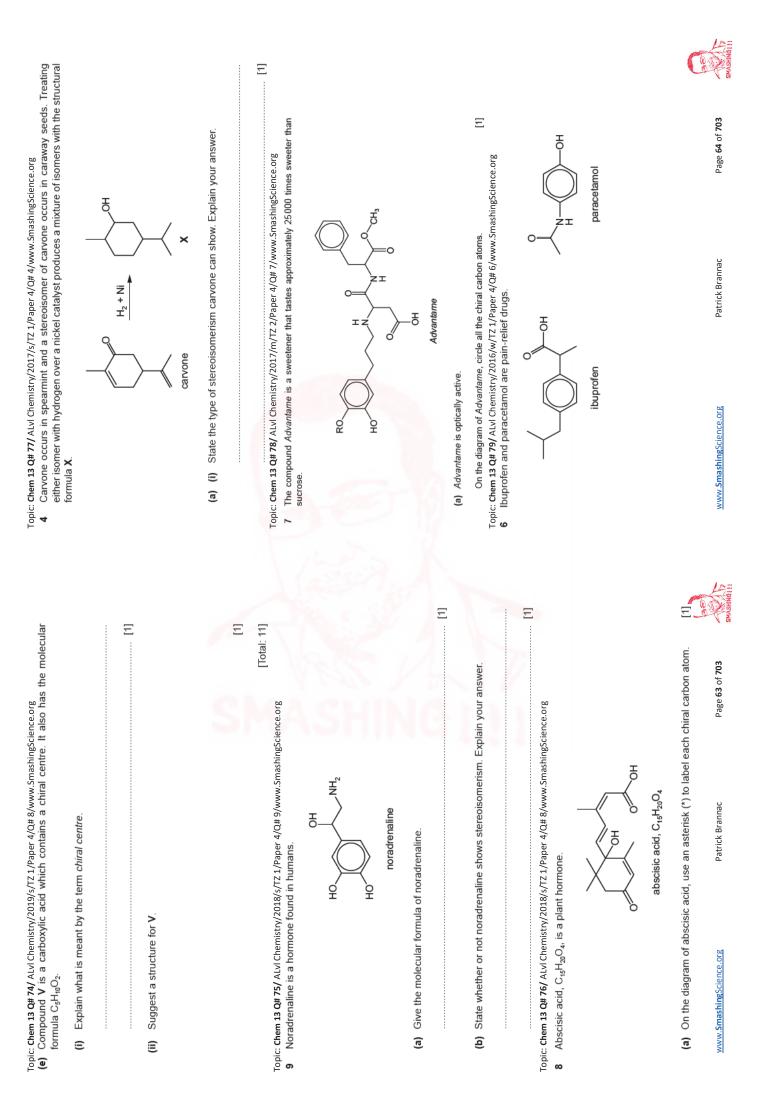
Topic: Chem 11 Q# 62/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A Answer all cuestions in the spaces browided	cience.org		Topic: Chem 12 Q# 64/ ALvI Chemistry/2013/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 Because of the lack of reactivity of the nitrogen molecule, extreme conditions need to be used to synthesise ammonia from nitrogen in the Haber process.
Answer all questions in the spaces provide			(a) Suggest an explanation for the lack of reactivity of the nitrogen molecule, N_2 .
(a) The halogens chlorine and bromine react readily with hydrogen.			
$X_2(g) + H_2(g) \rightarrow 2HX(g)$ [X = Ct or Br]			[1]
(i) Describe how you could carry out this reaction using chlorine.	те.		
Describe two observations you would make if this reaction was carried out with bromine.	on was carried out with		 (b) Under conditions of high temperature, nitrogen and oxygen react together to give oxides of nitrogen. (i) Write an equation for a possible reaction between nitrogen and oxygen.
Topic: Chem 12 Q# 63/ ALvl Chemistry/2013/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org (c) Acid rain can have a major impact on natural waters, particularly lakes. In recent years there has been a worldwide effort to reduce the amount of acid rain produced.	cience.org akes. In recent years 1 produced.	[2]	(ii) State two situations, one natural and one as a result of human activities, in which nitrogen and oxygen react together.
Write equations to show the production of acid rain from sulfur dioxide, SO_2	dioxide, SO ₂ .		(iii) What is the main environmental effect of the presence of nitrogen oxides in the atmosphere?
The use of fossil fuels is one major source of sulfur dioxide. Name another major industrial source.			[4] Topic: Chem 12 Q# 65/ ALvI Chemistry/2012/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 Nitrogen monoxide, NO, is formed in a reversible reaction when air is heated to the temperature of a car entitie
	[2]		(iii) Explain why nitrogen monoxide is formed in the car engine.
	10041.9		Topic: Chem 12 Q# 66/ ALvl Chemistry/2011/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org [1] 4 The combustion of fuels in motor vehicles, trains, aeroplanes and power stations produces the pollutant gas NO2.
			(a) Write an equation to show how NO ₂ is formed in these situations. [1]
			(b) (i) How is the NO ₂ removed from the exhaust gases of motor vehicles?
			(ii) Write an equation for this process.
<u>www.SmashingScience.org</u>	Page 57 of 703	A A A A A A A A A A A A A A A A A A A	22 Page 58 of 703

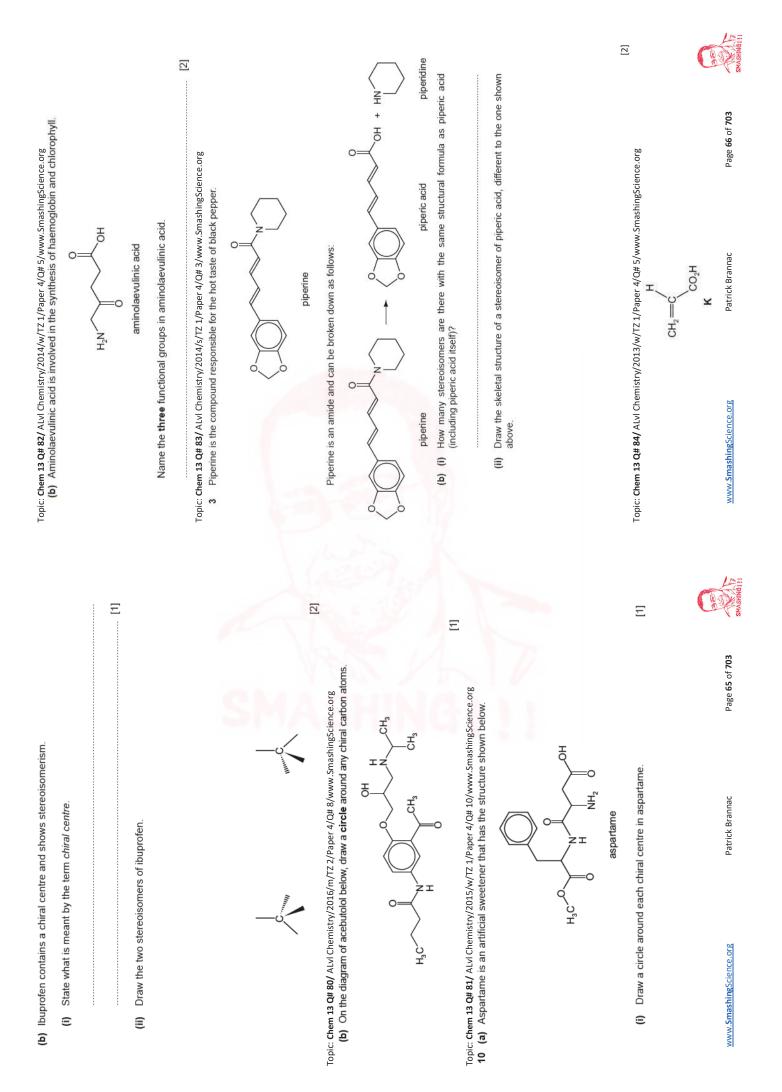
(ii) What class of organic compound is urea?

Topic: Chem 12 Q# 67/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

-


Page 59 OT /03


LI I BNIHSWS


ck brannac

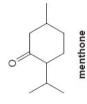
Page 60 of 703

[]

Topic: Chem 13 Q# 87/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A	Answer all questions in the spaces provided. 1 (a) The halogens chlorine and bromine react readily with hydrogen.	$X_2(g) + H_2(g) \rightarrow 2HX(g)$ [X = Ct or Br]	(b) Some halogens also react readily with memane. $CH_4(g) + X_2(g) \rightarrow CH_3X(g) + HX(g)$	(i) What conditions are needed to carry out this reaction when X is bromine, Br?	 (c) Halogenoalkanes can undergo <i>homolytic fission</i> in the upper atmosphere. (i) Explain the term <i>homolytic fission</i>. 	(ii) Suggest the most likely organic radical that would be formed by the homolytic fission of bromochloromethane, CH ₂ BrCt. Explain your answer.		(d) The reaction between propane and chlorine produces a mixture of many compounds, four of which are structural isomers with the molecular formula $C_3H_6C_2$. Draw the structural or skeletal formulae of these isomers, and indicate any chiral atoms with an asterisk (*).	[3] [Total: 18]
(b) Acrylic acid is the common name for compound K. Suggest the systematic (chemical) name of K.	[1] Topic: Chem 13 Q# 85/ ALvI Chemistry/2012/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (ii) The structure of lactic acid is shown.	CO ₂ H	HOCH	(b) Lactic acid exists in two stereoisomeric forms. Draw the other form in the box.	SMA	Topic: Chem 13 Q# 86/ ALvl Chemistry/2012/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 Indigo is the dye used in blue jeans. Although originally extracted from plants of the type indicates it is now almost antical activation.	Indigo is insoluble in water but this disadvantage can be overcome by converting it into the water-soluble colourless leuco-indigo. If cloth soaked in a solution of leuco-indigo is left to dry in the sit the shore indice is convected into the lowed which is previously due to the second set of the se	o the	(a) (i) Give the molecular formula of indigo.

Patrick Brannac

Page **67** of **703**


Patrick Brannac

www.SmashingScience.org

Page **68** of **703**

Topic: Chem 13 Q# 88/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 Menthone, C₁₀H₁₈O, is a cyclic ketone that occurs in oil of peppermint.

(a) Use asterisks (*) on the formula above to identify any chiral centres in the molecule of

menthone.

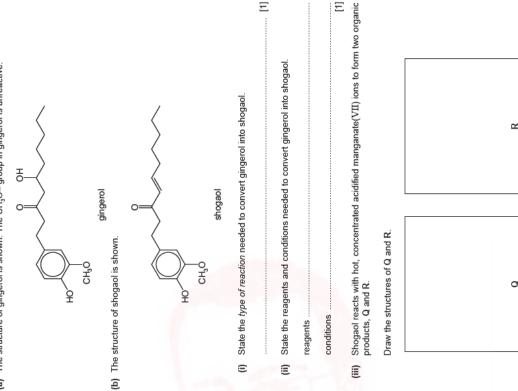
[2]

(c) Halogenoalkanes can be formed from the reaction of an alkene with a hydrogen halide. Topic: Chem 14 Q# 89/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

Methylpropene reacts with hydrogen bromide to form 2-bromo-2-methylpropane.

2-bromo-2-methylpropane methylpropene

(i) Draw the mechanism of this reaction. Include all relevant curly arrows, dipoles and charges.


[3]	nis reaction.		
1-bromo-2-methylpropane is also formed in this reaction.	Explain why 2-bromo-2-methylpropane will be the major product in this reaction.		

≣

Topic: Chem 14 Q# 90/ ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

The root of the ginger plant contains compounds with medicinal and flavouring properties. Three of the more important compounds are gingerol, shogaol and zingerone. 8

(a) The structure of gingerol is shown. The CH₃O- group in gingerol is unreactive.

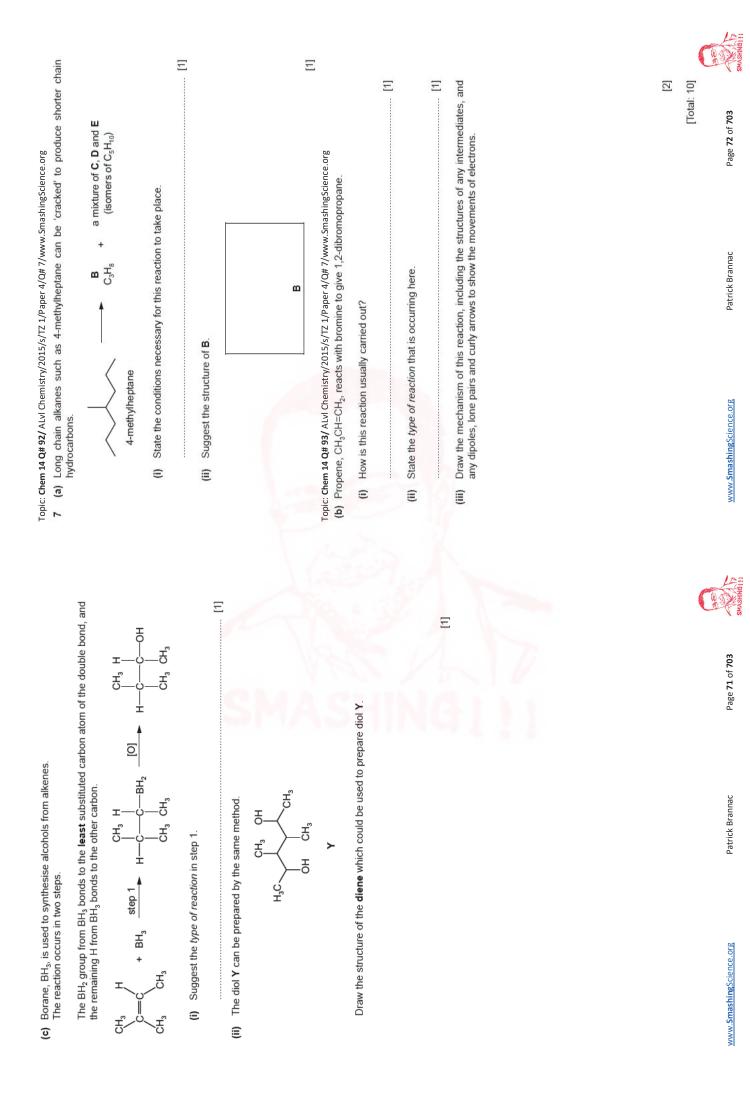
Ξ

Ξ

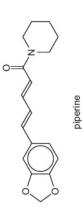
opic: Chem 14 Q# 91/ ALvI Chemistry/2015/w/T21/Paper 4/Q# 6/www.SmashingScience.org 6 Boron forms many useful compounds. (a)

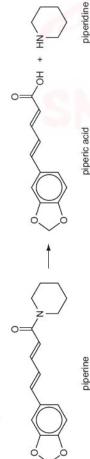
[2]

The compound diborane, B_2H_{0} can be used as a rocket fuel. It can be prepared by the reaction of boron trifluoride, $BF_{3},$ with sodium borohydride, NaBH_4.


Patrick Brannac

Page 69 of 703


www.SmashingScience.org


Page 70 of 703

<th and="" column="" for="" from="" of="" off="" part="" part<="" partern="" temperature="" th="" the=""><th>ine of the problems ass</th><th>ociated with usi</th><th>ing shale gas is</th><th>its variable co</th><th>mposition.</th><th></th><th>air</th><th>air pollutant</th><th>shale gas</th><th>fuel oil</th><th>coal</th><th></th></th>	<th>ine of the problems ass</th> <th>ociated with usi</th> <th>ing shale gas is</th> <th>its variable co</th> <th>mposition.</th> <th></th> <th>air</th> <th>air pollutant</th> <th>shale gas</th> <th>fuel oil</th> <th>coal</th> <th></th>	ine of the problems ass	ociated with usi	ing shale gas is	its variable co	mposition.		air	air pollutant	shale gas	fuel oil	coal	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	able 1 shows the percer	tage compositio	n of shale gas fr	om four differer	nt sources J, K,	L and M.		co ₂	117	164	208		
J 80.3 8.1 2.3 1.4 7.9 K 82.1 14.0 3.5 0.1 0.3 I 88.0 0.8 0.7 10.4 0.1 M 77.5 4.0 0.9 3.3 14.3 0.1 In Translate 17.5 4.0 0.9 3.3 14.3 0.1 In formulae above, x and y are variables. Table 1 (I) (I) (I) Ite formulae above, x and y are variables. Table 1 (I) (I) (I) Ite formulae above, x and y are variables. Table 1 (I) (I) (I)	1	C ₂ H _x	C ₃ H	co ₂	N2			CO	0.040	0.033	0.208		
K 82.1 14.0 3.5 0.1 0.3 L 88.0 0.8 0.7 10.4 0.1 M 77.5 0.8 0.7 10.4 0.1 M 77.5 0.9 0.7 10.4 0.1 0.3 Me formulae above, x and y are variables. Table 1 Table 1 1 Table 1 Table 1 1 10 Table 1 Table 4 13.3 14.3 10 Itemulae above, x and y are variables. Table 4 10 10 Table 1 Table 4 13.3 14.3 10 Itemulae above, x and y are variables. 13.3 14.3 10 10 Itemulae above, and y are variables. 13.3 14.3 10 10 10 Itemulae above, and y are variables. 14.3 14.3 10 10 10 Mitch source of shale gas, J, K, L or M, will provide the most energy when burned? 13 13 10 10 10 Suggest two methods by which	00	8.1	2.3	1.4	7.9			NO ₂	0.092	0.548	0.457		
L 88.0 0.8 0.7 10.4 0.1 M 77.5 4.0 0.9 3.3 14.3 1 Reformulae above, x and y are variables. Table 1 Table 1 (1) (1) (1) Formulae above, x and y are variables. Table 1 (1)		14.0	3.5	0.1	0.3			SO ₂	0.001	1.12	2.59		
M 77.5 4.0 0.9 3.3 14.3 In Elemulare above, x and y are variables. Table 1 Draw the structures of three possible compounds with the formula C ₃ H _y . (i) Colspan= 1 Draw the structures of three possible compounds with the formula C ₃ H _y . (ii) Colspan= 1 (iii) Colspan= 2 (i) (i) (i) (ii) Colspan= 2 (iii) Colspan= 2 (i) (i) (i) (i) (ii) (i) (i) (i) (i) (ii) (i) (10	0.8	0.7	10.4	0.1		par	ticulates	0.007	0.84	2.74		
Table 1 Draw the structures of three possible compounds with the formula C ₃ H ₄ Draw the structures of three possible compounds with the formula C ₃ H ₄ Importance of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. Importance of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energy when burned? Importance of shale gas, J, K, L or M, will provide the most energ		4.0	0.9	3.3	14.3				Table	2			
Table 1 Draw the structures of three possible compounds with the formula C ₃ H _y . (ii) "Thich source of shale gas, J, K, L, or M, will provide the most energy when burned? "Suggest two methods by which carbon dioxide can be removed from shale gas. 1 "Thick carbon dioxide can be removed from shale gas.	the formulae above, x	and y are varial	oles.					shale gas pr	oduces the sm	allest amount	of CO ₂ .		
Draw the structures of three possible compounds with the formula C _g H _y (ii) Richard answer: 2 2 2 2 2 2 2 2 2		Ŧ	able 1										
[2] [2] [3] Which source of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]		of three possib	le compounds v	with the formula	a C ₃ H _y .							[1]	
[2] [1] Which source of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. [1] [1] [1] Suggest two methods by which carbon dioxide can be removed from shale gas. [7] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2								h of the three	e fuels, shale g	gas, fuel oil or	coal, is the larg	est contributor t	
[2] [1] Which source of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]							fuel						
Which source of shale gas, J, K, L or M, will provide the most energy when burned? Explain your answer. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]						[2]	9					[]	
(iv) Suggest two methods by which carbon dioxide can be removed from shale gas.		ale gas, J, K,	L or M, will pro	ovide the most	t energy when	burned?		ason why fue	l oil and coal p	roduce more N	VO ₂ than shale g	ŝ	
[1] [1] [1] [1] Suggest two methods by which carbon dioxide can be removed from shale gas. 1												E	
Suggest two methods by which carbon dioxide can be removed from shale gas.						[1]		wironmental o	consequence o	of raised levels	of		
		ds by which car	bon dioxide car	t be removed th	rom shale gas.		• CO,						
							ı					[2]	
	2											[Total: 10]	
						[2]							
						G							

Piperine is an amide and can be broken down as follows:

Suggest structures for the compounds that would be formed when piperic acid is treated with an excess of hot concentrated acidified KMnO4.

Topic: Chem 14 Q# 96/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

- The combustion of fuels in motor vehicles, trains, aeroplanes and power stations produces the pollutant gas NO2. 4
 - (c) Suggest whether the production of the pollutant NO₂ would be reduced if fossil fuels were replaced by hydrogen as a fuel for combustion. Explain your answer.

Topic: Chem 15 Q# 97/ ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org NOT WITH Q# 6 part b

Ξ....

The reaction between 1-chloro-1-phenylethane and hydroxide ions to produce 1-phenylethanol is: 9

 $C_{6}H_{5}CHC1CH_{3} + OH^{-} \rightarrow C_{6}H_{5}CH(OH)CH_{3} + CI^{-}$ 1-phenylethanol 1-chloro-1-phenylethane The rate of this reaction can be studied by measuring the amount of hydroxide ions that remain in solution at a given time. The reaction can effectively be stopped if the solution is diluted with an ice-cold solvent.

www.SmashingScience.org

Patrick Brannac

www.SmashingScience.org

(c) (i) Use your answers in (b)(i) to help you to draw the mechanism for the reaction of 1-chloro-1-phenylethane with hydroxide ions, including the following. The answer mentioned below from (b)(i) "The reaction mechanism is an Sn1"

- all relevant lone pairs and dipoles
- curly arrows to show the movement of electron pairs
- the structures of any transition state or intermediate

(ii) This reaction was carried out using a single optical isomer of 1-chloro-1-phenylethane.

3

Use your mechanism in (i) to predict whether the product will be a single optical isomer or a mixture of two optical isomers. Explain your answer.

Ξ		ㅎ
		laOF
		ໜີ
		ğ
		X
		듣
- 1		ž
		4
	60	E
	ō	÷
	G	ŏ
- 1	B	S
	Ū.	Æ
	ŝ	≥
	÷	t2
	1SE	S
	Ĕ	ĕ
	Ś.	(CH ₃) ₃ CC <i>t</i> , reacts with sodium hydroxide, h
	≶	3)3CCl
	ş	С С
	4	<u> </u>
	豊	天
	Ś	9
- 1	r 4	propane, (C
	pe	Ш
- 1	Pal	ğ
- 1	1	2
	N	른
	Ź.	£
- 1	٤	je.
	15	Ē
	20	2
	7	é
	str	9
	Ë	÷
	Je	5
	ò	-
	>	0
- 1	A	rt
	8	0
- 1	5	.0
	ð	ň
;	5	eo
	2	nb
	chem 15 Q# 98/ ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 4/www.SmashingScience	ac
	5	In aqueous solution, 2-chloro-2-methylpropane, (
	Topic: C	_
	do	4
	Ĕ	

[2]

This is a nucleophilic substitution reaction.

 $(CH_3)_3CCI(aq) + NaOH(aq) \rightarrow (CH_3)_3COH(aq) + NaCI(aq)$

(a) Show the mechanism for this reaction. Include all necessary curly arrows, lone pairs and relevant dipoles.

Page 76 of 703

2			
-			
5			
and has been a function of the second and the second of the			
2			
5	-		
	hond		
4	X		
	the (
5	of to	5	
)	rdip	2	
2	PUP	5	
200	hond energies of the C-X hond		
1			

8	
5	
10	
8	
1	÷
	ō
	at
13	ň
	8
	-
	Ĕ
	3
2	0
	0
15	(D)
1	ŝ
1	0
	-
	ing
	ī
15	o
	3
	(U)
	e
	-1
12	0
	chlorine accordi
12	-
	wit
	2
1	ť
18	a)
402	B
	e
	a
	th
	Ē
	e
	<u>e</u>

3

0.000	HC1
	+
	C ₂ H ₅ Cl
	î
	Cl ₂
	+
10000000	C ₂ H ₆

State the conditions needed for this reaction.

(ii) State the type of reaction occurring here.

One of the steps during this reaction is the following process.

 $Cl^{\bullet} + CH_3CH_3 \rightarrow HCl + CH_3CH_2^{\bullet}$

(vi) Complete the following equations of some possible steps in the formation of chloroethane.

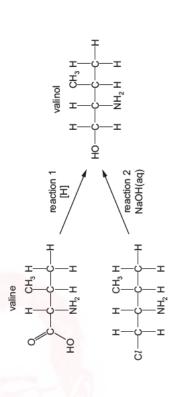
 $Cl^{\bullet} + CH_3CH_3 \rightarrow HCl + CH_3CH_2^{\bullet}$ $Cl_2 \rightarrow \dots$

Ť CH₃CH₂ +

→ CH₃CH₂CI +

5 [Total: 19]

Topic: Chem 15 Q# 100/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org (d) Chlorocyclohexane can be prepared by bubbling HC1/(g) through a solution of



Suggest the mechanism of this 2-stage reaction by means of a diagram. Include all whole or partial charges, and represent the movements of electron pairs by curly arrows.

3

6 Valinol can be synthesised by the following reactions. Reaction 1 uses valine as the starting [Total: 12] Topic: Chem 16 Q# 101/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org

material

Write an equation for reaction 1, using [H] to represent the reducing agent. (a) (i) Suggest a suitable reagent for reaction 1. 1

Ē

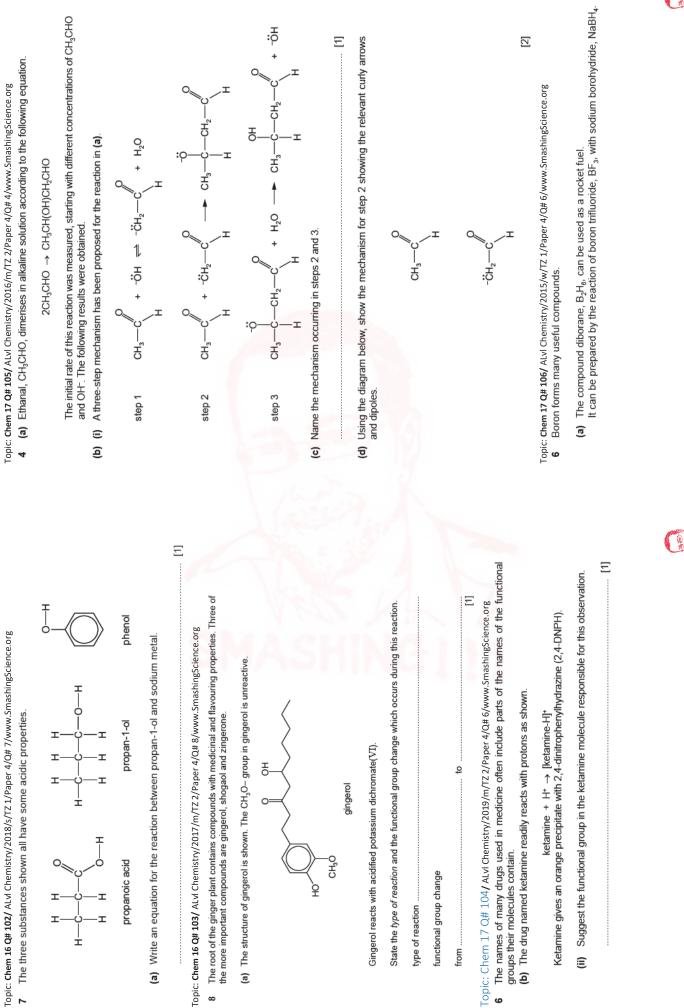
Ξ

Name the mechanism for reaction 2.

1

Ē

Patrick Brannac


Page 78 of 703

www.SmashingScience.org

Page 77 of 703

www.SmashingScience.org

~

www.SmashingScience.org

Patrick Brannac

Page 79 of 703

Page 80 of 703

Patrick Brannac

.SmashingScience.org can be used as a test for the	action.	p that would give a positive result			SmashingScience.org can be used as a test for the	mn against each compound that ross (x) against each compound									[9]	o/www.smasningscience.org				Page 82 of 703
Topic: Chem 17 Q# 108/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) The reaction producing tri-iodomethane (iodoform) can be used as a test for the presence of certain groups within a molecule.	State the reagents and conditions used for this reaction.	Write the structural formula of one functional group that would give a positive result with this iodoform reaction.	What do you observe in a positive test?		Topic: Chem 17 Q# 109/ ALVI Chemistry/2011/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) The reaction producing tri-iodomethane (iodoform) can be used as a test for the presence of certain groups within a molecule.	In the following table place a tick (\checkmark) in the column against each compound that would give a positive result with this test, and a cross (x) against each compound that would give a negative result.	compound result	CH ₃ OH	CH ₃ CH ₂ OH	CH ₃ CHO	CH3CO2H	СНО		COCH ₃		DPIC: CHERIN 20 CH 110/ AUX Chemistry/2011/W/L21/Paper 4/CH 5/WWW.SmasningScience.org Compound P contains several functional groups.	CI H CI	CN.	₽	Patrick Brannac
Topic: Chem 17 Q# 108/ ALvl Chem 6 (a) The reaction produc presence of certain g	(i) State the reager	 (ii) Write the structural formula with this iodoform reaction. 	(iii) What do you obs		Topic: Chem 17 Q# 109/ ALvl Chem 6 (a) The reaction produc presence of certain g	(iv) In the following would give a post that would give a									Hamia Cham 20 OH 1101	Compound P contains several functional groups.				www.SmashingScience.org
/I compounds with	H ⁻ , and draw the oles.	он С—с—сн ₂ сн ₃	-1	[3]	of the type	ng it into the o is left to dry scipitated out				$\langle \langle$		[1]				[2]				Page 81 of 703
reaction of carbony	with hydride ions, ws and relevant dip	H ⁺ H ₃ C-		S	SmashingScience.org ktracted from plants	ercome by converti ution of leuco-indigo indigo, which is pre		HO /		N N	ЭН	leuco-indigo o leuco-indigo?								Page 8
Primary and secondary alcohols can be formed by the reaction of carbonyl NaBH_4, which is a source of hydride ions, H ⁻ .	Complete the mechanism for the reaction of butanone with hydride ions, H ⁻ , and draw the intermediate in the box. Include all necessary curly arrows and relevant dipoles.			intermediate	2012/s/T2 1/Paper 4/0# 3/www. : jeans. Although originally e: irely made artificially.	this disadvantage can be ov indigo. If cloth soaked in a so nverted into the insoluble blue		24	1			is the conversion of indiao in		Survest a laboratory reacent for this reaction						Patrick Brannac
(b) Primary and secondary alcohols can be form NaBH ₄ , which is a source of hydride ions, H ⁻ .	Complete the mechanism intermediate in the box. In	step 1	-12 C 23	L	Topic: Chem 17 Q# 107/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 Indigo is the dye used in blue jeans. Although originally extracted from plants <i>indigofera</i> , it is now almost entirely made artificially.	Indigo is insoluble in water but this disadvantage can be overcome by converting it into the water-soluble colourless leuco-indigo. If cloth soaked in a solution of leuco-indigo is left to dry in the air, the leuco-indigo is converted into the insoluble blue indigo, which is precipitated out	onto the libres of the cloth.	н: 0//			0	indigo (h) (i) What two of reaction is the conversion of indino into leuco-indigo	(a) (i) MIIALLYPE OF LEACHON	(ii) Succest a laboratory r						www.SmashingScience.org

/merised.
bo
þe
can
۵.
punod
Com
9

Draw a section of the polymer of P showing two repeat units. Name the type of polymerisation.

type of polymerisation

Topic: Chem 20 Q# 111/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org

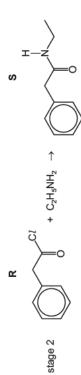
[2]

- In today's world we make use of a wide range of different polymers. These polymers are often substitutes for traditional materials, but may have more useful properties. 8
- One suggestion for the disposal of polymers is to use them as a fuel to provide energy Identify one polymer which would be unsuitable for this use, explaining the reason for small-scale power stations or district heating schemes. behind this. (c)

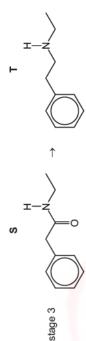
polymer

reason

Topic: Chem 20 Q# 112/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 In today's world, many traditional materials have been replaced by different sort


2

- In today's world, many traditional materials have been replaced by different sorts of polymers. This includes rigid polymers such as those used in car bodies to replace steel and flexible polymers like those used in textiles to replace cotton or wool.
- To form a polymer, what is the minimum number of functional groups that the monomer must possess? (i) (a)


Illustrate your answer to (i) with the structure of a possible monomer. (ii)

Topic: Chem 22 Q# 113/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 Compound T is made by a three-stage synthesis.

(b) In stage 2, compound R reacts with ethylamine to form compound S.

(c) In stage 3, compound S reacts with a suitable reagent to form compound T.

(d) The relative abundance of the molecular ion peak in the mass spectrum of ethylamine is 62.

Calculate the relative abundance of the M+1 peak in the mass spectrum of ethylamine. (i) Ξ relative abundance = .

The mass spectrum of compound T contains several fragments. The m/e values of two of these fragments are 29 and 91. (11)

Draw the structures of the ions responsible for these peaks.

m/e	structure of ion
29	
91	

[2]

Page 84 of 703

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

		[1]	[Total: 10] ecule of X .	Ξ	[2] functional	C and a second
: and 57.			SmashingScience.org ed. id 1.25 respectively. itoms present in one mol		of X to produce this peak.	Page 86 of 703
(d) The mass spectrum of butamben includes peaks at <i>mle</i> 92 and 57	Identify the fragments responsible for these peaks. m/e 92 =		 [Total: 10] Topic: Chem 22 Q# 116/ AlvI Chemistry/2019/s/TZ 1/Paper 4/Q# 8/www.5mashingScience.org 8 (a) The mass spectrum of compound X, C₅H₁₀O₂, is recorded. The peak heights of the M and M+1 peaks are 22.65 and 1.25 respectively. (i) Use these data to show that there are five carbon atoms present in one molecule of X. Show your working. 	The mass spectrum has a peak at $m/e = 57$.	Complete the equation to show the fragmentation of X to produce this peak. $\begin{bmatrix} C_{5}H_{10}O_{2}^{1} \leftrightarrow \dots & + \dots &$	Patrick Brannac
ectrum of butamb	agments responsi		Q# 116/ ALvI Chemistry/2 mass spectrum of com peak heights of the M i Use these data to shov Show your working.	mass spectrum ha	Complete the equation [C ₅ H ₁₀ O ₂] ⁺ → (C ₅ H ₁₀ O ₂] ⁺ → (chem 22 Q# 117/ ALvI Chemistry/2 The names of many drugs used groups their molecules contain. (b) The drug named ketamine re ket Ketamine gives an orange pr	cience.org
(d) The mass sp	Identify the fr m/e 92 =	m/e 57 =	Topic: Chem 22 Q# 11 8 (a) The mass The peak (i) Use ¹ Shov	(ii)	Com Topic: Chem 22 Q# 11 6 The names of groups their m (b) The drug Ketamine	www.SmashingScience.org
						C Provense
ence.org	Part of the mass spectrum of ${\sf J}$ is shown. The M and M+1 peaks are labelled, along with their relative intensities.	100.0	ity 14.4		[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	Page 85 of 703
./www.SmashingScie	+1 peaks are labell	M, relative intensity 100.0	M+1, relative intensity 14.4	Ž	orm this peak.	0
m/TZ 2/Paper 4/Q# 4 n some cereals.	own. The M and M	2		atoms, x, present i	at <i>m/e</i> = 205. Pent lost from J to fo w/T2 1/Paper 4/0# 9/ wm.	Patrick Brannac
Chem 22 Q# 114/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q Compound J, $C_x H_y O_x$ is also found in some cereals.	spectrum of J is sh		0, 1175, 200	Calculate the number of carbon atoms, <i>x</i> , present in J.	 The mass spectrum has a peak at <i>m/e</i> = 205. Suggest the identity of the fragment lost from J to form this peak. Suggest the identity of the fragment lost from J to form this peak. Lem 22 Q# 115/ ALVI Chemistry/2019/w/TZ 1/Paper 4/Q# 9/www.Smashin The structure of butamben is shown. H₂N H₂N Autamben at a base. 	<u>e.org</u>
Topic: Chem 22 Q# 114/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org (d) Compound J, $C_xH_yO_2$, is also found in some cereals.	Part of the mass s relative intensities.	100	relative 60- intensity 40- 20- 15	(i) Calculate the	(i) The mass spectrum has a peak at <i>m</i> /e = 205. Suggest the identity of the fragment lost from J to form this peak. Topic: Chem 22 Q# 115/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org J The structure of butamben butamben H_2^{N-2} , H_2^{-1} , $H_$	www.SmashingScience.org

I he mass spectrum of ketamine is determined. I wo peaks clo are observed with the relative abundances shown in the table.	cetamine is (elative abun	determine dances sł	d. I wo peaks close to nown in the table.	The mass spectrum of ketamine is determined. Two peaks close to the molecular ion peak, M, are observed with the relative abundances shown in the table.	(b) (i) The mass spectrum of a halogenoa will show an additional peak at M+2.	The mass spectrum of a halogenoalkane containing one chlorine atom or bromine atom will show an additional peak at M+2.	atorn
Ć.	peak	m/e r	relative abundance		State the isotopes of chlorine an	State the isotopes of chlorine and bromine responsible for M+2 peaks.	
	W	237	100.0		chlorine	bromine	
2	M+1	238	14.3				[1]
~	M+2	239	33.3		(ii) The mass spectrum of bromochl m/a value of 128. If also has Ma	The mass spectrum of bromochloromethane, CH ₂ BrC¼ has a molecular ion peak, M, at an m/a value of 128. If also has M±2 and M±4 peaks	at an
Use the numbers in molecule.	in the table	to show	that there are 13 ca	Use the numbers in the table to show that there are 13 carbon atoms in a ketamine molecule.	Suggest the identity of the mole	Suggest the identity of the molecular ions that give rise to these peaks.	
					M peak		
				[1]	M+2 peak		
In addition to carbon an each of three different e a halogen	id hydroger elements. Tl	i atoms, e hese are (ach molecule of ketal called heteroatoms. O	In addition to carbon and hydrogen atoms, each molecule of ketamine contains one atom of each of three different elements. These are called heteroatoms. One of these heteroatoms is a halogen	M+4 peak		[2]
Use the figures in th	he table to s	suggest th	e identity of this halog	(iv) Use the figures in the table to suggest the identity of this halogen. Explain your answer.	Topic: Chem 22 Q# 119/ ALVI Chemistry/2017/m/T2 2/ 1 (a) (i) The mass spectrum of silicon is shown.	Topic: Chem 22 Q# 119/ ALvl Chemistry/2017/m/TZ Z/Paper 4/Q# 1/www.SmashingScience.org 1 (a) (i) The mass spectrum of silicon is shown.	
					1.07 0.922	22	
r peak in the mass s	spectrum of	ketamine	Another peak in the mass spectrum of ketamine has an m/e value of 240.	f 240.			
Predict the relative abundance of this peak.	ance of this	peak.			relative 0.5-		
		rela	relative abundance =	[1]	3	1000	
Use the information in (b) out the identities of the thr present.) to comple ree differen	te the mo t heteroat	Use the information in (b) to complete the molecular formula of ketamine by working out the identities of the three different heteroatoms and the number of hydrogen atoms present.	cetamine by working r of hydrogen atoms	2		
Q# 118/ ALvl Chemis	C ₁	С ₁₃ Н 8/w/T2 1/Pape	C ₁₃ H Topic: Chem 22 Q# 118/ ALvI Chemistry/2018/w/72 1/Paper 4/Q# 1/www.SmashingScience.org	[1] gScience.org	Calculate the A_r of silicon. Give	Calculate the A _r of silicon. Give your answer to two decimal places.	
						A _r =[1]	
www.SmashingScience.org		Patrick	Patrick Brannac	Page 87 of 703	Www.SmashingScience.org	Patrick Brannac Page 88 of 703	2.07

s, ³⁶ C1	ber of	10					these	[4]															C	LI I DNIHSWWS
Science.org aturally as two isotope	esponding to a number	ollowing mass numbers					eaks corresponding to	cience.org s and the product		ing relative heights.									an 20.	ed it.		[4]	[Total: 10]	Page 90 of 703
r 4/Q# 3/www.Smashing , ³¹ P. Chlorine exists n 3 : 1.	s several peaks corr	e fragments with the fo	isotopic composition				neights of the three pe	4/Q# 7/www.Smashings sence of chloride ioi		56-160 with the follow	height				f these peaks.				a m/e value of less th	e species that produc				Patrick Brannac
m 22 Q# 121/ ALvI Chemistry/2014/w/TZ 1/Paper 4/C Natural phosphorus consists of one isotope, ³¹ P and ³⁷ Cl, in the relative abundance ratio of $3:1$.	spectrum of $\mathrm{PC}l_3$ contains several peaks corresponding ragments.	Suggest the isotopic composition of the fragments with the following mass numbers	mass number	101	103	105	Predict the relative ratios of the peak heights of the three peaks corresponding to these fragments.	Chem 22 Q# 122/ ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org Propene was treated with bromine in the presence of chloride ions and the product	pectrometry.	A group of peaks was found in the range m/e 156–160 with the following relative heights.	m/e relative height	156 3	158 4	160 1	Identify the species responsible for each of these peaks.				A large peak was present in the spectrum with a <i>m/e</i> value of less than 20.	Suggest the m/e value for the peak and the species that produced it				Patric
Topic: Chem 22 Q# 121/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Natural phosphorus consists of one isotope, ³¹ P. Chlorine exists naturally as two isotopes, ³⁵ Cl and ³⁷ Cl, in the relative abundance ratio of $3:1$.	(i) The mass spectrum molecular fragments.	Suggest the iso					(ii) Predict the rela fragments.	Topic: Chem 22 Q# 122/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 7/www.5mashingScience.org (c) Propene was treated with bromine in the presence of chloride ions and th		A group of peaks was f					(i) Identify the specie	156	158	160	A large peak was prese	(ii) Suggest the m/e v	mle	species		www.SmashingScience.org
								the three				3		n to two				[1]					C	TITENHASAMS
ingScience.org JW.			ŝ.	8		4	26 27	elative abundances of			Í		6	mass, A _n of magnesiu				A, (Mg) =						Page 89 of 703
:: Chem 22 Q# 120/ ALvl Chemistry/2015/s/T2 1/Paper 4/Q# 3/www.Smashing (a) The mass spectrum of the element magnesium is shown below.			2				3 24 25 m/e	From the mass spectrum, complete the table with the relative abundances of the three isotopes.	relative abundance					Use your values in (i) to calculate the relative atomic mass, A_n of magnesium to decimal places.										Patrick Brannac
mistry/2015/s/TZ of the element			50				0-23	spectrum, com	isotope	²⁴ Mg	²⁵ Mg	²⁶ Mg		s in (i) to calcu										
Topic: Chem 22 Q# 120/ ALvl Chemistry/2015/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) The mass spectrum of the element magnesium is shown below.			relative	abundance (%)				(i) From the mass isotopes.						(II) Use your value decimal places.										www.SmashingScience.org

Topic: Chem 22 Q# 123/ ALVI Chemistry/2011/s/T2 1/Paper 4/Q# 8/www.SmashingScience.org (c) The mass spectrum shown was obtained from a compound of formula $C_{\rho}H_{q}X$, where X represents a halocen atom.	TZ 1/Paper 4/Q# 8/www.SmashingS ained from a compound of form	science.org ula $C_p H_q X$, where X		Topic: Chem 23 Q# 124/ # 2 Silicon is the second m	Lvl Chemistry/2023 ost abundant ele	Topic: Chem 23 Q# 124/ ALvI Chemistry/2022/m/Tz 1/Paper 4/Q# 2/www.SmashingScience.org 2 Silicon is the second most abundant element by mass in the Earth's crust.	hingScience.org ust.	
				(a) In industry, silicon	s extracted from	(a) In industry, silicon is extracted from ${\rm SiO_2}$ by reaction with carbon at over 2000 °C.	t over 2000 °C.	
x				reaction 1		$SiO_2(s) + 2C(s) \rightarrow Si(l) + 2CO(g)$		
80-				(i) Explain why th	e entropy change	Explain why the entropy change, $\Delta S,$ of reaction 1 is positive.		
relative 60-								
intensity 40-								[1]
				(ii) Reaction 1 is I	Reaction 1 is highly endothermic.	Ċ.		
20-		S		Suggest the effect of Explain your answer.	fect of an increas nswer.	Suggest the effect of an increase in temperature on the feasibility of this reaction. Explain your answer.	ility of this reaction.	
0 <u></u>	60 70 80 90 100 110 m/e	120 130						
(i) Deduce the identity of X , giving a reason.	a reason.							[2]
X is								
				(b) Silicon is purified by first heating it in a s then distilled to remove other impurities.	y first heating it ir nove other impuri	Silicon is purified by first heating it in a stream of $HCl(g)$ to form $SiHCl_3$. The $SiHCl_3$ formed is then distilled to remove other impurities.	HCl_{3} . The SiHCl_3 for	med is
(ii) If the relative heights of the M and M+1 peaks are 9 and 0.3 respectively, calculate	nd M+1 peaks are 9 and 0.3 re	spectively, calculate		reaction 2		Si(s) + $3HCI(g) \rightarrow SiHCI_3(g) + H_2(g)$		
the value of p . Use this value and the m / e value of the molecular ion to calculate the value of q , and hence the molecular formula of the compound. Show your	nd the m / e value of the molect molection of the contract molecular formula of the contract molecular formu	ular ion to calculate mpound. Show your		(i) Table 2.1 show	Table 2.1 shows some standard entropy data.	l entropy data.		
working.						Table 2.1		
					compound	standard entropy, S ^e /JK ⁻¹ mol ⁻¹		
				1	Si(s)	19		
					HC1(g)	187		
					SiHCl ₃ (g)	314		
(iii) Suggest a formula for the ion responsible for the peak labelled R.	sponsible for the peak labelled	R.			H ₂ (g)	131		
		[4]		Use the data i	Table 2.1 to cal	Use the data in Table 2.1 to calculate ΔS^{\bullet} for reaction 2.		
(d) In the fragmentation of alcohols which occurs in a mass spectrometer, small stable, neutral molecules are sometimes produced. Suggest the identity of two such molecules, each with an Mr less than 30.	nich occurs in a mass spectro oduced. Suggest the identity of t	meter, small stable, two such molecules,						
(i)		[2]						
		[Total: 10]						
			(ΔSª =	JK-1 mol-1	or ⁻¹ [2]
www.SmashingScience.org	Patrick Brannac	Page 91 of 703	-	www. Smashing Science.org		Patrick Brannac	Page 92 of 703	-
		5	SMASHING!!				5	SMASHING

<u> </u>
5
0
<u> </u>
=
S
ധ
Ξ.
ā
_
.=.
ta
8
0
0
÷
ă
š
š.
_
<u>s</u>
p
_
σ
\sim
0
÷ 🖻 -
Ù.
3
Φ
÷
0
ധ
<u> </u>
e
2
e
<u> </u>
Ð
÷
ŧ
ŝ
\sim
Ы
<u>ا</u>
さ
ğ
õ
~
LF.
_
-

SiHC $l_3(g) + H_2(g) \rightarrow Si(s) + 3HCl(g) \quad \Delta H = +219.3 \text{ kJ mol}^{-1}$ reaction 3 Use this information and your answer to (b)(i) to calculate the temperature, in K, at which reaction 3 becomes feasible. Show your working. [If you were unable to answer (b)(i), you should use $\Delta S^* = -150 J K^{-1} mol^{-1}$ for reaction 2. This is not the correct answer to (b)(i).]

K [2]	
temperature =	ww.SmashingScience.org
temp	stry/2022/m/TZ 1/Paper 4/Q# 1/wv
	1 23 Q# 125/ ALvi Chemi

(b) The Group 1 iodides all form stable ionic lattices and are soluble in water. Topic: Chem

(i) Define enthalpy change of solution.

Ξ

Use the data in Table 1.1 to calculate the enthalpy change of solution of potassium iodide, KI. **(**

Table 1.1

enthalpy change, ΔH/kJ mol ⁻¹	-629	-322	-293
process	$K^{+}(g) + I^{-}(g) \rightarrow KI(s)$	$K^{+}(g) \rightarrow K^{+}(aq)$	$I^{-}(g) \rightarrow I^{-}(aq)$

Suggest the trend in the magnitude of the lattice energies of the Group 1 iodides, LiI, NaI,
KI.
Explain vour answer.

:		:	2
1		1	[2]
:			
:	:	:	:
		1	
			6
:	:	:	: 20
			0
:	:	:	نە
			0
			: 5
			0
			60
			_
			5
			s l
1			e e
			3
		-	S
:			: >
:	:		: 5
1			2
			5
			5
		- i -	0
			- 4
		- 1	- i č
			e i
		-	<u>d</u>
			i co
:	:		: 5
:	:		: –
			N
			1 H
			3
			2
			ि स
			2
:	:	:	. 0
:	:	:	: 2
:			: >
			4 1
			S :
1			Ē
1			5
1			Ť
1			10
:		1	1 -
:	:		: 2
:	:		: A
:			
:	:	:	്ര്
			2
			-
			#
			ď
1			5
			m 23 Q# 126/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org
	;	;	: 5
			je je
			Ċ
			.0
			d d
			Topic: Chem 23 Q# 126/ ALvl Chemistry/2021/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org

3 (a) Define the term electron affinity.

[2]	
-	
-	

(b) Write an equation for the process corresponding to the second ionisation energy of calcium. Include state symbols. []

Some data relating to calcium and oxygen are listed. Select relevant data from this list for your answers to parts (c), (d) and (e).

process value/kJmol ⁻¹	first ionisation energy of oxygen +1310	second ionisation energy of oxygen +3390	first electron affinity of oxygen –142	second electron affinity of oxygen +844	enthalpy change for $\frac{1}{2}O_2(g) + 2e^- \rightarrow O^2(g)$ +951	enthalpy change for Ca(s) \rightarrow Ca ²⁺ (g) + 2e ⁻ +1933	
proce	first ionisation en	second ionisation e	first electron affi	second electron at	enthalpy change for $\frac{1}{2}$ O	enthalpy change for Ca	(-/)-) J

(c) Oxygen exists as O₂ molecules.

Use the data in this question to calculate a value for the bond energy of the O=O bond. Show all your working.

www.SmashingScience.org

A DANA

kJmol⁻¹ [1] enthalpy change of solution = .

www.SmashingScience.org

Patrick Brannac

Page 93 of 703

(i) Calculate ΔS^* for the reaction $2H_2O(I) \rightarrow +70$ $H_2O(I) +70$ $H_2(0) \rightarrow +131$ $O_2(g) \rightarrow +205$ $O_2(g) \rightarrow 2H_2(g) + O_2(g).$	(ii) ΔH^{\bullet} for the reaction $2H_2O(I) \rightarrow 2H_3(g) + O_2(g)$ is $+572kJ \text{ mol}^{-1}$. Calculate ΔG^{\bullet} for this reaction at 298 K.	ΔG* =	Topic: Chem 23 Q# 128/ ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 When dilute sulfuric acid is electrolysed, water is split into hydrogen and oxygen. $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$	A current of x A is passed through the solution for 14.0 minutes. 462 cm ³ of hydrogen are produced at the cathode, measured under room conditions. (a) Calculate the number of hydrogen molecules produced during the electrolysis. number of hydrogen molecules =	 (b) Calculate the total number of electrons transferred to produce this number of hydrogen molecules. (1) total number of electrons =
[1]		kJ mol ⁻¹ [2] to be more exothermic than	e in lattice energies.	Ilotai: 12J ngScience.org	Page 95 of 703
Suggest why the second electron affinity of oxygen is positive.	mation of calcium oxide, CaO(s).	enthalpy of formation =	that of lithium fluoride. Explain why this factor causes the difference in lattice energies.	Topic: Chem 23 Q# 127/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 1/www.5mashingScience.org 1 When dilute sulfuric acid is electrolysed, water is split into hydrogen and oxygen. $2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$	Patrick Brannac
(ii) Suggest why the second	(e) Calculate the enthalpy of formation of calcium oxide, CaO(s).	(f) The lattice energy of lithium f Identify the factor that cause	that of lithium fluoride. Expla	Topic: Chem 23 Q# 127/ ALvI Chemistry 1 When dilute sulfuric acid is el	www.SmashingScience.org

(e) The standard entropies, S^{\bullet} , of three species are given in the table.

(d) (i) Suggest why the first electron affinity of oxygen is negative.

(ii) This reaction is feasible at all temperatures.	Explain why, using the data in (f) and your answer to (f)(i) .		Topic: Chem 23 Q# 130/ ALvi Chemistry/2021/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Iron(II) compounds are generally only stable in neutral, non-oxidising conditions.	It is difficult to determine the lattice energy of FeO experimentally.	(i) Use data from the <i>Data Booklet</i> and this Born–Haber cycle to calculate the lattice energy, ΔH_{lath} of FeO(s) in kJ mol ⁻¹ .	$Fe^{24}(a) + O(a) + 3a^{-1}$		$Fe^{+}(g) + O(g) + e^{-}$	Fe(g) + O(g)	$Fe(g) + \frac{1}{2}O_2(g)$	$Fe(s) + \frac{1}{2}O_2(g)$ +416kJmol ⁻¹	-272 kJ mol ⁻¹	FeO(s)								ΔH _{latt} FeO(s) =	<u>www.SmashingScience.org</u> Patrick Brannac Page 98 of 703
(c) Calculate the quantity of charge, in coulombs, of the total number of electrons calculated in (b).		quantity of charge =	(d) Calculate the current, x , passed during this experiment.		x =A [1]	Topic: Chem 23 Q# 129/ ALM Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 lodates are compounds that contain the IO ₃ ⁻ anion.	(a) The IO₃ [−] anion is shown.		O (f) NH ₄ IO ₃ is an unstable compound that readily decomposes when warmed. The decomposition reaction is shown.	$NH_{4}IO_{3}(s) \rightarrow \frac{1}{2}N_{2}(g) + \frac{1}{2}O_{2}(g) + \frac{1}{2}I_{2}(g) + 2H_{2}O(l) \qquad \Delta H = -154.6 \text{ kJmol}^{-1}$	(i) Use the data in the table to calculate the entropy change of reaction, ΔS , of the decomposition of NH ₄ IO ₆ (s).	-	compound S/JK ⁻¹ mol ⁻¹	NH4IO ₃ (s) 42	N ₂ (g) 192	O ₂ (g) 205	I ₂ (g) 261	H ₂ O(I) 70			ΔS =JK ⁻¹ mol ⁻¹ [2]	www.SmashingScience.org

(iii) State and explain how CaO(s).	v the lattice energ	State and explain how the lattice energy of FeO(s) compares to the lattice energy of CaO(s).	to the lattice energy of	(c) Use the following data and relevant data from the <i>Data Booklet</i> to calculate a value for the lattice energy of magnesium fluoride, $MgF_2(s)$.
				You might find it helpful to construct an energy cycle. Show your working.
				electron affinity of F(g) = -348 kJ mol ⁻¹ enthalpy change of atomisation of Mg(s) = $+147$ kJ mol ⁻¹ enthalpy change of formation of MgF ₂ (s) = -1102 kJ mol ⁻¹
			[2]	
Topic: Chem 23 Q# 131/ ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) The lattice energies of three ionic compounds are given.	emistry/2020/w/TZ 1 s of three ionic con	1/Paper 4/Q# 2/www.Smas npounds are given.	shingScience.org	
	compound	lattice energy/kJmol-1		
	LiF(s)	-1022	2	
	CaO(s)	-3513		
	SrO(s)	-3310		
(i) Define the term lattice energy	ו lattice energy.			
			5	
(ii) Explain why the	e lattice energy of	CaO is more exothermi	Explain why the lattice energy of CaO is more exothermic than the lattice energy of LiF.	$\Delta H_{\rm lat} MgF_2(s) = \dots [3]$
				(d) (i) Define the term electron affinity.
			[]	[2]
(iii) Use the data magnesium oxi	Use the data in the table to estim magnesium oxide.	stimate approximate va ide.	Use the data in the table to estimate approximate values for the lattice energies of magnesium oxide and barium oxide.	(ii) The electron affinity of carbon, C(g), is −120kJ mol ^{−1} .
		$\Delta H_{\text{latt}}MgO(s) =$	×	Suggest an explanation for the difference between the electron affinity of fluorine and the electron affinity of carbon.
		ΔH _{latt} BaO(s) =)(s) = kJ mol ⁻¹ [1]	
				[1]
				[Total: 15]
www.SmashingScience.org		Patrick Brannac	Page 99 of 703	www.SmashingScience.org Patrick Brannac Page 100 of 703

(b) Silver chloride, AgCI, is sparingly soluble in water. The equation for the enthalpy change of solution is shown. Topic: Chem 23 Q# 132/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

 $AgCl(s) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$

C1 ⁻ (aq)	+56.5	
Ag*(aq)	+72.7	
AgC1(s)	+96.2	
species	S°/JK ⁻¹ mol ⁻¹	

(i) Calculate the standard entropy change of solution, ΔS^{\bullet} .

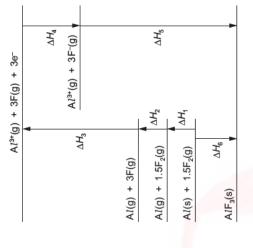
 $\Delta H_{sol}^{\bullet} = +65.5 \text{ kJ mol}^{-1}$

Standard entropies are shown in the table.

C1-(aq)	+56.5	
Ag*(aq)	+72.7	
AgC1(s)	+96.2	
species	S⁰/JK ⁻¹ mol ⁻¹	

.. JK⁻¹mol⁻¹ [1] ∆S⁶ =

(ii) Explain, with the aid of a calculation, why AgCl is insoluble in water at 25 °C.


You should use data from this question and your answer to (b)(i).

[Total: 10] 3

Topic: Chem 23 Q# 133/ ALVI Chemistry/2020/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org Gold is an unreactive metal that can only be oxidised under specific conditions.

(c) AlF₃ is an ionic compound.

The Born–Haber cycle for the formation of AIF₃ is shown.

(i) Name the enthalpy changes labelled ΔH_4 and ΔH_6 .

	[2]
: 11	
∆H₄	Η
	4

(ii) Use the data in the table and data from the *Data Booklet* to calculate the lattice energy of AIF_3 .

process	enthalpy change /kJmol ⁻¹
$Al(s) \rightarrow Al(g)$	+326
$Al(g) \rightarrow Al^{3+}(g)$	+5137
$F(g) \rightarrow F^{-}(g)$	-328
$Al(s) + 1.5F_2(g) \rightarrow AlF_3(s)$	-1504

- 18/2 10-		

Page 102 of 703

Patrick Brannac

www.SmashingScience.org

kJmol⁻¹ [2]

lattice energy of AlF₃ =

Patrick Brannac

www.SmashingScience.org

Page 101 of 703

(iii) Scandium fluoride, ScF ₃ , is an ionic compound.	(ii) Describe how the temperature at which the reaction becomes spontaneous can be
Use data from the <i>Data Booklet</i> to suggest how the lattice energy of $A_{1}F_{3}$ compares with the lattice energy of ScF ₃ .	calculated. Include an equation in your answer. equation
Explain your answer.	
Topic: Chem 23 Q# 134/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Explain what is meant by the term <i>entropy of a system</i> .	 [2] Topic: Chem 23 Q# 135/ ALVI Chemistry/2019/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org (a) Complete the table by placing one tick (✓) in each row to indicate the sign of each type of energy change under standard conditions.
	energy change always always either negative positive negative or positive
(b) State and explain whether the entropy change of each of the following processes is positive or	bond energy
	enthalpy change of formation
 Inquid water at 80 °C is cooled to 50 °C The entropy change is because 	(b) Explain what is meant by the term <i>enthalpy change of atomisation</i> .
 solid calcium chloride is added to water and the mixture is stirred 	
The entropy change is because	(c) The overall reaction for the atomisation of liquid bromine molecules, Br ₂ (I), is shown.
• the change corresponding to the lattice energy of calcium chloride, ΔH_{att} CaC $t_2(s)$, takes place	
The entropy change is because [3]	 Construct a labelled energy cycle to represent this atomisation process, including state symbols. Use your cycle and relevant data from the <i>Data Booklet</i> to calculate the enthalpy change of vaporisation of Br₂(I), ΔH[*]_{vap}. The enthalpy change of atomisme AH = ±112 kLImol⁻¹
(c) The reaction ZnCO ₃ (s) \rightarrow ZnO(s) + CO ₂ (g) is not spontaneous at room temperature.	
(i) Give the full name for the term ΔG^{\bullet} .	
www.SmashingScience.org Patrick Brannac Page 103 of 703	eq: AH*ap =

	(d) Suggest how the answer.	∆H ^e v _{ap} of iodine,	$I_2(l)$, would cc	ompare to that	Suggest how the ΔH^{\bullet}_{vap} of iodine, $I_2(I)$, would compare to that of bromine, $Br_2(I)$. Explain your answer.	Topic: Chem 23 Q# 137 / ALvI Chemistry/2019/m/T2 2/Paper 4/Q# 1/www.SmashingScience.org 1 (a) State one natural and one man-made occurrence of oxides of nitrogen.
					[1]	
(e) (i)	 Explain what is meant by the term enthalpy change of hydration. 	neant by the tern	n enthalpy chi	ange of hydral	țion.	(b) Under conditions of high pressure and a catalyst, nitrogen monoxide, NO, fo oxides of nitrogen, dinitrogen monoxide, N_2O_3 .
					[1]	$\dots \text{ NO(g)} \rightarrow \dots \text{ N}_2\text{ O(g)} + \dots \text{ N}_2\text{ O_3(g)} \qquad \Delta H^{\bullet} = -10!$
-	(ii) Suggest why the I ^{-(g)} .	enthalpy chang	e of hydration	n of Br⁻(g) is n	Suggest why the enthalpy change of hydration of $Br^{-}(g)$ is more exothermic than that of $\Gamma(g)$.	(i) Balance the equation above for the formation of N_2O and N_2O_3 from NO.
	į					(ii) State how the oxidation number of nitrogen changes during this reaction.
						$NO \rightarrow N_2O$ from to
					[2]	$NO \rightarrow N_2O_3$ from to to
					[Total: 9]	(iii) Calculate the entropy change for the reaction at 298K. Include the units in
Topic:	Topic: Chem 23 Q# 136/ ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.Smashir 2 (a) The following table lists the solubilities of the hydroxides and carbor elements, M, at 25 °C.	chemistry/2019/m/ e lists the solubilitie 5°C.	TZ 2/Paper 4/Q es of the hydro	t# 2/www.Smash wides and carb	 Chem 23 Q# 136/ ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org (a) The following table lists the solubilities of the hydroxides and carbonates of some of the Group 2 elements, M, at 25 °C. 	
			solubility.	solubility / mol dm ⁻³		ΔS ^o =
		element M	M(OH) ₂	MCO ₃		units =
		Mg	2.0×10^{-4}	1.5×10^{-3}		
		Са	1.5×10^{-2}	1.3×10^{-4}		balanced equation in (i). Explain your answer.
		Sr	3.4×10^{-2}	7.4×10^{-5}		
		Ba	1.5×10^{-1}	9.1×10^{-5}		
(c)	(c) The equation for the formation of the gaseous hydroxide ion is shown.	irmation of the ga	seous hydroxic	de ion is showr		
		$\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ O ₂ (g) + e ⁻ \rightarrow OH ⁻ (g)	g) + e ⁻ → OI		((6)_HO) ↓ H∆ = H∆	

Use data in the table and from the *Data Booklet* to calculate $\Delta H_{7}^{*}(OH^{-}(g))$. You might find it useful to construct a Born-Haber cycle.

∆H ^e /kJ mol ^{−1}	+148	-925	-2993
enthalpy change	atomisation of Mg(s)	formation of Mg(OH) ₂ (s)	lattice energy of Mg(OH) ₂ (s)

[1]
vides of nitrogen, dinitrogen monoxide, N_2O , and dinitrogen trioxide, N_2O_3 .
NO(g) → N ₂ O(g) + N ₂ O ₃ (g) $\Delta H^{\bullet} = -195.2 \text{kJ} \text{mo}^{-1}$ $\Delta G^{\bullet} = -102.8 \text{kJ} \text{mo}^{-1}$
Balance the equation above for the formation of N_2O_3 from NO. [1]
State how the oxidation number of nitrogen changes during this reaction.
$NO \rightarrow N_2O$ from to to the from the fr
$NO \rightarrow N_2O_3$ from to [1]
Calculate the entropy change for the reaction at 298K. Include the units in your answer.
ΔS° =
units =

cted from your

[1]

Patrick Brannac

www.SmashingScience.org

.... kJ mol⁻¹ [3]

Page **105** of **703**

www.SmashingScience.org

Patrick Brannac

.... = ((g)-HO)[€]H∆

(d) At 298 K, both products of this reaction are liquid. $CO_2(g) + 3H_2(g) \rightarrow CH_3OH(I) + H_2O(I) \Delta H^6 = -131 \text{ kJ mol}^{-1}$ Standard entronies are shown in the table		substance $CO_2(g)$ $H_2(g)$ $CH_3OH(l)$ $H_2O(l)$	S [•] /JK ⁻¹ mol ⁻¹ +214 +131 +127 +70	(i) Calculate the standard entropy change, ΔS^{\bullet} , for this reaction.			ΔS [•] =JK ⁻¹ mol ⁻¹ [2]	(ii) Calculate the standard Gibbs free energy change, ΔG° , for this reaction at 298 K.			ΔG ^a =	(iii) Predict the effect of increasing the temperature on the feasibility of this reaction.		Topic: cnem 23 QH 1537 Advictments(r)/2014/0/11 1/raper 4/QH 1/www.smasningscience.org Sodium oxide, Na ₂ O, is a white crystalline solid with a high melting point.			
Topic: Chem 23 Q# 138/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 Entropy is a measure of the disorder of a system. (a) Assume the entropy, S, for H ₂ O is zero at 0 K.	Sketch a graph on the axes to show how the entropy changes for H_2O between 0K and 300K.	-			S/JK ⁻¹ mol ⁻¹	S		temperature/K [2]	(b) Place one tick (\checkmark) in each row of the table to show the sign of the entropy changes, ΔS .	ΔS is negative ΔS is positive	solid dissolving in water	water boiling to steam	(c) The equation for a reaction that produces methanol is shown.	$CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$	Use relevant bond energies from the <i>Data Booklet</i> to calculate the enthalpy change, ΔH , for this gas phase reaction.	Δ <i>H</i> =	

CE TI DUIHSVWS

Page **107** of **703**

www.SmashingScience.org

www.SmashingScience.org

Page **108** of **703**

(d) Use the data below, and other suitable data from the <i>Data Booklet</i> , to calculate the lattice energy of sodium oxide, $\Delta H_{\text{but}}^{\circ}$ Na ₂ O(s).	ther suitable data from the <i>D</i> f _{at} Na ₂ O(s).	ata Booklet, t	to calculate the lattice	υ	Topic: Chem 23 Q# 140/ ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org The table lists the standard enthalpy changes of formation, $\Delta H_{\uparrow\uparrow}^{\bullet}$, for some compounds and aqueous ions.	y/2017/s/TZ 1/Pape ithalpy changes o	t 4/Q# 1/www.SmashingSo f formation, ΔH [®] for sorr	cience.org ne compounds and aq	neous
en	energy change		value/kJ mol ⁻¹				A [.] + 1 [-]		
standard enthalpy change of fi	standard enthalpy change of formation of sodium oxide, ΔH_{f}^{e} Na ₂ O(s)	[*] Na ₂ O(s)	-416			species			
standard enthalpy change of atomisation of sodium, $\Delta H^{\bullet}_{\rm at}$ Na(s)	atomisation of sodium, ∆H ^e Na	(s)	+109			Ba ²⁺ (aq)	-538		
electron affinity of O(g)			-142			OHT(aq)	-230		
electron affinity of O ⁻ (g)			+844			CU ₂ (g)	-394		
		-				BaCO ₃ (s) H ₂ O(l)	-1216 -286		
					(b) (i) Reaction 1 occurs w	hen CO ₂ (g) is but	Reaction 1 occurs when $\mathrm{CO}_2(g)$ is bubbled through an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_2$	us solution of Ba(OH)	
					Use the data in the t	able to calculate t	Use the data in the table to calculate the standard enthalpy change for reaction 1, $\Delta {m {\cal H}}_{r1}^{ m c}.$	nange for reaction 1, /	M [€] 1.
					Ba(OF	H) ₂ (aq) + CO ₂ (g)	$Ba(OH)_2(aq) + CO_2(g) \rightarrow BaCO_3(s) + H_2O(l)$	reaction 1	
	∆H [♣] _{latt} Na₂O(s) =		kJmol ⁻¹ [4]	-				[C] [-]	5
(e) State how ΔH [⊕] _{lat} Na ₂ S(s) diff Indicate this by placing a tic	State how $\Delta H^{\bullet}_{\text{tet}}$ Na ₂ S(s) differs from $\Delta H^{\bullet}_{\text{latt}}$ Na ₂ O(s). Indicate this by placing a tick (\checkmark) in the appropriate box in the table.	the table.			If $CO_2(g)$ is bubbled through an aqueous solution of Ba(OH) ₂ for a long time, the precipitated BaCO ₃ (s) dissolves, as shown in reaction 2.	h an aqueous so wn in reaction 2.	سترتاح مستورد م الطامه (OH) ₂ for a ا	long time, the precipi	tated
$\frac{\Delta H^{\bullet}_{\text{int}}}{\Delta t} Na_2 S(s) \text{ is more} \\ exothermic than \Delta H^{\bullet}_{\text{int}} Na_2 O(s) \\$	∆H [⊕] _{latt} Na ₂ S(s) is the same as ∆H [⊕] _{latt} Na ₂ O(s)	∆H ^a tt N exothermic	ΔH [⊕] _{latt} Na ₂ S(s) is less exothermic than ΔH [⊕] _{latt} Na ₂ O(s)		BaCO ₃ (s) + CO ₂ (g) + H ₂ O(l) → Ba(HCO ₃) ₂ (aq The standard enthalpy change for reaction 2, $\Delta H^{\bullet_2}_{\bullet_2}$ = -26kJ mol ⁻¹ .	+ $CO_2(g)$ + H_2 nge for reaction 2	$\begin{array}{rcl} BaCO_3(s) \ + \ CO_2(g) \ + \ H_2O(l) \ \rightarrow \ Ba(HCO_3)_2(aq) \\ \mbox{nalpy change for reaction 2, ΔH^{\bullet}_{22} = $-26 kJ \ mol^{-1}$. \end{array}$	reaction 2	
					(ii) Use this information an	id the data in the	Use this information and the data in the table to calculate the standard enthalpy change of	andard enthalpy chan	ge of
Explain your answer.					formation of the HCO ₃ (aq) ion.	(aq) ion.			
			[2				∆H [•] HCO ₃ ⁻ (aq) =	kJ mol ⁻¹ [2]	-1 [2]
			[Total: 15]	C					C
www.SmashingScience.org	Patrick Brannac		Page 109 of 703	11 INNIHSTWIS	www. Smashing Science.org	Patrio	Patrick Brannac	Page 110 of 703	LI I DNIHSEMS

(iii) The overall process is shown by reaction 3.

Use your answer to (iii), and the data given in the table, to calculate the standard enthalpy change for reaction 3, ΔH_3^{\bullet} .

reaction 3 Ba(OH)₂(aq) + $2CO_2(g) \rightarrow Ba(HCO_3)_2(aq)$.. kJmol⁻¹ [1] $\Delta H_{r3}^{\bullet} = \dots$ (iv) How would the value of $\Delta H_{r_4}^{\bullet}$ compare with the value of $\Delta H_{r_4}^{\bullet}$ for the similar reaction with Ca(OH)₂(aq) as shown in reaction 4? Explain your answer.

reaction 4 $Ca(OH)_2(aq) + 2CO_2(g) \rightarrow Ca(HCO_3)_2(aq)$

[2]

(c) The standard entropy change for reaction 1 is ΔS_{r1}^{\bullet} .

Suggest, with a reason, how the standard entropy change for reaction 3 might compare with $\Delta S^{*}_{r1}.$

. [2]

[Total: 13] Topic: Chem 23 Q# 141/ ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org

2 (a) Complete the table using ticks (*v*) to indicate whether the sign of each type of energy change, under standard conditions, is always positive, always negative or could be either positive or negative.

either positive or negative always negative always positive enthalpy change of atomisation ionisation energy energy change electron affinity lattice energy

(b) The Born-Haber cycle for magnesium chloride is shown.

	1			[1] [1]	[1] in Group 17. Explain your a
$Mg^{2n}(g) + 2Cl(g) + 2e^{-\Delta H_g}$	$ \frac{Mg^{*}(g) + 2CI(g) + e^{-\frac{1}{A}}}{\Delta H_3} \xrightarrow{Mg^{2*}(g) + 2CI^{-}(g)}{\Phi H_3} $ Mg(g) + 2CI(g)	$\frac{Mg(g) + CI_2(g) \Delta H_2}{Mg(s) + CI_2(g) \Delta H_1} \xrightarrow{\Delta H_2}$	$\frac{\Delta H_7}{(i)}$ (i) Explain why ΔH_4 is greater than ΔH_3 .	(ii) What names are given to the enthalpy changes ΔH_6 and ΔH_7^2	[1] (c) Chlorine is in Group 17. Suggest the trend in the first electron affinity of the elements in Group 17. Explain your a

[2]

Page 111 of 703

Patrick Brannac

www.SmashingScience.org

Page **112** of **703**

(d) The equation for the form	(d) The equation for the formation of magnesium oxide from its elements is shown.	s elements is shown.	Topic: Chem 23 Q# 143/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 The spontaneity (feasibility) of a chemical reaction depends on the standard Gibbs free energy
	Mg(s) + $\frac{1}{2}O_2(g) \rightarrow MgO(s)$	$\Delta H^{4} = -602 \text{kJ mol}^{-1}$	change, ΔG^{\bullet} . This is related to the standard enthalpy and entropy changes by the equation shown.
	substance S ⁴ /JK ⁻¹ mol ⁻¹		$\Delta G^{\bullet} = \Delta H^{\bullet} - T \Delta S^{\bullet}$
	+		(a) State and explain whether the following processes will lead to an increase or decrease in
			entropy.
			(i) the reaction of magnesium with hydrochloric acid
Use the equation and the	Use the equation and the data given in the table to calculate $\Delta G^{\mathfrak{s}}$ for the reaction at 25 °C.	ie ΔG ^e for the reaction at 25 °C.	entropy change
			explanation
			(ii) solid potassium chloride dissolving in water
			entropy change
			explanation
			(iii) steam condensing to water
	= °60A	units	entropy change
		[4]	explanation
		[Total: 10]	E
Topic: Chem 23 Q# 142/ ALvl Chemi 3 The spontaneity (feasibility	Topic: Chem 23 Q# 142/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org The spontaneity (feasibility) of a chemical reaction depends on the standard	c: Chem 23 Q# 142/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org The spontaneity (feasibility) of a chemical reaction depends on the standard Gibbs free energy	(b) Magnesium carbonate can be decomposed.
change, ∆G ^e . This is relate	ed to the standard enthalpy and en	change, ΔG^{\bullet} . This is related to the standard enthalpy and entropy changes by the equation shown.	$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$ $\Delta H^{\bullet} = +117 \text{ kJ mol}^{-1}$
	$\Delta G^{\bullet} = \Delta H^{\bullet} - T \Delta S^{\bullet}$		Standard entropies are shown in the table.
(d) The solubility of Group 2 s	(d) The solubility of Group 2 sulfates decreases down the Group.	ď	substance MnCO-(s) MnO(s) CO-(n)
Explain this trend.			-1 +65.7 +26.9
			(i) Calculate ΔG^{\bullet} for this reaction at 298 K. Include a relevant sign and give your answer to three significant figures.
		6	
		[Total: 11]	ΔG° =
			(ii) Explain, with reference to ΔG^{\bullet} , why this reaction becomes more feasible at higher temperatures.
		C	
www.SmashingScience.org	Patrick Brannac	Page 113 of 703	www.SmashingScience.org Patrick Brannac Page 114 of 703

Topic: Chem 23 Q# 144/ ALvI Chemistry/2016/s/T2 1/Paper 4/O# 8/www.SmashingScience.org 8 (a) Chromyl chloride, CrO ₂ Ct ₂ , can be prepared by heating a mixture of potassium dichromate(VI) and potassium chloride with concentrated sulfuric acid. $K_2Cr_2O_7 + 4KC1 + 3H_2SO_4 \rightarrow 2CrO_2Ct_2 + 3K_2SO_4 + 3H_2O$ Use the following data to complete the Hess' Law cycle and calculate the enthalpy change of the reaction, ΔH_r	compoundenthalpy change of formation, AH_7^*/k_1 mol-1 $K_2 Cr_2 O_7$ enthalpy change of formation, AH_7^*/k_1 mol-1 $H_2 SO_4$ $H_2 SO_4$ -437 $H_2 SO_4$ -1438 $CrO_2 Cl_2$ -580 $K_2 SO_4$ -1438 $H_2 O$ -286 $H_2 O$ -286 $H_2 O$ -286 $H_2 O$ -286	elenets	Topic: Chem 23 Q# 145/ ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 (a) Chromyl chloride, $CrO_2CI_{2_3}$ can be prepared by heating a mixture of potassium dichromate(VI) and potassium chloride with concentrated sulfuric acid.	$\label{eq:K2Cr_2O_7} \begin{array}{llllllllllllllllllllllllllllllllllll$
(c) On heating, sodium hydrogencarbonate decomposes into sodium carbonate as shown. $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g) \Delta H^* = +130 kJmol^{-1}$ $\Delta S^* = +316 Jmol^{-1}K^{-1}$ Calculate the minimum temperature at which this reaction becomes spontaneous (feasible). Show your working.	temperature =K [2]			www.SmashingScience.org Patrick Brannac Page 115 of 703

standard enthalpy change of atomisation of Ca(s), ΔH_{π}^{a} $+1/8$ kJ mol ⁻¹	electron affinity of chlorine atoms
--	-------------------------------------

CE VIEW Page **118** of **703** Patrick Brannac

www.SmashingScience.org

11 Ibnuussyns

Page **117** of **703**

Patrick Brannac

Ľ.	
sten	
ŝ	
fa	
0	
isorder	
the d	
÷	
б	
measure	
B	
2	
Entropy	
e	

Describe and explain what happens to the entropy of a gas when the temperature is increased.

(c) The table shows four reactions.

(i) For each reaction, predict the sign of the entropy change, ΔS° . If you predict no entropy change, write 'no change' in the table below. The first one has been done for you.

reaction	sign of ∆S [®]
$CO(g) + O_2(g) \rightarrow CO_2(g)$	negative
Mg(s) + $\frac{1}{2}$ -O ₂ (g) \rightarrow MgO(s)	
$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_5O(s)$	
$NaHCO_{3}(s) + H^{+}(aq) \rightarrow Na^{+}(aq) + CO_{2}(g) + H_{2}O(l)$	/

(ii) Explain why the entropy change for the first process is negative.

[]

(d) Calculate the standard entropy change, ΔS^{\bullet} , for this reaction.

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Standard entropies, S^e, in JK⁻¹ mol⁻¹ are given.

NH ₃ (g)	+193
$H_2(g)$	+131
$N_2(g)$	+192

JK⁻¹mol⁻¹ [2] ΔS^e.

(e) Whether or not a chemical reaction is spontaneous (feasible) can be deduced by calculating the change in free energy, ΔG^{\bullet} , at a given temperature.

 $MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$

Calculate the value of \(\Delta G^\u03c6 at 298 K\) for the above reaction.

 $\Delta H^{\bullet} = +117 \text{ kJ mol}^{-1}$ $\Delta S^{\bullet} = +175 \text{ J K}^{-1} \text{ mol}^{-1}$

Page 119 of 703

[2]

Patrick Brannac

www.SmashingScience.org

TITIONIHS WS

kJ mol⁻¹ [3] ∆H[⊕]_{latt} Ca(NO₃)₂(s) =

[2]

[Total: 16] Ξ

> Topic: Chem 23 Q# 148/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (d) (i) What is meant by the term standard enthalpy change of hydration, ΔH^{\bullet}_{hyd} ?

> > [2]

(ii) Use your answer to (i) to explain whether or not this reaction is spontaneous at 298K.

Use the following data to calculate the lattice energy, $\Delta H_{\text{latt}}^{\bullet}$ of calcium nitrate, Ca(NO₃)₂(s). You may find it helpful to construct an energy cycle. **(**

enthalpy change	value	
ΔH^{\bullet}_{hyd} (Ca ²⁺ (g))	-1650 kJ mol ⁻¹	
∆H [⊕] _{hyd} (NO ₃ ⁻⁽ g))	-314 kJ mol ⁻¹	
enthalpy change of solution for Ca(NO ₃) ₂ (s)	-19 kJ mol ⁻¹	

[2]

Page 120 of 703

Patrick Brannac

(e) The standard enthalpy chanç Suggest an explanation for v the Ca ²⁺ ion.	(e) The standard enthalpy change of hydration for Ba^{2+} , ΔH^{hyd}_{hyd} ($Ba^{2+}(g)$), is -1305kJ mol ⁻¹ . Suggest an explanation for why the ΔH^{ϕ}_{hyd} of the Ba^{2+} ion is less exothermic than the ΔH^{ϕ}_{hyd} of the Ca ²⁺ ion.	⁺⁺ (g)), is –1305 kJ mol ⁻¹ . s exothermic than the $\Delta H^{\clubsuit}_{\rm hyd}$ of	Topic: Chem 23 Q# 150/ ALvl Chemistry/2014/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org (e) (i) What is meant by the term <i>lattice energy?</i>
		[2]	(ii) Explain why the lattice energy of calcium phosphate is less exothermic than that of magnesium phosphate.
Topic: Chem 23 Q# 149/ ALv/ Chemistry 4 (a) Silver sulfate, Ag ₂ SO ₄ , is is 2.5 × 10 ⁻² moldm ⁻³ at 2 (b) Hsind An SO, as an even	Topic: Chem 23 Q# 149/ ALVI Chemistry/2015/s/TZ 1/Paper 4/Q# 4/www.5mashingScience.org 4 (a) Silver sulfate, Ag ₂ SO ₄ , is sparingly soluble in water. The concentration of its saturated solution is 2.5 × 10 ⁻² moldm ⁻³ at 298 K. (h) Histor AG SO as an example complete the following Hess'Law energy cycle relation the	[Total: 12] shingScience.org centration of its saturated solution	[3] Topic: Chem 23 Q# 151/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Section A
	solution, $\Delta H^{\bullet, *}_{\bullet, \bullet}$ and		Answer all the questions in the spaces provided.
• enthalpy change of hydration, ΔH_{hyt}^{Θ} . On your diagram:	iydration, $\Delta H_{\rm hyd}^{\circ}$.		1 (a) (i) What is meant by the term <i>lattice energy</i> ?
 Include the retreams Iabel each enthalpy c complete the remaini 	Include the relevant species in the two entry boxes, label each enthalpy change with its appropriate symbol, complete the remaining two arrows showing the correct direction of enthalpy change.	direction of enthalpy change.	(ii) Write an equation to represent the lattice energy of MgO.
			[3] The apparatus shown in the diagram can be used to measure the enthalpy change of formation of magnesium oxide, $\Delta H_{f}^{\bullet}(MgO)$.
Ag ₂ SO ₄ (s)			to suction pump
·			
		[4]	water
			oxygen gas
www.SmashingScience.org	Patrick Brannac	Page 121 of 703	www.SmashingScience.org Patrick Brannac Page 122 of 703

Topic: Chem 23 Q# 150/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

 (a) Show by means of an equation what is meant by the lattice energy of calcium chlorid is in meant by the lattice energy of calcium chloride. (b) Suggest, with an explanation, how the lattice energies of the following salts mit compare in magnitude with that of calcium chloride. (b) Suggest, with an explanation, how the lattice energies of the following salts mit compare in magnitude with that of calcium chloride. (c) calcium fluoride, CaF₂ (n) calcium suffide, CaS (n) calcium suffide, Ca	 (a) Show by means of an equation what is meant by the lattice energy of calcium chlorid far the more in magnitude with that of calcium chloride. (b) Suggest, with an explanation, how the lattice energies of the following salts mit ocompare in magnitude with that of calcium chloride. (b) calcium functide, CaF2 (c) calcium suffide, CaS <l< th=""><th>(b)</th><th>List the measurements you would need to make using this apparatus in order to calculate $\Delta H^{*}_{f}(\mathrm{MgO}).$</th><th>i to make using this appar</th><th>atus in order to calculate</th><th>Topic: Chem 23 Q# 153/ ALVI Chemistry/2009/w/12 1/Paper 4/Q# 2/www.5mashingScience.org 2 Calcium chloride, $CaC_{1,}^{2}$ is an important industrial chemical used in refrigeration plants, for de-icing roads and for giving greater strength to concrete.</th></l<>	(b)	List the measurements you would need to make using this apparatus in order to calculate $\Delta H^{*}_{f}(\mathrm{MgO}).$	i to make using this appar	atus in order to calculate	Topic: Chem 23 Q# 153/ ALVI Chemistry/2009/w/12 1/Paper 4/Q# 2/www.5mashingScience.org 2 Calcium chloride, $CaC_{1,}^{2}$ is an important industrial chemical used in refrigeration plants, for de-icing roads and for giving greater strength to concrete.
 (b) Suggest, with an explanation, how the lattice energies of the following sats mit compare in magnitude with that of calcium choride. (c) calcium fluoride, CaF₂ (n) calcium fluoride, CaF₂ (n) calcium suffide, CaS (n) calcium su	(a) Suggest, with an explanation, how the lattice energies of the following salts micompare in magnitude with that of calcium chloride. If at the more bline with the more bline plane bline bline plane bline plane bline plane bline plane bline plane bline plane bline	(b) [3] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4				Show by means of an equation what is meant by the lattice energy of calcium chloric
far the more bine with the bine with the (1) calcium fluoride, CaF2 nom bonds monologies, and non- monologies, addition to (1) calcium sulfide, CaS (1) calcium sulfide, CaS (1) calcium sulfide, CaS (2) Use the following data, together with additional data from the Data Booklet, to calcult the lattice energy of CaCL2, (1) calcult the lattice energy of CaCL2, standard enthalpy change of formation of CaS (1) 178 kJ mol ⁻¹ electron affinity per mole of chorine atoms (2) kJ mol ⁻¹ enthalpy (2) + Cl ₂ (9)	(i) calcium fluoride, CaF ₂ mbonds mbonds model addition to addition to $\frac{1}{10}$ (calcium sufficte, CaS) (i) calcium sufficte, CaS)	far the more orm bonds rogen gas addition to			[3]	
(ii) calcium sulfide, CaS calcium sulfide, CaS (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcult the lattice energy of CaC l_2 (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcult the lattice energy of CaC l_2 (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcult the lattice energy of CaC l_2 (c) Use the lattice energy of CaC l_2 (c) Use the lattice energy of the lattice energy of CaC l_2 (c) $L_2(s)$ (c) $L_2(s)$ (c) $L_2(s)$ (c) $L_2(s)$	(i) calcium suffide, CaS calcium suffice, CaS calculation of CaC r_2 the lattice energy of CaC r_2 the lattice energy of CaC r_2 the lattice energy of CaC r_2 standard enthalpy change of formation of CaC r_2 standard enthalpy change of atomisation of CaC r_2 the lattice energy of CaC r_2 the lattice energy of CaC r_2 the lattice energy of CaC r_2 standard enthalpy change of formation of CaC r_2 the lattice energy of CaC r_2	Ξ	n 23 Q# 152/ ALM Chemistry/2011/s/T2 1/I together, nitrogen and oxygen mak ive of the two gases, and most of the sn rather than with the nitrogen.	aper 4/Q# 1/www.Smashing e up 99% of the air. Oxy : substances that react w	far the mo bine with t	(i) calcium fluoride, CaF ₂
(c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcult the lattice energy of CaC l_2 . The lattice energy of CaC l_2 . The lattice energy of the entral py change of formation of CaC l_2 . The lattice entral py change of atomisation of CaC l_3 . The lattice entral py change of atomisation of Ca(s). The lattice entral py change of atomisation of the lattice entral py change of atomisatic ent	(c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcult the lattice energy of CaC/2. standard enthalpy change of formation of CaC/2. Toge AD mol-1 electron affinity per mole of chlorine atoms - 349 kJ mol-1 enthalpy enthalpy enthalpy $Ca(s) + Cl_2(g)$	Ĩ	te the apparent lack of reactivity of N ₂ , Ilmost all of the elements in the Period m temperature to give lithium nitride, I 2, as well as magnesium oxide, when h	nitrogen atoms have been ic Table. Lithium metal rea Li ₃ N. Magnesium produce eated in air.	i found to form bonds cts with nitrogen gas s magnesium nitride,	
value/kJ mol ⁻¹ $+148$ + 148 $+148$ statutice energy of CaCl ₂ . -2148 (g) $+2148$ -461 standard enthalpy change of formation of CaCl ₂ . -796 kJ mol ⁻¹ standard enthalpy change of atomisation of CaCl ₂ . -349 kJ mol ⁻¹ electron affinity per mole of chlorine atoms. enthalpy Ca(s) + Cl ₂ (g)	valuek/Lmol-1 $\frac{1}{418}$ (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcula (<u>jb</u>) $\frac{1}{-461}$ ibr $\frac{214}{-461}$ (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcula (<u>jb</u>) $\frac{1}{-461}$ ibr -461 (c) Use the following data, together with additional data from the <i>Data Booklet</i> , to calcula (<u>jb</u>) $\frac{1}{-461}$ ibr -461 (c) Use the lattice energy of CaCL2, $\frac{1}{-296}$ kJ morther together atoms of cacU2, $\frac{1}{-349}$ kJ morther electron affinity per mole of chlorine atoms $\frac{1}{-349}$ kJ morther $\frac{1}{-340}$ kJ morther $\frac{1}{-340}$ kJ morther $\frac{1}{-340}$	xalue/kJ mol ⁻¹ + 148 - 148 (g) - 461	Calculate the lattice energy of magnesit elevant data from the <i>Data Booklet</i> .	im nitride using the followir	ng data, in addition to	
(c) +148 (g) +2148 -461	(c) +148 (g) +2148 -461	(c) +148 (g) +2148 -461	enthalpy change	value/kJ mol ⁻¹		
s for (g) +2148 -461 standard enthalpy change of formation of CaCl ₂ standard enthalpy change of atomisation of Ca(s) -461 electron affinity per mole of chlorine atoms	$\frac{5 (r +2148)}{-461}$ $\frac{-461}{-461}$ $\frac{-461}{-461}$ $\frac{-461}{-461}$ $\frac{1}{-461}$	$\frac{1}{10} + \frac{1248}{-461}$ $\frac{1}{-461}$ $\frac{1}{-461}$ $\frac{1}{10}$	atomisation of Mg(s)	+148		
-461 -461 electron affinity per mole of chlorine atoms enthalpy Ca(s) + Cl ₂ (g)	-461	-461 $= -461$ $= -$	total of electron affinities the change N(g) $\rightarrow N^{3}$ (nna of formation of CaO1
		349 kJ mol ⁻¹	enthalpy of formation of Mg ₃ N ₂ (s)	-461		
-		Ca(s) + $CI_2(g)$				
		Ca(s) + Cl ₂ (g)				*
		$Ca(s) + Cl_2(g)$ aftice energy =				enthalby

-

C TI IDNIHISYWS

Page 124 of 703

Patrick Brannac

3 Titanium is a transition element in Period 4. It is commonly found as TiO₂ in minerals.

		[2]	(ii) Draw a fully labelled diagram of the apparatus that can be used to measure the cell potential of a cell composed of a Cu(II)/Cu electrode and an Fe(III)/Fe(II) electrode. Include all necessary reactants.				[6]	(d) When aqueous solutions of $S_2O_8^{2-}$ and tartrate ions are mixed the reaction proceeds very slowly. However, this reaction proceeds quickly in the presence of an Fe ³⁺ (aq) catalyst. The overall equation for this reaction is shown.	tartrate ions OH $-0_2 C + CO_2^{-} + 3S_2 O_8^{2-} + 2H_2 O \rightarrow 2CO_2 + 2HCO_2^{-} + 6H^{+} + 6SO_4^{2-}$	\dot{OH} (ii) Use the overall equation to deduce the half-equation for the oxidation of tartrate ions, $C_4 H_4 O_6^{2-}$, to carbon dioxide, CO_{2} , and methanoate ions, HCO_2^{-1} .	C4H4O6 ²⁻ +	www.SmashingScience.org
$\Delta G^{\bullet} = -436.1 \text{kJ} \text{mol}^{-1}$	2H ₂ O is +1.23V.	. TiO ²⁺ (aq)/Ti ³⁺ (aq) half-cell.		<i>E</i> [•] =		Si by this electrolysis, using a			time =s [2] [Total: 9]			Page 125 of 703
$4 \text{Tr}^{3+} + \text{O}_2 + 2 \text{H}_2 \text{O} \rightarrow 4 \text{Tr} \text{O}^{2+} + 4 \text{H}^+$	The standard reduction potential, E^{\bullet} , of O ₂ + 4H ⁺ + 4e ⁻ \rightleftharpoons 2H ₂ O is +1.23V.	Calculate the standard reduction potential, E^{\bullet} , in V, of the TiO ²⁺ (aq)/Ti ³⁺ (aq) half-cell. Show your working.		Topic: Chem 24 Q# 155/ ALvl Chemistry/2022/m/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 Silicon is the second most abundant element by mass in the Earth's crust. (c) Silicon can also be produced by electrolysis of SiO ₂ dissolved in molten CaC l_2 . The relevant half-equation for the cathode is shown.	SiO_2 + 4e ⁻ \rightarrow Si + 2O ²⁻	Calculate the time, in seconds, required to produce 1.00g of Si by this electrolysis, using a current of 6.00A. Assume no other substances are produced at the cathode.						Patrick Brannac
7	The standard reduction	(i) Calculate the stands Show your working.		Topic: Chem 24 0# 155/ ALvI Che 2 Silicon is the second m (c) Silicon can also be prod The relevant half-equati		Calculate the time, in se current of 6.00A. Assume no other substa						www.SmashingScience.org

Topic: Chem 24 Q# 156/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (b) (i) Define the term standard cell potential. E...

(c) Acidified $Ti^{34}(aq)$ reacts with oxygen dissolved in water as shown.

Topic: Chem 24 Q# 157/ ALM Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 lodates are compounds that contain the IO ₃ ⁻ anion.	the formation of Fe
(a) The IO ₃ - anion is shown.	reaction 1 4FeO \rightarrow Fe + Fe ₃ O ₄
2	Each formula unit of Fe_3O_4 contains one Fe^{24} and two Fe^{34} ions.
	(i) Show how reaction 1 can be described as a disproportionation reaction.
(c) The decomposition of hydrogen peroxide, H_2O_2 , is catalysed by acidified IO_3^- .	
$\rm H_2O_2$ reduces acidified $\rm IO_3^-$ as shown.	
$5H_2O_2 + 2H^+ + 2IO_3^- \rightarrow I_2 + 5O_2 + 6H_2O$	Fe _s O ₄ (1) can be electrolysed using inert electrodes to form Fe.
This reaction is followed by the oxidation of I_2 by H_2O_2 .	(ii) Write the half-equation for the reaction that occurs at the anode during the electrolysis of
half-equation E=/V	
H ₂ O ₂ + 2H ⁺ + 2e ⁻ ≠ 2H ₂ O +1.77	[1]
$IO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}I_2 + 3H_2O + 1.19$ $O + 2H^+ + 2e^- \oiint IO + 0.68$	(iii) Calculate the maximum mass of iron metal formed when $Fe_3O_4(I)$ is electrolysed for six hours using a current of 50A.
that the separate reactions of H	Assume the one Fe ²⁺ and two Fe ³⁺ ions are discharged at the same rate.
In your answer, give the equation for the reaction of H_2O_2 with I_2 .	
[6]	
(ii) Write the overall equation for the decomposition of H ₂ O ₂ catalysed by acidified IO ₃ .	
Topic: Chem 24 Q# 158/ ALVI Chemistry/2021/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org 7 fail InnvLTD commonings are generally only stable in neutral non-oxidistion conditions	mass of iron =
	When the cell is charging, lithium reacts with a graphite electrode to form LiC $_{6}$.
	When the cell is discharging, the half-equations for the two processes that occur are as follows.
	anode half-equation $LiC_6 \rightarrow 6C + Li^+ + e^-$
	cathode half-equation Li^{+} + FePO ₄ + e ⁻ \rightarrow LiFePO ₄
C	

Page **128** of **703**

www.SmashingScience.org

Patrick Brannac

Patrick Brannac

Page **127** of **703**

www.SmashingScience.org

(i) Stat batt	State one possil batteries.	State one possible advantage of developing cells such as lithium-ion rechargeable batteries.	m-ion rechargeable	(c) The equation representing the standard electrode potential, E^{\bullet} , for the reduction of MnO ₄ -(aq) to Mn ²⁺ (aq) in acid solution is given.
			[1]	$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \iff Mn^{2*}(aq) + 4H_2O(l)$ $E^6 = +1.52V$
(ii) Use and	the cathode iron at the c	Use the cathode half-equation to determine the change, if any, in oxidation states of lithium and iron at the cathode during discharging.	tion states of lithium	(i) Draw a diagram of the apparatus that would be used to measure the E° value of this half-cell. Your diagram should be fully labelled to identify all apparatus, substances and
		change in oxidation state during discharging		conditions.
	metal	from to		
	lithium			
	iron			
			E	
(iii) Writ	e the equatio	Write the equation for the overall reaction that occurs when this cell is discharging.	s discharging.	
			[1]	
Topic: Chem 24 3 (a) Ider aqu	t Q# 159/ ALvl ntify the sub: eous sodium	Topic: Chem 24 Q# 159/ ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Identify the substances liberated at the anode and at the cathode during the electrolysis of aqueous sodium sulfate, Na,SO₄(aq).	ience.org e during the electrolysis of	[4]
ano	anode			(ii) Use the <i>Data</i> Booklet to identify a substance that could be used to oxidise Mn ²⁺ ions to MnO, ⁻ ions under standard conditions.
Cath	cathode			Muite an annaise for the analysis
			[1]	
(b) Whe liber	When molten sodium ch liberated at the cathode.	When molten sodium chloride is electrolysed, chlorine is liberated at the anode a liberated at the cathode.	at the anode and sodium is	
A Sč	ample of moli	A sample of molten sodium chloride is electrolysed for 1.50 hours using a current of 4.50A	using a current of 4.50A.	[2]
Cal	Calculate the vo conditions.	Calculate the volume of chlorine and the mass of sodium that are liberated conditions.	are liberated under room	[Total: 11]
		volume of chlorine =	e =	

Page **130** of **703**

Patrick Brannac

www.SmashingScience.org

n = ______g [4] Page 129 of 703

Patrick Brannac

www.SmashingScience.org

מר

mass of sodium = \dots

e.org	
ō	
نە	
2	
5	
. <u> </u>	
Š	
ല്	
÷≣	
÷	
a	
5	
S.	
≥	
Ś	
۶.	
\leq	
/0# 9/v	
赉	
9	
4	
5	
ĕ	
đ	
Ē.	
:ry/2020/s/TZ 1/Paper 4/Q# 9/www.Sma	
N	
F	
S	
\geq	
5	
0	
2	
~	
÷	
.iei	
E	
e	
t d	
÷	
2	
A	
>	
0	
Ë,	
±+-	
Topic: Chem 24 Q# 160/ ALvI Chemist	
÷	
ñ	
٦	
j.	
Ĕ.	
0	
ü	
ö	
0	
E.	

(a) Manganese(IV) oxide, MnO_{2} , catalyses the decomposition of hydrogen peroxide, H_2O_2 , as shown. 6

$$2H_2O_2(aq) \xrightarrow{MnO_2} 2H_2O(I) + O_2(g)$$

The mechanism involves the formation of the intermediate species, Mn²⁺, in the first step which is subsequently used up in the second step.

State and use relevant electrode potentials, E° , to construct **two** equations to show how MnO₂ can catalyse this reaction.

						_
:			:	:	1	3
		1				
		:		:		
:				:		
:	:		:	:	:	
	1					
:			:	:		:
:	:	:	:	:	:	:
				1		
:	:		:	:	:	:
:						:
:	:		:	1		
:			:			
:						
:	:		:	:		
	1			1		
:			:	:		
:			:	:	:	
:	:	:	:	:	1	
	1			1	1	
	1	1		1		
						;
:	:	:	:	:	:	:
:	:	:	:	:		
	1	1		1		
	1	1		÷		
	:	:		:	:	:
:	:	:	:	:		:
				1	1	
				÷		
			:			
:	:	:	:	:	:	:
:	:		:	:	:	:
:	:	:	:	:		:
				1		
:	:	:	:	:		:
:	:	:	:	:	:	:
			1	1		
		1		1		
:	:		:	:	:	:
:	:	:	:	:	:	:
				1		
				÷		
:	:	:	:	:	:	:
:	:		:	:	:	
:	:	:	:	:		:
		1		1		
				1		
	1	1		1	1	
	:	:		1		:
	:	:		:	:	:
:	:	:		:	:	:
:	:	:	:	:	:	:
	1	1		1		
	1	1		1		
				1		
	1	1			:	:
:	:	:	:	:		
:	:	:	:	:	1	
				1		
	1	1		1		:
	1	1				:
:	:	:	:	:	:	:
:	1	:	:	:		
	1	1		1	~	2
	1	1		1	-	_
	:	1			5	10
	1	1		1	. <u> </u>	. <u> </u>
:	:	:	:	:	t	t
				:	0	0
	3		S		equation 1	equation 2
		1		÷	0	0
	1				e	e
		:	:	:	Ð	e

Topic: Chem 24 Q# 161/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 The overall reaction for photosynthesis is shown.

 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Water is oxidised in this process according to the following half-equation.

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

half-equation 1

(a) (i) Use these equations to deduce the half-equation for the reduction of carbon dioxide in this process. [2]

Draw a fully labelled diagram of the apparatus that should be used to measure the standard electrode potential, E^* , of $O_2(g)$ in half-equation 1 under standard conditions. Include all necessary chemicals. ≣

4

(iii) For the cell drawn in (a)(ii), use the *Data Booklet* to calculate the E_{cal}^{\bullet} and deduce which electrode is positive.

[1]

[Total: 7]

Page **132** of **703**

Patrick Brannac

www.SmashingScience.org

Page **131** of **703**

Patrick Brannac

<u>s</u> . <u>s</u>	응 당	Topic: Che 3 Gold	Topic: Chem 24 Q# 162/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org	Gold is an unreactive metal that can only be oxidised under specific conditions.
---------------------	-----	----------------------	--	--

- (a) The standard electrode potential, E^e, of Au³⁺(aq)/Au(s) is +1.50 V.
- (i) Define the term standard electrode potential.

[2]

Draw a fully labelled diagram of the apparatus that should be used to measure the standard cell potential, $E_{\rm cent}^{*}$ of Au³⁺(aq)/Au(s) and HNO₃(aq)/NO(g). 1

Include all necessary chemicals.

Some relevant half-equations and their standard electrode potentials are given.

	half-equation	Eª/V
1	Au ³⁺ (aq) + 3e ⁻ 💳 Au(s)	+1.50
2	$[AuCl_4]$ 7(aq) + 3e ⁻ \Longrightarrow Au(s) + 4Cl ⁻ (aq)	+1.00
3	NO ₃ -(aq) + 4H+(aq) + 3e ⁻ ← NO(g) + 2H ₂ O(l)	+0.96

(iii) Write an ionic equation to show the spontaneous reaction that occurs when an electric current is drawn from the cell in (a)(ii).

<u> </u>	
_	
:	
1	
1	
1	
-	
1	
1	
- 1	

(iv) Calculate the E^{*}_{col} of the reaction in (a)(iii).

.. V [1] E^e = ... Gold can be oxidised by a mixture of concentrated hydrochloric acid and concentrated nitric acid, known as aqua regia. Concentrated hydrochloric acid is $12 \text{ mol}\,\text{dm}^3$. Concentrated nitric acid is $16 \text{ mol}\,\text{dm}^3$. Σ

Explain why aqua regia is able to dissolve gold.

In your answer, state and explain what effect the use of concentrated hydrochloric acid and concentrated nitric acid have on the *E* values of half-equations 2 and 3.

[4]

[3]

Topic: Chem 24 Q# 163/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org

2 (a) Group 2 metals form stable carbonates and sulfates.

Al_2O_3 is dissolved in cryolite in this process.
Al ₂ O ₃ by electrolysis. A
Aluminium is extracted from /
(q)

(i) The half-equation for the reaction at the anode is shown.

 0^{2-} + C \rightarrow CO + 2e⁻

Use this half-equation to write the ionic equation for the electrolysis of AI_2O_3 .

[1]

(ii) Aluminium oxide is electrolysed for 3.0 hours using carbon electrodes and a current of 3.5×10^5 A.

Calculate the mass of aluminium that is formed.

mass of aluminium =

g [3]

Topic: Chem 24 Q# 164/ ALvI Chemistry/2019/w/TZ 1/Paper 4/O# 1/www.SmashingScience.org 1 An electrochemical cell is constructed using two half-cells.

- an Sn⁴⁺/Sn²⁺ half-cell
 - an Al³⁺/Al half-cell

(a) State the material used for the electrode in each half-cell.

- Sn⁴⁺/Sn²⁺ half-cell
- Al³⁺/Al half-cell

Ξ

(b) The cell is operated at 298 K.

The At³⁺/At half-cell has standard concentrations.

The Sn⁴⁺/Sn²⁺ half-cell has [Sn⁴⁺] = 0.300 moldm⁻³ and [Sn²⁺] = 0.150 moldm⁻³.

(i) Use the Nermst equation to calculate the electrode potential, E, of the Sn⁴⁺/Sn²⁺ half-cell under these conditions.

(ii) Calculate the E_{cell} under these conditions.

Explain why chromium metal cannot be obtained by the electrolysis of dilute aqueous chromium(II) sulfate. Your answer should include data from the <i>Data Booklet</i> .
mass = units =
Calculate the mass of aluminium that is obtained when a current of 300000A is passed for 24 hours. Give your answer to three significant figures.
(c) Aluminium is produced industrially by electrolysis of a melt containing large amounts of $A1^{3+}$ ions.

Page **136** of **703**

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

Patrick Brannac

Page **135** of **703**

. Н Ш

SI

Topic: Chem 24 Q# 165/ ALvI Chemistry/2019/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org	ate(V) ions are powerful oxidising agents.
65/ ALvl Chemistry/	ons are powerful
ic: Chem 24 Q# 16	Chlorate(V) ic
Тор	ო

- Chlorate(V) ions are powerful oxidising agents.
- (a) The reduction of chlorate(V) ions, ClO_3^- , with SO_2 forms chlorine dioxide, ClO_2 , and sulfate ions, SO_4^{2-} , as the only products.

Construct an equation for this reaction.

Ξ

(b) (i) Chlorine dioxide, C1O₂, disproportionates with hydroxide ions, OH⁻(aq), to form a mixture of C1O₂⁻ and C1O₃⁻ ions.

 $2CIO_2$ + $2OH^- \rightarrow CIO_2^-$ + CIO_3^- + H_2O

Explain, using this reaction as an example, what is meant by disproportionation.

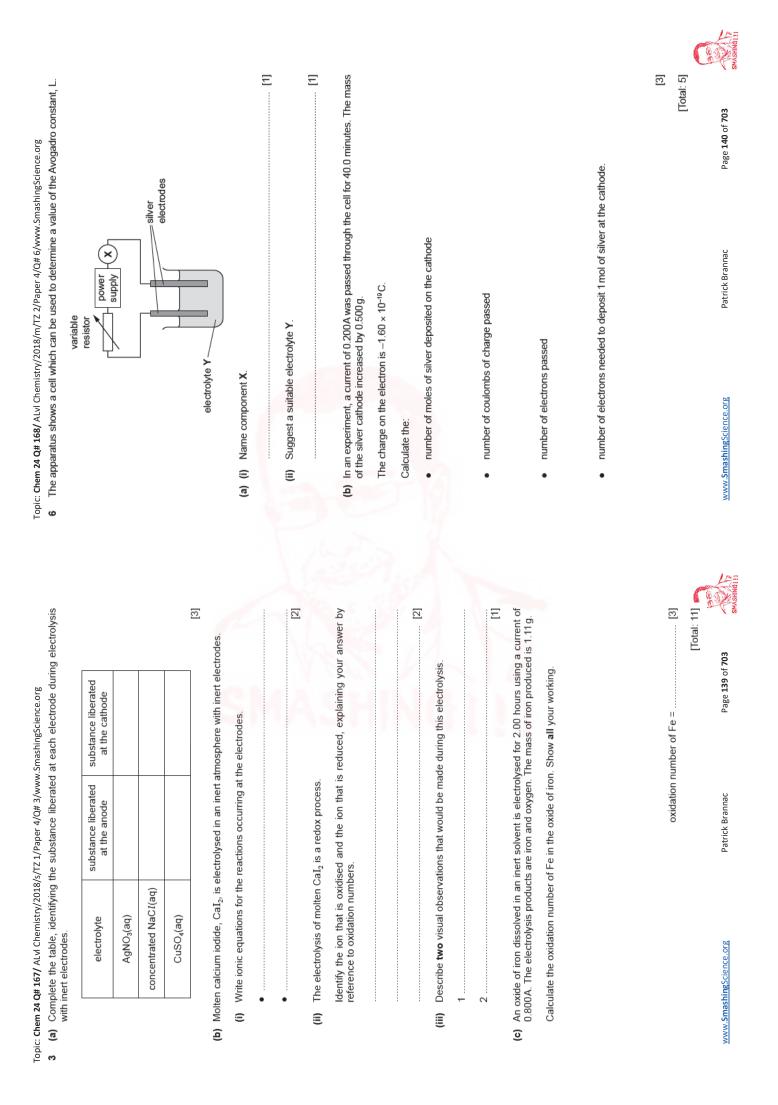
	=		;	[2]
	5			5
:	_		:	
:			:	
:				:
:				
:				:
:				
	1		1	1
:				
:				
:				
:				
:				:
				1
	1		1	1
			:	
:			:	
	1	(
		-		
		-		
:		0		
:		<u> </u>		
		.=		
:		5	:	
		·Ξ		
:		5	:	:
		ĕ		
		33		
		2		
:			:	:
:		Ð		
:		4	:	
		+		
		5		
:		0		
:	:	-	:	:
		s		
		0		
		-		
:		(U)		
:		-		
:	1	5		
		ŭ		
1		Ψ.		
		<u><u> </u></u>		
		co.		
:		č		
:			:	
		.0		
		-=		
:		10	:	:
:		. 2		
:		43		
:		Ĕ		
		÷		
		-		
		e	:	
:		0	:	-
	1			
		D		
		ā		:
:		õ		
		<u> </u>		
		(ii) Deduce the ionic half-equations for the reaction in (b)(i)		
		<u> </u>		

- (c) A lithium-iodine electrochemical cell can be used to generate electricity for a heart pacemaker. The cell consists of a lithium electrode and an inert electrode immersed in body fluids. When current flows lithium is oxidised and iodine is reduced.
- (i) Use the Data Booklet to write half-equations for the reactions taking place at the two electrodes. Hence write the overall equation for when a current flows.
- [2] overall equation
- (ii) Use the *Data Booklet* to calculate the E_{call}^{\bullet} for this cell.

(iii) A current of 2.5×10^{-6} A is drawn from this cell.

Calculate the time taken for 0.10 g of lithium electrode to be used up. Assume the current remains constant throughout this period.

time =s [3]	[Total: 10] Topic: Chem 24 Q# 166/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org (e) In a methanol-oxygen fuel cell, CH ₃ OH(I) and O ₂ (g) are in contact with two inert electrodes immersed in an acidic solution.	The half-equation for the reaction at the methanol electrode is shown. $CH_3OH + H_3O \iff CO_3 + 6H^4 + 6e^ E^{\bullet} = -0.02V$	Use the Data Booklet to write an equation for the overall cell reaction.	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	E = V [1] [Total: 12] [Total: 12]
	opic: Chem 24 (e) In a metl immerse	The half-	(i) Use	(ii) Use	



Patrick Brannac

Page **138** of **703**

Patrick Brannac

Zopic: 0	chem 24 Q# 169/ ALvl a) Describe the trer Explain this trenc	Topic: Chem 24 Q# 169/ ALVI Chemistry/2018/m/TZ 2/Paper 4/Q# 2/www.5mashingScience.org 2 (a) Describe the trend in the reactivity of the halogens CI_{2} , BI_{2} and I_{3} as oxidising agents. Explain this trend using values of $E^{\bullet}(X_{2}/\mathbf{X})$ from the <i>Data Booklet</i> .	ashingScience.org d I ₂ as oxidising agents. oklet.	9	(c) A half-equation involving bromate(V) ions, BrO_{3^-} , and bromide ions is shown $BrO_{3^-}(aq) + 3H_2O(l) + 6e^- \implies Br^-(aq) + 6OH^-(aq) E^{\circ}$	involving bromate(V) ions, BrO_{3^-} , and bromide ions is shov $BrO_3(aq) + 3H_2O(I) + 6e^- \rightleftharpoons Br-(aq) + 6OH-(aq) = 1$	wn. E• = +0.58V
					(i) An alkaline solution of chlorate(I), C1O ⁻ , can be used to oxidise bromide ions to bromate(V) ions.	:IO ⁻ , can be used to oxidise bromide	ions to bromate(V)
					Use the <i>Data Booklet</i> and the half-	Use the <i>Data Booklet</i> and the half-equation shown to write an equation for this reaction.	n for this reaction.
			[2]				
-	(b) (i) Write an equ	Write an equation for the reaction between chlorine and water.	rater.		(ii) Calculate the E_{ea}^{\bullet} for the reaction in (i)	(l).	[1]
	(ii) Use standard electrod the following reaction.	Use standard electrode potential, E° , data from the <i>Data Booklet</i> to calculate the E_{cal}° for the following reaction.	Booklet to calculate the E [*] _{cell} for				
		Cl ₂ + 20H ← Cl- + ClO- + H ₂ O				E⇔ =	[1] V
					(iii) When a concentrated solution of bro form bromine, oxygen and water only.	When a concentrated solution of bromic(V) acid, HBrO ₃ , is warmed, it decomposes to form bromine, oxygen and water only.	, it decomposes to
					Write an equation for this reaction.	Write an equation for this reaction. The use of oxidation numbers may be helpful	be helpful.
		7	Eesa =V [2]				[1]
	(iii) The [OH ⁻] w	The [OH-] was increased and the $E_{ m oel}$ was measured.					[Total: 10]
	Indicate how placing one	Indicate how the value of the E_{coll} measured would compare to the E_{coll}^{o} calculated in (ii) by placing one tick (\checkmark) in the table.	re to the <i>E</i> ^{eel} calculated in (ii) by				
		E_{cell} becomes less positive than E_{cell}^{ullet}					
		E_{cell} stays the same as E_{cell}^{\bullet} .	2				
		$E_{\rm cel}$ becomes more positive than $E_{\rm cel}^{\bullet}$					
	Explain your answer.	r answer.					
			2				
<u></u>	www.SmashingScience.org	「 名	Page 141 of 703	A LINE	www.SmashingScience.org	Patrick Brannac	Page 142 of 703

C TI I DNIIHSYWS

w.SmashingScience.org	(c) Car batteries are made up of rechargeable lead-acid cells. Each cell consists of a negative electrode made of Pb metal and a positive electrode made of PbO_2 . The electrolyte is $H_2SO_4(aq)$.
	When a lead-acid cell is in use, Pb^{24} ions are precipitated out as $PbSO_4(s)$ at the negative electrode.
5	$Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^-$
set-up you could use to measure the (s) electrode. Include the necessary	(i) Calculate the mass of Pb that is converted to PbSO₄ when a current of 0.40A is delivered by the cell for 80 minutes.
	mass of Pb =
	(ii) Complete the half-equation for the reaction taking place at the positive electrode.
	$PbO_2(s) + SO_4^{2-}(aq) + \dots + \dots + PbSO_4(s) + \dots$ [1]
[4]	(d) The diagrams show how the voltage across two different cells changes with time when each cell is used to provide an electric current.
	lead-acid cell H ₂ /O ₂ fuel cell
from its E^{\bullet} value if the concentration of a tick (\checkmark) in the appropriate box in the	voltage /V
less negative	time/hours
	Suggest a reason why
	 the voltage of the lead-acid cell changes after several hours,
[2]	 the voltage of the fuel cell remains constant.
	[2]
	[Total: 13]
Page 143 of 703	www.SmashingScience.org Patrick Brannac Page 144 of 703 SwAshind11

Topic: Chem 24 Q# 170/ ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.o 3 (a) Define the term *standard cell potential*.

(b) (i) Draw a fully labelled diagram of the experimental set-up you could use to measure the standard electrode potential of the Pb²⁺(aq)/Pb(s) electrode. Include the necessan chemicals.

(ii) The E^{\bullet} for a Pb²⁺(aq)/Pb(s) electrode is -0.13V.

Suggest how the *E* for this electrode would differ from its E^{\bullet} value if the concentration of Pb²⁴(aq) ions is reduced. Indicate this by placing a tick (\checkmark) in the appropriate box in the table.

0		
less negative		
no change		
more negative	Explain your answer.	
	Explain	

Patrick Brannac

					5	C Province
ncentration of Ni ²⁴ (aq) is	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]			[Total: 8] [Total: 8]	ith oxidation states +2 and +3.	Page 146 of 703
The E ⁴ of Ni ²⁴ (aq)/Ni(s) is –0.25V. State and explain how the electrode potential changes if the concentration of Ni ²⁴ (aq) is decreased	The E° of $Cr^{3*}(aq)/Cr^{2*}(aq)$ is -0.41 V. Calculate the electrode potential when $[Cr^{3*}(aq)]$ is 0.60 moldm^3 and $[Cr^{2*}(aq)]$ 0.15 moldm^3 . Use the Nermst equation.	$E = E^{\circ} + \frac{0.059}{z} \log \frac{[\text{oxidised species}]}{[\text{reduced species}]}$		E = . //2016/w/TZ 1/Paper 4/Q# 4/www.	 (a) Cobalt is a transition element that forms complex ions with oxidation states +2 and +3. (c) Define the term standard electrode potential. 	Patrick Brannac
(c) (i) The E ⁴ of Ni ²⁴ (aq)/Ni(s) is -0.25V. State and explain how the electron decreased	 (ii) The E^a of Cr³⁺(aq)/Cr²⁺(aq) is -0.41V. Calculate the electrode potential w 0.15 moldm⁻³. Use the Nermst equation 	E = E° + -		E =	 4 (a) Cobalt is a transition element that forms com (c) Define the term <i>standard electrode potential</i> 	www.SmashingScience.org
						C C C C C C C C C C C C C C C C C C C
g al, E°, of			Ē	[1] u(s)	e	V [1]
.SmashingScience.or Ird electrode potenti	— <u> </u>	S		nnected to a Cu²+(aq)/C	cells are connected by a w	Page 145
2/Paper 4/Q# 3/www.SmashingScience.or o measure the standard electrode potenti				e external circuit. aq) half-cell was connected to <mark>a Cu²⁺(aq)/C</mark>	when these two half-cells are connected by a w	E₀a =
Topic: Chem 24 Q# 171/ ALvI Chemistry/2017/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org 3 (a) The diagram shows the apparatus used to measure the standard electrode potential, <i>E</i> ^a , of Fe ³⁺ (aq)/Fe ²⁺ (aq).		Identify what the letters A to F represent.	 C F C Label the diagram to show • which is the positive electrode, 	 the direction of electron flow in the external circuit. Use the <i>Data Booklet</i> to help you. [1] In another experiment, an Fe³⁴(aq)/Fe²⁴(aq) half-cell was connected to a Cu²⁴(aq)/Cu(s) half-cell. 	Determine the standard cell potential, E_{eat}^{\bullet} when these two half-cells are connected by a wire and the circuit is completed. Use the <i>Data Booklet</i> to help you.	F ₀∎ =

trochemical cell was set up to measure the standard electrode potential, $E^{ullet}_{ ext{cell}}$ of a cell	f a Co ²⁺ /Co half-cell and a Fe ³⁺ /Fe ²⁺ half-cell.
(d) An electrochemi	made of a Co ²⁺ /
۳	

Complete the table with the substance used to make the electrode in each of these half-cells. Ξ

		half-cell	electrode	
		Co ²⁺ /Co		
		Fe ³⁺ /Fe ²⁺		
(ii)		Write the equation for the overall cell reaction.	l cell reaction.	[1]
				[1]
(Use the Data Booklet to calculate the $E^{ullet}_{ ext{call}}$	e the $E^{ullet}_{ ext{call.}}$	
			Ē	E ^e _{cel} =
Th 0.0	The electrochemica 0.050 mol dm ⁻³ .	l cell in (d) was se	The electrochemical cell in (d) was set up again but this time the concentration of Co^{2*} (aq) was 0.050 moldm ⁻³ .	oncentration of Co ²⁺ (aq) was
ЧЦ Ö	The Nernst equation concentrations.	n can be used to	The Nernst equation can be used to calculate the value of an electrode potential at different concentrations.	ectrode potential at different
		E=E• + ($E = E^{\bullet} + (0.059/z) \log [Co^{2+}(aq)]$	Nernst equation
(i)		Use the <i>Data Booklet</i> and the Ne Co ²⁴ /Co half-cell in this experiment.	Use the <i>Data Booklet</i> and the Nernst equation to calculate the value of E for the Co ²⁴ /Co half-cell in this experiment.	ate the value of E for the

(e)

- - Ξ

[1] V . E for Co²⁺/Co = .

Suggest how this change will affect the overall cell potential, E_{cell} , compared to E_{cell}^{\bullet} in (d)(iii). Circle your answer. ≣

more positive no change less positive

Ξ

(f) Iron(III) ions can oxidise vanadium metal.

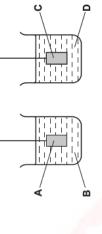
Construct an equation for the reaction of an excess of iron(III) ions with vanadium metal. Use of the Data Booklet will be helpful.

[2]

[Total: 14]

Page 147 of 703

Patrick Brannac


www.SmashingScience.org

www.SmashingScience.org

Patrick Brannac

Topic: Chem 24 Q# 173/ ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org **4** (a) (i) Define the term standard cell potential, E_{cold}^{\bullet} Ξ

The following incomplete diagram shows the apparatus that can be used to measure the E_{cal}^{\bullet} for a cell composed of the Fe³⁺/Fe²⁺ and Ag⁺/Ag half-cells.

(ii) Complete the diagram, labelling the components you add.

Ξ

(iii) Identify the components A-D.

υ ∢ m ۵ (i) Use E° values to write an equation for the cell reaction that takes place if the two electrodes in (a) are connected by a wire and the circuit is completed. (q)

3

Ξ

Another electrochemical cell was set up using 0.31 moldm⁻³ Agr(aq) instead of the standard Ag solution. 1

Use the Nernst equation, $E = E^{\circ} + 0.059 \log[Ag^{+}(aq)]$, and the relevant E° values to calculate the new E_{cell} in this experiment.

i steel box with	2g of chromium		[] [] [] [] [] [] [] [] [] [] [] [] [] [ctrode potential, E^{\bullet} , of			[4] e a standard electrode	[1]	E	Page 150 of 703
The student used an acidified solution of $Cr_2O_{\gamma}^2$ -(aq) to electroplate a steel box with chromium metal.	Calculate how long it would take for a current of 0.125A to deposit 0.0312g of chromium metal.		time = [opic: Chem 24 Q# 175/ Alvi Chemistry/2015/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	etailic element. Draw a fully labelled diagram to show how the standard electrode potential, E^{\bullet} , of $X^{2*}(aq)/X(s)$ could be measured.			[4] What are the conditions needed for the value measured to be a standard electrode potential?		back the claringe carriers that transfer current unrough the solutions,	Patrick Brannac
(d) The student used an acidified chromium metal.	Calculate how long it would ta metal.		Topic: Chem 24 Q# 175/ ALvl Chemistry/	 A is a metallic element. (a) (i) Draw a fully labelled diagram to X²⁺(aq)/X(s) could be measured. 			(ii) What are the condition potential?		the solutions,	www.SmashingScience.org
		Ξ	1	ide	5		:			III IBNIISSANS
.SmashingScience.org	reaction 2 $Cr_2O_7^{2-}(aq)$ H ₃ O ⁺ (aq) $H_3O^{+}(aq)$ CrO ₄ ²⁻ (aq)	any out reaction 1. ting the E _{cat}		using acidified hydrogen perox is feasible.						Page 149 of 703
//2016/m/TZ 2/Paper 4/Q# 5/www. ons are shown below.	- [Cr(H ₂ O) ₆] ³⁺ (aq) —	Use the <i>Data Booklet</i> to suggest a suitable metal to carry out reaction 1. Use E^{\bullet} values to explain your answer to (i) by calculating the E_{oot}^{\bullet}		(b) A student suggested that reaction 2 could be carried out using acidified hydrogen peroxide solution. Use the Data Booklet to show whether or not this reaction is feasible.		Explain using oxidation numbers whether or not reaction 3 is a redox reaction.				Patrick Brannac
Topic: Chem 24 Q# 174/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org 5 Some reactions of chromium ions are shown below.	[Cr(H₂O) ₆] ²⁺ (aq)	 (a) (i) Use the Data Booklet (ii) Use E[*] values to expl 		(b) A student suggested that solution. Use the Data Booklet to sl		(c) Explain using oxidation nu				www. Smashing Science.org

stant.	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	atm, was collected at the anode.	mol ⁻¹ [4] [Total: 15]	111 BUHSEWS
Topic: Chem 24 Q# 176/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org (e) (i) State the relationship between the Faraday constant and the Avogadro constant.	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	found that 130 cm ³ of oxygen, measured at 25 °C and 1 atm, was collected at the anode. The following reaction takes place. $2H_2O(I) \rightarrow 4H'(aq) + O_2(g) + 4e^-$ Use these data and data from the <i>Data Booklet</i> to calculate a value for the Avogadro constant, L, by calculating the number of moles of oxygen produced, the number of moles of electrons needed for this, the number of electrons passed, the number of electrons in one mole of electrons (L).	L = Patrick Brannac	
Topic: Chem 24 Q# 176/ ALVI (e) (i) State the relation	(ii) When a current		<u>www.</u> SmashingScience.org	
(s) half-cell ($E^{\circ} = -0.40$ V) and	the electrodes of this cell were	t to this question. A _f = X is[4]	Page 151 of 703	SMASHING I
(b) An electrochemical cell was set up consisting of an X^{2*} (aq)/X(s) half-cell ($E^{\circ} = -0.40$ V) and an Ag ⁺ (aq)/Ag(s) half-cell ($E^{\circ} = +0.80$ V).	Write an equation for the reaction that would take place if the electrodes of this cell were connected by a wire.	When the current was allowed to pass for a period of time, the Ag electrode gained 1.30g in mass, the electrode made of metal X, hence suggest an identity for X. Show all your working. Use of the Data Booklef is relevant to this question. X is:	Patrick Brannac	
(b) An electrochemical cell w an Ag⁺(aq)/Ag(s) half-cell	 (i) Write an equation for connected by a wire. 	 When the current was allowed to pass for a the Ag electrode gained 1.30g in mass, the electrode made of metal X lost 0.67 (ii) Calculate the A, of metal X; hence sugg Show all your working. Use of the Data 	www.5mashingScience.org	

Topic: Chem 24 Q# 178 / ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) (i) Use E° values from the <i>Data Booklet</i> to predict the relative oxidising abilities of fluorine and chlorine.		 [ii] Predict the <i>type of reaction</i> that would occur between the interhalogen compound chlorine fluoride, C<i>t</i>F, and potassium bromide solution. 	(iii) Construct an equation for this reaction.	Topic: Chem 24 Q# 179/ Alvl Chemistry/2014/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org (b) The following diagram shows the apparatus used to measure the standard electrode potential, E^{*} , of a cell composed of a Cu(\mathbb{H})/Cu electrode and an Fe(\mathbb{H})/Fe electrode.	(i) Finish the diagram by adding components to show the complete circuit. Label the components you add.				(ii) In the spaces below, identify or describe what the four letters A-D represent.	A C	www.SmashingScience.org Patrick Brannac Page 154 of 703
d solution			stating	[1] tions?	[1]	0₄(aq)			[2]	E	C
m 24 Q# 177/ ALV Chemistry/2015/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org Silver sulfate, Ag_2SO_4 , is sparingly soluble in water. The concentration of its saturated solution is 2.5×10^{-2} mol dm ⁻³ at 298 K. electrochemical cell is set up as follows.		Ag Ag_SO4(aq)	Use the <i>Data Booklet</i> to calculate the value of E_{cold}^{\bullet} under standard conditions, stating which electrode is the positive one.	E_{cold}^{\bullet} =		How would the E_{cel} of the above cell change, if at all, if a few cm ³ of concentrated Na ₂ SO ₄ (aq) were added to					c Page 153 of 703
//2015/s/TZ 1/Paper 4/Q# 4, sparingly soluble in water 98 K. : up as follows.	۵		o calculate the value of sitive one.	E°e∎ = pc ial E _{eel} of the above cell compar sr.		above cell change, if at all	the beaker containing $Fe^{3*}(aq) + Fe^{2*}(aq)$,	ig Ag₂SO₄(aq)?	^{Cell} you have stated in (iii		Patrick Brannac
 Topic: Chem 24 Q# 177/ ALV Chemistry/2015/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Silver sulfate, Ag₂SO₄, is sparingly soluble in water. The concentration of its is 2.5 × 10⁻² moldm⁻³ at 298 K. (c) An electrochemical cell is set up as follows. 		Pt Fe ₂ (SO ₄) ₃ (aq) + FeSO ₄ (aq)	(i) Use the Data Booklet to calculate which electrode is the positive one.	Eeal = ceal = (ii) How would the actual Eee Explain your answer.		(iii) How would the E _{oell} of the were added to	the beaker containin	- the beaker containing $Ag_2SO_4(aq)?$	(iv) Explain any changes in E_{eal} you have stated in (iii)		www.SmashingScience.org

CE VIEW

0	(iii) Use the Data Booklet to calculate the E^{\bullet} for this cell.	Topic: Chem 24 Q# 181/ ALvI Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org
		2 (a) The diagram below shows an incomplete experimental set-up needed to measure the E_{eal} of a cell composed of the standard Cu ²⁴ /Cu electrode and an Ag ⁺ /Ag electrode.
J	(iv) Predict how the size of the overall cell potential would change, if at all, as the concentration of solution C is increased. Explain your reasoning.	
Topic:	[8] Topic: Chem 24 Q# 180/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	copper electrode B electrode electrode B
(a	(a) What is meant by the term standard electrode potential, SEP?	solution A solid AgC 1 of AgCI
		(i) State the chemical composition of
		solution A,
(F	(b) Draw a fully labelled diagram of the apparatus you could use to measure the SEP of the Fe ³⁺ /Fe ²⁺ electrode.	electrode B.
		(ii) Complete the diagram to show the whole experimental set-up. [4]
		(b) The above cell is not under standard conditions, because the [Agr] in a saturated solution of AgC <i>l</i> is much less than 1.0 mol dm ⁻³ . The $E_{\text{electrode}}$ is related to [Agr] by the following equation.
		equation 1 $E_{\text{electrode}} = E_{\text{electrode}}^{\text{electrode}} + 0.06 \log[Ag^{+}]$
		(i) Use the <i>Data Booklet</i> to calculate the E_{eel}^{\bullet} if the cell was operating under standard conditions.
	[2]	
) (c	(c) The reaction between Fe ³⁺ ions and I ⁻ ions is an equilibrium reaction.	$E_{cell}^{\circ} = \dots \setminus V$
	$2Fe^{3+}(aq) + 2I-(aq) \iff 2Fe^{2+}(aq) + I_2(aq)$	In the above experiment, the E_{cont} was intersured at +0.17 v. (ii) Calculate the value of E_{cont} for the $\Delta \alpha^2/\Delta \alpha$ electrode in this experiment
	(i) Use the <i>Data Booklet</i> to calculate the E_{coll}^{\bullet} for this reaction.	
	(ii) Hence state, with a reason, whether there will be more products or more reactants at equilibrium.	(iii) Use equation 1 to calculate [Ag*] in the saturated solution.
		[Ag ⁺] = moldm ⁻³
>	www.SmashingScience.org Patrick Brannac Page 155 of 703 SMASHING111	www.5mashingScience.org Patrick Brannac Page 156 of 703 Swishing11

	(vi) Calculate the mass of copper that could still be dissolved by 100 cm ³ of the partially-used-up solution.	mass of copper =	[6] (d) Calcium forms three calcium silicides, Ca₂Si, CaSi and CaSi₂. The first of these reacts with water as follows		which element(s) have been oxidised, which element(s) have been reduced.	Total: 141	Topic: Chem 24 Q# 183/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 3/www.5mashingScience.org (c) Heating a solution containing potassium ethanedioate, iron(II) ethanedioate and hydrogen peroxide produces the light green complex $K_3Fe(C_2O_4)_3$, which contains the ion $[Fe(C_2O_4)_3]^3$ The structure of the ethanedioate ion is as follows.		(i) Calculate the oxidation number of carbon in this ion	
K _{sp} =	saturated solution of Ag ₂ SO ₄ is 1.6×10^{-2} mol dm ⁻³ . (ii) Calculate the value of K _{sp} of silver sulfate.	Topic: Chem 24 Q# 182/ ALVI Chemistry/2012/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) Iron(III) chloride, FeCI ₃ , is used to dissolve unwanted copper from printed circuit boards (PCBs) by the following reaction.	$2\text{FeC}l_3(\text{aq}) + \text{Cu}(\text{s}) \rightarrow 2\text{FeC}l_2(\text{aq}) + \text{Cu}Cl_2(\text{aq})$ A solution in which $[\text{Fe}^{3+}(\text{aq})]$ was originally equal to 1.50 mol dm ⁻³ was re-used several times to dissolve copper from the PCBs, and was then titrated as follows.	A 2.50 cm ³ sample of the partially-used-up solution was acidified and titrated with 0.0200 moldm ⁻³ KMnO ₄ . This oxidised any Fec l_2 in the solution back to Fec l_3 . It was found that 15.0 cm ³ of KMnO ₄ (aq) was required to reach the end point.	(i) Construct an ionic equation for the reaction between Fe^{24} and MnO_4^- in acid solution.	(ii) State here the Fe ²⁺ : MnO ₄ - ratio from your equation in (i).	(iii) Calculate the number of moles of MnO ₄ ⁻ used in the titration.	(iv) Calculate the number of moles of Fe^{2*} in 2.50 cm ³ of the partially-used-up solution.		

(v) Calculate the [Fe²⁺] in the partially-used-up solution.

(c) (i) Write an expression for K_{sp} of silver sulfate, Ag_2SO_{4i} including units.

www.SmashingScience.org

Page **157** of **703**

Patrick Brannac

www.SmashingScience.org

111 BNIHSYMS

Page **158** of **703**

Patrick Brannac

(vi) Suggest why the blue colour of the electrolyte slowly fades as the electrolysis proceeds.		[7] Most of the current passed through the cell is used to dissolve the copper at the anode and precipitate pure copper onto the cathode. However, a small proportion of it is 'wasted' in dissolving the impurities at the anode which then remain in solution. When a current of 20.0A was passed through the cell for 10.0 hours, it was found that 225g of pure copper was deposited on the cathode.	(i) Calculate the following, using appropriate data from the Data Booklet.	number of moles of copper produced at the cathode	Inumber of moles of electrons needed to produce this copper	number of moles of electrons that passed through the cell		(ii) Hence calculate the percentage of the current through the cell that has been wasted' in dissolving the impurities at the anode.	[4] (c) Nickel often occurs in ores along with iron. After the initial reduction of the ore with coke, a nickel-iron alloy is formed. Use data from the <i>Data Booklet</i> to explain why nickel can be purified by a similar	electrolysis technique to that used for copper, using an impure nickel anode, a pure nickel cathode, and nickel sulfate as the electrolyte. Explain what would happen to the iron during this process.		[2] [2] [2] [2] [2] [2] [2] [2] [2] [2]
(iv) In sunlight the complex decomposes into potassium ethanedioate, iron(II) ethanedioate and carbon dioxide.	Use oxidation numbers to help you balance the following equation for this decomposition.	K ₃ Fe(C ₂ O ₄) ₃ →K ₂ C ₂ O ₄ +FeC ₂ O ₄ +CO ₂ [Total: 14] Topic: Chem 24 Q# 184 / ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 3/www.5mashingScience.org 3 The electrolytic purification of copper can be carried out in an apparatus similar to the one shown below.		impure copper anode anode 'sludge' CuSO ₄ (aq)		The impure copper anode contains small quantities of metallic nickel, zinc and silver, together with inert oxides and carbon resulting from the initial reduction of the copper ore with coke. The copper goes into solution at the anode, but the silver remains as the metal and falls to the bottom as part of the anode 'sludge'. The zinc also dissolves.	(a) (i) Write a half equation including state symbols for the reaction of copper at the anode.	(ii) Use data from the <i>Data Booklet</i> to explain why silver remains as the metal.	(iii) Use data from the Data Booklet to predict what happens to the nickel at the anode.	(iv) Write a half equation including state symbols for the main reaction at the cathode.	(v) Use data from the <i>Data Booklet</i> to explain why zinc is not deposited on the cathode.	www.SmashingScience.org Patrick Brannac Page 159 of 703

 Topic: Chem 24 Q# 186/ ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org Although standard electrode potentials are measured for solutions where the concentrations of ions are 1.0 moldm⁻³, cells used as sources of battery power tend to operate with more concentrated solutions. This question concerns the electrode reactions involved in the hydrogen-oxygen fuel cell and the lead-acid car battery. (a) In the hydrogen-oxygen fuel cell, H₂(g) and O₂(g) are fed onto two inert electrodes dipping into NaOH(aq). 	hydrogen	NaOH(aq)	The following reactions take place. left hand electrode (cathode): $H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(I) + 2e^-$ right hand electrode (anode): $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$	 (i) Use the <i>Data Booklet</i> to calculate E^e_{cell} for this reaction. (ii) Construct an equation for the overall reaction. 	 (iii) By using one of the phrases more positive, more negative or no change, deduce the effect of increasing [OH-(aq)] on the electrode potential of the left hand electrode 	 the right hand electrode (iv) Hence deduce whether the overall E_{ell} is likely to <i>increase</i>, <i>decrease</i> or <i>remain the same</i>, when [OH⁻(aq)] increases. Explain your answer. 	 (v) Suggest one other reason why a high [NaOH(aq)] is used in the fuel cell. [6] www.SmashingScience.org Page 162 of 703 	
ience.org luct is SCt ₂ (Ct-S-Ct). yellow precipitate of ind compound B .	the reaction of SCI ₂		is added to separate	[7] [Total: 11]			Page 161 of 703	Li Lander Smarth
Topic: Chem 24 Q# 185/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) When sulfur is heated under pressure with chlorine, the major product is SCt ₂ (Ct-S-Ct). $S_8(g) + 8Ct_2(g) \rightarrow 8SCt_2(g)$ (c) Under suitable conditions, SCt ₂ reacts with water to produce a yellow precipitate of sulfur and a solution A. Solution A contains a mixture of SO ₂ (aq) and compound B. (i) What is the oxidation number of sulfur in SCt ₂ ?	Work out how the oxidation number of sulfur changes during the reaction of SCl_2 with water.	Suggest the identity of compound B	What would you observe when each of the following reagents is added to separate samples of solution A? AgNO ₃ (aq).				Patrick Brannac	
Topic: Chem 24 Q# 185/ ALvl Chemistry (b) When sulfur is heated un S (c) Under suitable condition sulfur and a solution A. S (i) What is the oxidatior	(ii) Work out how the or with water.	(iii) Suggest the identity of compound B(iv) Construct an equation for the reaction	 (v) What would you observ samples of solution A? AgNO₃(aq) 	K2Uf2U7(aq)			www.SmashingScience.org	

ul (q)	(b) In the cells of a lead-acid car battery the following reactions take place. $c_{athorbe}$. $D_{h(s)} \rightarrow D_{h^{2+}(a(s))} + 2e^{-1}$	the following reactions ta + 2e ⁻	ake place.		Topic: Chem 24 Q# 187/ ALvl Chemistry/2009/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (d) Tin forms an oxide, A , that contains the metal in both oxidation states II and IV. The formula of A can be found by the following method.	ence.org I and IV. The
		+ 2e ⁻ \rightarrow Pb ²⁺ (aq) + 2H ₂ O(I)	2H ₂ O(I)		 A sample of A was dissolved in H₂SO₄(aq), producing solution B, which was a mixture of tin(II) sulfate and tin(IV) sulfate. 	ch was a mixture
(i)	Use the Data Booklet to calculate E^{Φ}_{cell} for this reaction.	te E_{cell}^{Φ} for this reaction.			 A 25.0 cm³ sample of solution B was titrated with 0.0200 mol dm⁻³ KMnO₄. 13.5 cm³ of KMnO₄ was required to reach the end-point. 	-₀-
(ii)	Construct an equation for the overall reaction.	erall reaction.		1	• Another 25.0 cm ³ sample of solution B was stirred with an excess of powdered zinc. This converted all the tin into tin(<u>II</u>). The excess of zinc powder was filtered off and the filtrate was titrated with 0.0200 mol dm ⁻³ KMnO ₄ , as before. This time 20.3 cm ³ of KMnO ₄ was required to reach the end-point.	ss of powdered r was filtered off
hT ng	The electrolyte in a lead-acid cell is $H_2SO_4(aq)$. Most of the $Pb^{2+}(aq)$ ion produced at the electrodes are precipitated as the highly insoluble $PbSO_4(s)$.	s H ₂ SO ₄ (aq). Most of th pitated as the highly insol	ie Pb ²⁺ (aq) ions that <mark>are</mark> luble PbSO ₄ (s).	are	CD (D)	
(III)	Construct an equation for the overall cell reaction in the presence of	erall cell reaction in the p	presence of H ₂ SO ₄ .		 (i) Write a balanced equation for the reaction between Zn and Sn⁴⁺. 	
(iv)	By considering the effect of decreasing [Pb ²⁺ (aq)] on the electrode potentials of the cathode and the anode, deduce the effect of the presence of $H_2SO_4(aq)$ in the electrolyte on the overall E_{call} .	luce the effect of the presence of comparisons of the presence	he electrode potentials sence of H ₂ SO ₄ (aq) in t	of	 (ii) Use the <i>Data Booklet</i> to calculate the <i>E^e</i> values for the reactions between Zn and Sn⁴⁺, MnO₇ and Sn²⁺ 	stween
	overall E _{cell} will	ase, decrease of remain	ure saure.		(iii) Use the results of the two titrations to calculate	
	Explain your answer.				 the number of moles of Sn²⁺ in the first titration sample, 	
				2	 the number of moles of Sn²⁺ in the second titration sample. 	
			[Total: 11]	11]	(iv) The the results of volum calculation in (iii) to deduce the $\mathrm{Sn}^2^+/\mathrm{Sn}^4$ ratio in the ovide	atio in the oxide
						8
N.M.N	www.SmashingScience.org	Patrick Brannac	Page 163 of 703	TI DUMESTORS	www.SmashingScience.org	Page 164 of 703

A major use of tin is to make 'tin plate', which is composed of thin sheets of mild steel electroplated with tin, for use in the manufacture of food and drinks cans. A tin coating of 1.0×10^{-5} m thickness is often used.	Topic: Chem 25 Q# 189/ ALVI Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 2-Chloropropanoic acid, CH ₃ CHC1COOH, is used in many chemical syntheses. 1-1 /ii An activity in is set to when CH CHC1COOH is added to water
Calculate the volume of tin needed to coat a sheet of steel 1.0 m $ imes$ 1.0 m to this thickness, on one side only.	
Calculate the number of moles of tin that this volume represents. [The density of tin is 7.3 g cm ⁻³ .]	(ii) 0.150 mol of CH ₃ CHCtCOOH dissolves in 250 cm ³ of distilled water to produce a solution of pH 1.51. Calculate the pK _a of CH ₃ CHCtCOOH.
The solution used for electroplating contains Sn^{2+} ions. Calculate the quantity of electricity in coulombs needed to deposit the amount of tin you calculated in (ii).	pK _a =[2] (iii) An equal concentration of aqueous propanoic acid has pH 2.55.
[F]	Explain the difference in the pH of solutions of equal concentration of CH ₃ CHCICOOH and propanoic acid.
Topic: Chem 25 Q# 188/ ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org (c) A student studies the reaction of $CH_3CHOCOOH$ with aqueous NH_3 to determine the reaction	
mechanism. The student finds that when CH ₃ CHC <i>i</i> COOH and NH ₃ are added in a 1:1 stoichiometric ratio, the conjugate acid and base of the reactants are quickly formed.	Topic: Chem 25 Q# 190/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (e) An orange precipitate of HgI ₂ forms when Hg ²⁺ ions are added to KI(aq). The solubility of HgI ₂ at 25°C is 1.00 × 10 ⁻⁷ g dm ⁻³ .
reaction 1 CH ₃ CHC/COOH + NH ₃ → CH ₃ CHC/COO ⁻ + NH ₄ ⁺	Calculate the solubility product, \mathcal{K}_{sp} , of HgI_2. Include units in your answer.
Identity the conjugate acid-base pairs in reaction 1. conjugate acid-base pair I	[<i>M</i> ⁻ HgI ₂ , 454.4]
conjugate acid-base pair II	
	value of K_{s} =
	units =
www.SmashingScience.org Patrick Brannac Page 165 of 703	www.SmashingScience.org Patrick Brannac Page 166 of 703 Amanual

(ii) Write a mathematical expression to describe the relationship between K_a and pK_a .	 (iii) Calculate [H*] in solutions Y and Z. [H*] =	(iv) Calculate the ratio $\frac{[HC7]}{[C1(CH_2)_3CO_2H]}$ dissolved in solution Z.	$\frac{[HCI] \text{ dissolved in solution Y}}{[CI(CH_2)_3CO_2H] \text{ dissolved in solution Z}} = \frac{[2]}{[CI(CH_2)_3CO_2H] \text{ dissolved in solution Z}}$	(b) A buffer solution of pH 5.00 is produced by adding sodium propanoate to 5.00 g of propanoic acid in 100 cm ³ of distilled water. Calculate the mass of sodium propanoate that must be used to produce this buffer solution. The K _a of propanoic acid is 1.35 × 10 ⁻⁵ moldm ³ .	[<i>M</i> ; propanoic acid, 74.0; sodium propanoate, 96.0]		 [3] mass of sodium propanoate =	Explain this observation.	Www.SmashingScience.org Patrick Brannac Page 168 of 703
hingScience.org 1 states.	, and water. xtract the I ₂ . is solution containing I ₂ until no ^{per} is 93.8.	Ба Ба		layer =		ww.SmashingScience.org Z is aqueous 4-chlorobutanoic acid.		[1]	Page 167 of 703
Topic: Chem 25 Q# 191/ ALvI Chemistry/2022/m/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 lodine is found naturally in compounds in many different oxidation states.	lodide ions, I ⁻ , react with acidified H ₂ O ₂ (aq) to form iodine, I ₂ , and water. This reaction mixture is shaken with cyclohexane, C ₆ H ₁₂ , to extract the I ₂ . Cyclohexane is immiscible with water. If 15.0 cm ³ of C ₆ H ₁₂ is shaken with 20.0 cm ³ of an aqueous solution containing I ₂ until no further change is seen. It is found that 0.3900 of I ₂ is extracted into the C ₆ H ₁₂ . The partition coefficient of I ₂ between C ₆ H ₁₂ and water, K _{pc} , is 93.8.	Calculate the mass of I_2 that remains in the aqueous layer. Show your working.		mass of I_2 in aqueous layer =		Topic: Chem 25 Q# 192/ ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 Solution Y is hvdrochloric acid. HC1(aq). Solution Z is aqueous 4-chl	$C1(CH_2)_3CO_2H(aq)$. The pK _a of $C1(CH_2)_3CO_2H(aq)$ is 4.52. The pH of both solutions is 4.00. (a) (i) Write an expression for the K _a of $C1(CH_2)_3CO_2H(aq)$.		Patrick Brannac
Topic: Chem 25 Q# 191/ ALvi Chemistr 1 lodine is found naturally in cc	 (a) lodide ions, I⁻, react with acidified H₂C This reaction mixture is shaken with cy Cyclohexane is immiscible with water. (ii) 15.0 cm³ of C₆H₁₂ is shaken with further change is seen. ti s found that 0.390 of I₂ is extr The partition coefficient of I₂ betw 	Calculate the mass Show your working.		(iii) Suggest how the val compares to the valu Explain your answer.		Topic: Chem 25 Q# 192/ ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 2/w 2 Solution Y is hvdrochloric acid. HCf(aq). Solution		$K_a =$	www.SmashingScience.org

Topic: Chem 25 Q# 194/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 8/www.5mashingScience.org (b) An impure sample of ammonium vanadate(V), NH ₄ VO ₃ , with mass 0.150g, is dissolved in an excess of dilute acid.	In this solution all vanadium is present as VO ₂ ⁺ ions. An excess of zinc powder is added to the solution and all the VO ₂ ⁺ ions are reduced to V ²⁺ ions. The mixture is filtered to remove any remaining zinc powder.	$VO_2^* + 4H^* + 3e^- \rightarrow V^{2*} + 2H_2O$ When the resulting solution is titrated, 20.10 cm ³ of 0.0250 moldm ⁻³ acidified MnO ₄ ⁻ oxidises all V ²⁺ ions back to VO_2^* ions.	MnO4 ⁻ + 8H ⁺ + 5e ⁻ 귿 Mn ²⁺ + 4H ₂ O	Calculate the percentage by mass of NH ₄ VO ₃ in the 0.150g impure sample of NH ₄ VO ₃ . Give your answer to three significant figures. [<i>M</i> ⁺ NH ₄ VO ₃ , 116.9]			 percentage by mass of NH₄VO₃ =	(ii) Calculate the solubility, in moldm ⁻³ , of Ca(OH) ₂ . [K _{sp} : Ca(OH) ₂ , 5.02 × 10 ⁻⁸ mol ³ dm ⁻⁹]
Topic: Chem 25 Q# 193/ ALM Chemistry/2021/s/T21/Paper 4/Q# 8/www.SmashingScience.org 8 (a) The sketch graph for the titration of ethanoic acid, CH_3CO_2H , with sodium hydroxide is shown.	12- 10- equivalence point	PH 6	2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	volume of sodium hydroxide/cm ³ (i) In the region circled on the graph, identify the two organic species that are present in the solution. Explain why the pH of the mixture only changes slowly and gradually in this region when sodium hydroxide is being added.	two species present	(ii) The equivalence point in this acid-base titration is where the two solutions have been mixed in exactly equal molar proportion.	Suggest why the pH is greater than 7 at the equivalence point in this titration.	

Page **169** of **703**

Page **170** of **703**

Patrick Brannac

(iii)	Suggest how the solubility of $Ca(OH)_2$ in aqueous NaOH compares to its solubility in water.	Topic: Chem 25 Q# 197/ ALvI Chemistry/2021/m/TT2 2/Paper 4/Q# 3/www.SmashingScience.org lodates are compounds that contain the IO_3^- anion.
	Explain your reasoning.	(a) The IO ₃ ⁻ anion is shown.
	E	 Control of the solution of the so
Topic: Chem 25 Q# 19 (f) The weak aci experiments.	36/ ALM Chemistry/2021/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org ACES is a compound that can be used to make a buffer solution for electrophores ACES	The solubility product, K_{sp} , of Pb(IO ₃) ₂ is 3.69 × 10 ⁻¹³ mol ³ dm ⁻⁹ at 25 °C. (i) Write an expression for the solubility product of Pb(IO ₃) ₂ .
		K _p =
The an A buffe	The anion of the sodium salt of ACES, C₄H ₉ N ₂ O₄SNa, is a strong base. A buffer solution is prepared by the following steps.	(ii) Calculate the solubility, in moldm ⁻³ , of Pb(IO_3) ₂ at 25 °C.
np 17 50 31	3.50 of C ₄ H ₉ N ₂ O ₄ SNa is dissolved in 100 cm ³ of distilled water. 50.0 cm ³ of 0.200 moldm ⁻³ dilute hydrochloric acid is added to the solution. The resulting mixture is transferred to a 250.0 cm ³ volumetric flask, and the solution made up to the mark.	
C4H9N2	C ₄ H ₆ N ₂ O ₄ SNa reacts with HC <i>l</i> with a 1:1 stoichiometry.	
The p/	The pK _a of ACES is 6.88 at 298K.	101 Fronte Long
Calcul	Calculate the pH of the buffer solution formed at 298 K.	[7] - 111010111
[M ⁺ . C	[M ⁻ : C₄H ₈ N ₂ O₄SNa, 204.1]	

www.SmashingScience.org

Patrick Brannac

[4] Page **171** of **703**

pH =

www.SmashingScience.org

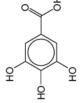
Patrick Brannac

Topic: Chem 25 Q# 198/ ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (i) Give the mathematical expression for each of the terms pH and K_w . $pH = \dots K_w = \dots K_w$	Topic: Chem 25 Q# 199 / ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 (a) Explain what is meant by the term <i>buffer solution</i> .
[2] [2] Calculate the pH of 0.027 moldm ⁻³ NaOH(aq).	
[1]	(b) (i) Write an expression for the acid dissociation constant, K_a , for ammonium ions, NH ₄ *(aq). $K_a =$
(b) The K_a value of chloric(I) acid, HC1O, is 3.72 × 10 ⁻⁸ mol dm ⁻³ . Calculate the pH of 0.010 mol dm ⁻³ HC1O(aq).	[1] Write two equations to describe how a solution containing ammonium ions, NH ₄ *(aq), and ammonia, NH ₄ (aq), can act as a buffer.
Water and octan-1-ol form two layers when mixed.	 The numerical value of K_a for NH₄⁴(aq) is 5.6 × 10⁻¹⁰ at 298 K. A buffer solution was prepared by adding 0.80 dm³ of 0.25 moldm⁻³ ammonia, an excess, to 0.20 dm³ of 0.20 dm
added to 50.0 cm ³ of water and this is then shaken with 50.0 cm ³ of octan-1-ol, it is found that the water layer contains 0.935g of ethanamide at equilibrium. (i) Calculate the partition coefficient, K_{po} for ethanamide in water and octan-1-ol.	Calculate the pH of the buffer solution formed at 298K.
K _{pc} =[1]	
The 50.0 cm ³ of water containing 0.935g of ethanamide is then shaken with 100.0 cm ³ of pure octan-1-ol under the same conditions. Calculate the mass of ethanamide that is dissolved in the 100.0 cm ³ of octan-1-ol at equilibrium.	
	pH =
mass of ethanamide =	
Patrick Brannac Page 173 of 703	www.SmashingScience.org Patrick Brannac Page 174 of 703

acid, CH ₃ COCO ₂ H,						luilibrium.	[1]	te this by placing a			[1]	$_{a1}$ and K_{a2} , whose	e pK _a values.	[2]	ation constant K_{a} .	IR spectroscopy.	Page 176 of 703
<i>i</i> .SmashingScience.org ICO ₂ H, and pyruvic		10-4	10-3	An equilibrium mixture containing the two acid-base pairs is formed.	+ CH ₃ COCO ₂ -	Use the ${\cal K}_a$ values to calculate the equilibrium constant, ${\cal K}_{eq}$ for this equilibrium.	K _{eq} =	Use your value of K_{e_i} to predict the position of this equilibrium. Indicate this by placing a tick (\checkmark) in the appropriate box in the table. Explain your answer.	equilibrium lies to the right			acid, HO ₂ CCO ₂ H, has two dissociation constants, $K_{\rm at}$ re 1.23 and 4.19.	Suggest equations to show the two dissociations that give rise to these pK_a values pK_{a1} 1.23		State the mathematical relationship between pK_a and the acid dissociation constant K_a .	olvent in proton NM	Page 1.
aper 4/Q# 6/wwv ethanoic acid, H	Ka	1.78 × 10 ⁻⁴	H 4.07 × 10 ⁻³	the two acid-ba	нсо₂ + сн₃сосо₂н	equilibrium con		ne position of th the table. Explai	equilibrium lies in the middle			las two dissoci	o dissociations t		p between pK _a (t be used as a s	Patrick Brannac
try/2020/s/TZ 1/P ues of K _a for m	acid	HCO ₂ H	CH3COCO2H	ture containing	+ CH ₃ COCO ₂	to calculate the		K _{eq} to predict th ropriate box in t				HO ₂ CCO ₂ H, h 3 and 4.19.	to show the tw		atical relationshi	ere D is ² H, car	<u>م</u>
Topic: Chem 25 Q# 201/ ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org (b) (i) The numerical values of K_a for methanoic acid, HCO ₂ H, and pyruvic acid, CH ₃ COCO ₂ H, are given.				An equilibrium mix	HCO ₂ -	Use the K_a values		(ii) Use your value of tick (\checkmark) in the app	equilibrium lies to the left			(iii) Ethanedioic acid, HO ₂ CCO ₂ pK _a values are 1.23 and 4.19.	Suggest equations pK _{a1} 1.23	pK _{a2} 4.19	(iv) State the mathema	(f) Deuterium oxide, D_2O , where D is ² H, can be used as a solvent in proton NMR spectroscopy.	www.SmashingScience.org
Topic: Chem 25 Q# 200/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Silver carbonate, Ag_2CO_3 , is sparingly soluble in water. The numerical value of the solubility product, K_{sp} , for silver carbonate is 6.3×10^{-12} at 25°C.	(i) Write an expression for the solubility product, K_{sp} , of Ag_2CO_3 , and state its units.	$\mathcal{K}_{so} =$	= ainu		(ii) Calculate the equilibrium concentration of Ag^{+} in a saturated solution of $Ag_{2}CO_{3}$ at $25 ^{\circ}C$.		[Ag ⁺] = moldm ⁻³ [1]	(iii) Solid Ag ₂ CO ₃ is stirred at 25 °C with 0.050 moldm ⁻³ AgNO ₃ until no more Ag ₂ CO ₃ dissolves. Calculate the concentration of carbonate ions, [CO ₃ ²⁻], in this solution.			[CO ₃ ²] =moldm ⁻³ [1]	(iv) An electrochemical cell is set up to measure the electrode potential, E , for the Ag ⁺ /Ag half-cell using the saturated Ag ₂ CO ₃ (aq) with a standard hydrogen electrode.	Use the <i>Data Booklet</i> , your answer to (a)(i), and the Nernst equation to calculate the electrode potential, <i>E</i> , for this Ag ⁺ /Ag half-cell.			E for Ag⁺/Ag half-cell =V [2]	www.SmashingScience.org

(g) The ionic product, K_{w} for D_2O has a value of 1.35×10^{-15} mol² dm⁻⁸ at 298 K.

(i) Write the expression for the K_w of D_2O .


K_w =

(ii) Calculate the pH of pure, neutral D_2O at 298K. Assume [D⁺¹] is equivalent to [H⁺] for pH calculations.

Topic: Chem 25 Q# 202/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 5/www.Sma

5 Gallic acid, $C_7H_6O_5$, is a naturally occurring aromatic molecule.

gallic acid

(b) A buffer solution was prepared by dissolving 2.04g of gallic containing 0.0600 moldm⁻³ of gallate ions, $C_7H_5O_5^{-1}$.

Ľ C₇H₆O₅ ← C₇H₅O₅ + H⁺

(i) Define the term buffer solution.

	[2
1	
:	
:	
1	
1	
1	
1	
1	
1	
:	
:	
:	: :
:	: :
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
:	: :
1	
1	: :
1	
1	
1	
1	
1	
1	
1	
1	
:	
1	: :
:	: :
:	: :
:	: :
:	: :
1	
1	
1	
1	
1	

(ii) Calculate the pH of this buffer solution.

$pH =$ [3] (iii) Write two equations to show how a solution containing gallic acid, $C_7H_6O_5$, and gallate ions, $C_7H_5O_5^-$, acts as a buffer.		Topic: Chem 25 Q# 203/ ALVI Chemistry/2020/m/T2 2/Paper 4/Q# 3/www.5mashingScience.org 3 Gold is an unreactive metal that can only be oxidised under specific conditions. (d) ALF ₃ is sparingly soluble in water. The concentration of its saturated solution at 298K is 6.5 × 10 ⁻² moldm ⁻³ .	 (i) Write an expression for the solubility product, K_{sp}, of AtF₃. K_{sp} = [1] 	(ii) Calculate the numerical value of $K_{\rm sp}$ for AIF_3 at 298 K.		K _{4p} =[1]
	[2]	[Total: 23]		of a solution	ltm³ at 298 K	[2]
	pH =	ashingScience.org		acid in 250 cm ³ of a solution	$= 3.89 \times 10^{-6}$ mol dm ⁻³ at	

Page **178** of **703**

Patrick Brannac

www.SmashingScience.org

Page **177** of **703**

Patrick Brannac

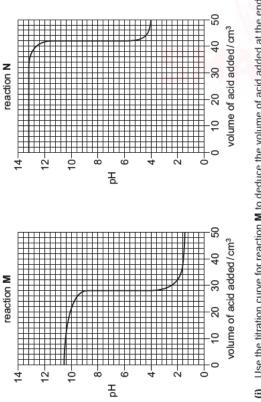
Topic: Chem 25 Q# 204/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 Silver sulfide, Ag ₂ S, is very insoluble in water.	(ii) $5.0 \mathrm{cm}^3$ of 0.20 mol dm ⁻³ potassium hydroxide, KOH, are added to 20.0 cm ³ of 0.20 mol dm ⁻³ HOBr(aq).
(a) (i) Write an expression for the solubility product, K_{sp} , of Ag ₂ S(s).	Calculate the pH of the buffer solution produced.
$K_{sp} =$	
[1]	
(ii) The solubility of Ag ₂ S(s) in water at 298K is 1.16×10^{-17} mol dm ⁻³ .	
Calculate the numerical value of the solubility product, $\kappa_{ m sp}$, of Ag $_2$ S(s) at 298 K.	
	pH =
	[Total: 9] Topic: Chem 25 Q# 205/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 7/www.5mashingScience.org (d) When concentrated sulfuric acid is added to water, dissociation takes place in two stages.
	stage 1 H ₂ SO ₄ = H ⁺ + HSO ₄
	stage 2 HSO ₄ ⁻ \rightleftharpoons H ⁺ + SO ₄ ²⁻ $K_{a2} = 1.0 \times 10^{-2} \text{ mol dm}^{-3}$
(iii) Calculate the minimum volume of water needed to dissolve 1.00g of Ag ₂ o(s) under standard conditions.	K_{a2} is the acid dissociation constant for stage 2.
	(i) Write the expression for the acid dissociation constant K_{a2} .
	$K_{a2} =$
	[1]
volume =	(ii) H_2SO_4 is considered a strong acid whereas HSO_4^- is considered a weak acid.
(b) Bromic(I) acid, HOBr(aq), is a weak acid. Its K_a is 2.0 × 10 ^{-a} moldm ⁻³ .	Suggest how the magnitude of the acid dissociation constant for stage 1 compares to K_{a2} .
(i) Calculate the pH of 0.20 moldm ⁻³ HOBr(aq).	[1]
	(e) Benzoic acid, $C_6H_6CO_2H$, is a weak acid. A solution of 0.0250 moldm ⁻³ benzoic acid has a pH of 2.90.
	Calculate the K_a of benzoic acid.
121	
	$K_{a} = \frac{1}{2} moldm^{-3}$
www.SmashingScience.org Patrick Brannac Page 179 of 703	MathingScience.org Patrick Brannac Page 180 of 703

 K_a for a weak acid, HA = [2] 				
K _a for a weak acid, HA =	element M	solubility	solubility/moldm ⁻³	
[2]	M	M(OH) ₂ 2 n ∨ 1n ⁻⁴	MCO ₃ 1.5 v 10 ⁻³	
[2]	Ca	1.5×10^{-2}	1.3 × 10 ⁻⁴	
	S	3.4×10^{-2}	7.4×10^{-5}	
 (ii) Write equations to show how a buffer solution consisting of a mixture of HA(aq) and NaA(aq) controls pH when an acid or an alkali is added. (b) (i) 	Ba 1.5×10^{-1} 9.1×10^{-5} Calculate the value of the solubility product, K_{qs} , of magnesium hydroxide at 25 °C.	1.5 × 10 ⁻¹ product, K _{sp} , ol	9.1 × 10 ⁻⁵ f magnesium hydr	oxide at 25 °C.
			K _{sp} =	[2]
(b) When chlorine dissolves in water the following reaction occurs.	State what would be observed if a few drons of a saturated solution of harium hydroxide	few drons of a	saturated solution	of harium hydroxid
$CL_2(g) + H_2O(I) \rightarrow HCIO(aq) + H^+(aq) + CL^-(aq)$	are added to a saturated solution of barium carbonate. Explain your answer	f barium carbor	nate. Explain your	answer.
When solutions of chlorine are used for water purification, the pH of the solution of chlorine is kept near to pH 7 by the addition of a base.	observation			
Chlorine is dissolved in water to produce 1000 cm ³ of a solution containing 0.170 mol of HCtO and 0.170 mol of HCtO				5
A buffer solution is then prepared by adding 0.200 mol of NaOH(s) to this solution. The NaOH reacts initially with the HC1.				-
Calculate the pH of the buffer solution.				
[HCIO is a weak acid with K _a = 2.9 × 10 ⁻⁸ moldm ⁻³ .]				
pH =[3] [Total: 7]				

Page **182** of **703**

Patrick Brannac

Page **181** of **703**



www.SmashingScience.org

Patrick Brannac

Topic Cherna St G# 264/ Chemistry/2018/w1/72 1/Paper 4/ G# 4/www.SmashingSclence.org [0] Nme the expression for K _w , the ionic product of water. [1] K _w = [1] In The numerical value of K _w increases with increasing temperature. [2] These a tick (r/) in the appropriate column in each row to show the effect of increasing the temperature of water on the pH and on the ratio [H1]; [OH1]. [2] Interpretation of value of water on the pH and on the ratio [H1]; [OH1]. [2] Interpretation of solium hydroxide has a pH of 13.25 at 298 k. [2] Calculate the concentration of this solium hydroxide solution. [2] Calculate the concentration of this solium hydroxide solution. [2]
creases with increasing temperates with increasing temperate obtained on the ratio [H ⁺]:[OH] decrease stay the same decrease stay the same stay the same concentration.

and N, are shown.
Σ
reactions,
acid-base
different
or two d
curves fo
Titration
Ģ

(i) Use the titration curve for reaction M to deduce the volume of acid added at the end-point for this titration.

. cm³ [1] volume of acid added at the end-point = .

(ii) The table shows some acid-base indicators.

pH range of colour change	0.2-1.8	3.8-5.4	6.0-7.6	9.3-10.6
name of indicator	malachite green	bromocresol green	bromothymol blue	thymolphthalein

Name a suitable indicator for each of the acid-base titrations M and N. Explain your answers.

	,		
		1	
_			
~			
_	:		
-			
0			
-			
.	i .		
<u> </u>			
00			
20	- i - i - i - i - i - i - i - i - i - i		
Ψ.			
_			
	i	i .	
1			
	L		
v	uc		
Μ	ion		
M	tion		
Mu	ation		
n M	nation		
ion M	nation		
tion M	anation		
ction M	lanation		
action M	planation		
eaction M	xplanation		

(d) (i) Explain what is meant by the term *partition coefficient*, $K_{partition}$.

(ii) The partition coefficien 4.75.	[2] [2] [3] [4.75.
 2.50g of compound flask. 50 cm³ of this aque 	2.50g of compound H was dissolved in water and made up to 100 cm³ in a volumetric flask. 50 cm³ of this aqueous solution were shaken with 10 cm³ of dichloromethane.
Calculate the mass of c	Calculate the mass of compound H that was extracted into the dichloromethane.
	mass of compound H extracted =
	[Total: 14]
c: Chem 25 Q# 210/ ALvl Chemis (c) When sodium oxide rea	Topic: Chem 25 Q# 210/ ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) When sodium oxide reacts with water an alkaline solution is obtained.
(i) Explain why the solution obtained of acids and bases in your answer.	Explain why the solution obtained is alkaline. You should use the Brønsted-Lowry theory of acids and bases in your answer.

R		T
	mashingScience.org	Page 185 of 703
	1/Paper 4/Q# 1/www.SmashingScience.org	Patrick Brannac

Topic: Chem 25 Q# 209/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q#

www.SmashingScience.org

[2]

Page **186** of **703**

Patrick Brannac

pinc		[2]	Ε	[2]	C	TI I DNIHSYWS
d organic solvents. I trichloromethane and water w in your answer.	SmashingScience.org 1. K_a = 6.2 × 10 ⁻¹⁰ moldm ⁻³	pH =smashingScience.org 1 ₁₂ .	r answer.	units =		Page 188 of 703
Butylamine, $C_4H_6NH_2$ is also soluble in both water and organic solvents. Suggest how the value of $K_{partison}$ of butylamine between trichloromethane and water would compare to the value of $K_{partison}$ calculated in (ii). Explain your answer.	 chem 25 Q# 212/ ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 3/www.Si (a) Hydrogen cyanide, HCN, is a weak acid in aqueous solution. HCN(aq) ⇒ H*(aq) + CNT(aq) (i) Calculate the pH of 0.10 mol dm³ HCN(aq). 	 Chem 25 Q# 213/ ALvI Chemistry/2018/m/T2 2/Paper 4/Q# 1/www.Sm (b) The solubility of Sr(OH)₂ is 3.37 × 10⁻² moldm⁻³ at 0 °C. (i) Write an expression for the solubility product of Sr(OH)₂. 	$K_{sp} = K_{sp}$ = Calculate the value of K_{sp} at 0°C. Include units in your answer.	K _{sp} =		Patrick Brannac
 (iii) Butylamine, C₄H₉NH₂ Suggest how the value compare to the value 	Topic: Chem 25 Q# 212/ ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Hydrogen cyanide, HCN, is a weak acid in aqueous solution. HCN(aq) \rightleftharpoons H*(aq) + CN-(aq) $K_a = 6.2 \times 10^{-11}$ (i) Calculate the pH of 0.10 mol dm ⁻³ HCN(aq).	pH = Topic: Chem 25 Q# 213/ ALvI Chemistry/2018/m/T2 2/Paper 4/Q# 1/www.SmashingScience.org (b) The solubility of Sr(OH) ₂ is 3.37 × 10 ⁻² moldm ⁻³ at 0 °C. (i) Write an expression for the solubility product of Sr(OH) ₂ .	K _{ap} = (ii) Calculate the value			www.SmashingScience.org
400 cm ³	33		ane. dm³ 21 to	and	2	TI IDNIHSWAS
Calculate the pH of the solution obtained when 3.10 g of sodium oxide are added to 400 cm ³ of water.	pH =		 Ammonia is soluble in both water and organic solvents. An aqueous solution of ammonia is shaken with the immiscible organic solvent trichloromethane. The mixture is left to reach equilibrium. Samples are taken from each layer and titrated with dilute hydrochloric acid. A 25.0 cm³ sample from the trichloromethane layer requires 13.0 cm³ of 0.100 moldm³ HCt to reach the end-point. A 10.0 cm³ sample from the aqueous layer requires 12.5 cm³ of 0.100 moldm³ HCt to reach the end-point. 	Calculate the partition coefficient, $K_{\text{partition}}$ of ammonia between trichloromethane an water.	K _{partiton} =	Page 187 of 703
of the solution obtained when 3.11	Dplc: Chem 25 Q# 211/ ALvI Chemistry/2018/m/T2 2/Paper 4/Q# 4/wwv.SmashingScience.org	State what is meant by the term <i>partition</i> coefficient.	 Ammonia is soluble in both water and organic solvents. An aqueous solution of ammonia is shaken with the immiscible organic solvent. The mixture is left to reach equilibrium. Samples are taken from each layer and titrated with dilute hydrochloric acid. A 25.0 cm³ sample from the trichloromethane layer requires 13.0 cm³ HCt to reach the end-point. A 10.0 cm³ sample from the aqueous layer requires 12.5 cm³ of 0.10 reach the end-point. 	tition coefficient, K _{partition} , of amm		Patrick Brannac
(ii) Calculate the pH o of water.	Topic: Chem 25 Q# 211/ ALM Chemi	4 (a) (i) State what is mean	 Ammonia is soluble in both water and c An aqueous solution of ammonia is shak The mixture is left to reach equilibrium. Samples are taken from each layer and HC<i>t</i> to reach the end-point. A 10.0 cm³ sample from the trichle reach the end-point. 	(ii) Calculate the part water.		www.SmashingScience.org

Topic: Chem 25 Q# 214/ ALvI Che	amistry/2017/w/	Topic: Chem 25 Q# 214/ ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	gScience.org	(b) (i) Isocyanic acid is a weak acid.
		(a) The lade lists values of soludility products, Λ_{sp} , of solfie shoup 2 cardonates.	z cal bullates.	HNCO \rightleftharpoons H ⁺ + NCO ⁻ $K_a = 1.2 \times 10^{-4} \text{ mol dm}^{-3}$
		solubility product in water at 298K, K _{sp} /mol ² dm ⁻⁶		Calculate the pH of a $0.10 \text{mol}\text{dm}^3$ solution of isocyanic acid.
	MgCO ₃	1.0×10^{-5}		
	caco3	5.0×10^{-9}		
	SrCO ₃	1.1×10^{-10}		
Use the data in the the group.	table to descrit	Use the data in the table to describe the trend in the solubility of the Group 2 carbonates the group.	the Group 2 carbonates down	PH =[2]
				(ii) Sodium cyanate, NaNCO, is used in the production of isocyanic acid.
			[1]	Sodium cyanate is prepared commercially by reacting urea, (NH ₂) ₂ CO, with sodium carbonate. Other products in this reaction are carbon dioxide, ammonia and steam.
(b) (i) Write an equat	ion to show the	Write an equation to show the equilibrium for the solubility product for MgCO ₃ .	product for MgCO ₃ .	Write an equation for the production of NaNCO by this method.
Include state symbols	ymbols.	1	E	(c) Barium hydroxide, Ba(OH) ₂ , is completely ionised in aqueous solutions. During the addition of 30.0cm ³ of 0.100 moldm ⁻³ Ba(OH) ₂ to 20.0cm ³ of 0.100 moldm ⁻³ isocyanic acid, the pH was measured.
(ii) With reference concentrated n answer.	e to your equa Va ₂ CO ₃ (aq) ar	With reference to your equation in (i), suggest what is observed when a few c concentrated $Na_2CO_3(aq)$ are added to a saturated solution of $MgCO_3$. Explain answer.	With reference to your equation in (i), suggest what is observed when a few cm ³ of concentrated Na ₂ CO ₃ (aq) are added to a saturated solution of MgCO ₃ . Explain your answer.	(i) Calculate the [OH-] at the end of the addition.
			[2]	
(c) Use the data in the	table to calcul	(c) Use the data in the table to calculate the solubility of MgCO $_3$ in water at 298 K, in $g dm^{-3}$.	water at 298K, in gdm ⁻³ .	[OH-] =
		solubility of MgCO ₃ =	=	5 moldm-
Topic: Chem 25 Q# 215/ ALM Chemistry/2017/s/T2 1 2 (a) One atom of each of the four elemen Two examples are molecules of cyani bonded in the order they are written.	emistry/2017/s/T of the four elem nolecules of cy: they are writte	Topic: Chem 25 Q# 215/ ALVI Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) One atom of each of the four elements H, C, N and O can bond together in different ways. Two examples are molecules of cyanic acid, HOCN, and isocyanic acid, HNCO. The atoms bonded in the order they are written.	m 25 Q# 215/ ALVI Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org One atom of each of the four elements H, C, N and O can bond together in different ways. Two examples are molecules of cyanic acid, HOCN, and isocyanic acid, HNCO. The atoms are bonded in the order they are written.	final pH =
www.SmashingScience.org		Patrick Brannac	Page 189 of 703	www.5mashingScience.org

//www.SmashingScience.org it in commercial bleach. The concentration	10.0 cm ³ of a bleach solution was diluted to 250 cm ³ in a volumetric flask using distilled water. Dilute sulfuric acid and an excess of potassium iodide solution were added to a 25.0 cm ³ portion of this solution to liberate iodine. The resulting solution required 20.80 cm ³ of 0.100 mol dm ⁻³ aqueous sodium thiosulfate solution to react with the iodine produced.	СІ- + Н ₂ О S40 ₆ 2-	ons in the bleach solution.			n of CtO ⁻ =	he end-point in this titration.	11) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
Topic: Chem 25 Q# 217/ ALvI Chemistry/2016/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Sodium chlorate(I), NaC1O, is the active ingredient in commercial bleach. The concentration of chlorate(I) ions was determined by titration.	 10.0 cm³ of a bleach solution was diluted to 250 cr water. Dilute sulfunic acid and an excess of potassiu 25.0 cm³ portion of this solution to liberate iodine The resulting solution required 20.80 cm³ of 0.100 solution to react with the iodine produced. 	The titration reactions are shown. $\label{eq:closer} ClO^- \ + \ 2I^- \ + \ 2H^+ \ \rightarrow \ I_2 \ + \ I_2 \ + \ 2S_2O_3^{2-} \ \rightarrow \ 2I^- \ + \ I_2 \ + \ 2S_2O_3^{2-} \ \rightarrow \ 2I^- \ + \ I_2 \ + \ 2S_2O_3^{2-} \ \rightarrow \ 2I^- \ + \ S_2O_3^{2-} \ \rightarrow \ S_2$	Calculate the concentration, in moldm ⁻³ , of C <i>1</i> O ⁻ ions in the bleach solution.			 concentration of CIO⁻ = (b) An indicator was used in the thiosulfate-iodine titration. (i) Name a suitable indicator for this titration. 	 (ii) State the expected colour change you would observe at the end-point in this titration from form (iii) State when in the procedure you would add the indicator. 	www.SmashingScience.org
) cm³				E				II BUILISYMS
On the following axes, sketch how the pH changes during the addition of a total of $30.0{\rm cm}^3$ of 0.100 moldm 3 isocyanic acid.			25 30	ashingScience.org KJ mol ⁻¹	al value of K _p for this	in the partial pressure	atm [2] [Total: 17]	Page 191 of 703
changes during the 0.100 mol dm ⁻³ isoo			15	volume of Ba(OH) ₂ added / cm ³ 2017/m/T2 2/Paper 4/Q# 4/www.SmashingSci ccess to produce ammonia is shown. + 3H° = -92 kJ mol ⁻¹	pheres, the numerics um.	ibrium at 500 °C, when	P _{M45} =	Patrick Brannac
ketch how the pH H) ₂ to 20.0 cm ³ of (6	volume of Ba(OH) ₂ ⁴ mistry/2017/m/T2 2/Paper 4/ ber process to produce ammo N ₂ (g) + 3H ₂ (g)	s measured in atmos r K _p for this equilibriu	ssure of NH ₃ at equil t of H ₂ is 60 atm.		Patri
	4	Hq	۵ ۵	volume of Ba(OH) ₂ added / cm ³ Topic: Chem 25 Q# 216/ ALvI Chemistry/2017/m/T2 2/Paper 4/Q# 4/www.SmashingScience.org (ii) The reaction for the Haber process to produce ammonia is shown. $N_2(g) + 3H_3(g) \rightleftharpoons 2NH_3(g) \Delta H^0 = -92kJ mol^{-1}$	At 500°C, when pressure is measured in atmospheres, the numerical value of K_p for this equilibrium is 1.45×10^{-5} . • Write the expression for K_p for this equilibrium.	$K_p =$ • Calculate the partial pressure of NH ₃ at equilibrium at 500 °C, when the partial pressure of N ₂ is 20 atm and that of H ₂ is 60 atm.		www.SmashingScience.org
(!!!)				Topic: (i				≥I

ate(I) ions can also be nple of bleach and measuri	(iii) The decomposition of HC1O is a redox reaction. Suggest an equation for this reaction.
$H_2O_2 + NaCiO \rightarrow NaCi + O_2 + H_2O$	[1]
hydrogen peroxide	(e) The buffer solution in blood is a mixture of carbonic acid, H_2CO_3 , and hydrogencarbonate ions, HCO_3^- . Healthy blood has a pH of 7.40.
5.0cm ³ bleach	$H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$ $K_a = 7.94 \times 10^{-7}$ moldm ⁻³ (i) Explain how this buffer system acts to control the blood pH. Include equations in your answer.
When an excess of aqueous hydrogen peroxide was added to $5.0\mathrm{cm}^3$ of a different bleach solution, $82\mathrm{cm}^3$ of oxygen was produced at room temperature and pressure.	
Calculate the concentration of C1O- ions in this bleach solution.	
	(ii) A patient's blood has a [HCO ₃ -]:[H ₂ CO ₃] ratio of 9.5:1.
	Calculate the pH of the patient's blood.
Topic: Chem 25 Q# 218/ ALvl Chemistry/2016/w/TZ 1/Paper 4/Q# 7/www.5mashingScience.org (d) Trichlorocyanuric acid, C ₃ CI ₃ N ₃ O ₃ , acts as a chlorine buffer and disinfectant for swimming pools. It reacts with water to give chloric(I) acid, HC1O.	
C ₃ Cl ₃ N ₃ O ₃ + 3H ₂ O ← C ₃ H ₃ N ₃ O ₃ + 3HClO	
(i) Write the expression for K_{o} for this equilibrium.	pH =[2]
K _o = [1]	[Total: 16]
(ii) In outdoor swimming pools, the HC1O is decomposed by sunlight. The decomposition of HC1O is a redox reaction which forms a gas that relights a glowing splint.	
Describe and explain the effect of the decomposition of HC1O on the equilibrium in (d). State the effect on ${\sf K}_{ m c}$	
effect on K,	
5	

Page **194** of **703**

Patrick Brannac

www.SmashingScience.org

III BNIHSEWS Page **193** of **703**

Patrick Brannac

Topic: Chem 25 Q# 219/ ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org Dicarboxylic acids dissociate in stages.	Chemistry/2016/s/TZ 1/Pap lissociate in stages.	oer 4/Q# 5/wwv	v.SmashingScien	ce.org	Topic: Chem 25 Q# 220/ ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 One method of producing hydrogen from natural gas is the reaction between hydrogen sulfide and	fide and
	stage 1		stage 2		methane.	
HU2U(UH2),UU2H	1 с И и20(СН ₂),сО2 ⁻ + Н ^т	сU ₂ + н ⁻		-020(0H2),002 + 2H*	$2H_2S(g) + CH_4(g) \rightleftharpoons CS_2(g) + 4H_2(g)$	
(a) The pK _a values	(a) The pK_a values for stage 1 and stage 2 for some dicarboxylic acids are listed below.	for some dica	rboxylic acids ¿	are listed below.	(a) Write the expression for K_p for this reaction, and state its units.	
	n in HO ₂ C(CH ₂) _n CO ₂ H	pK _a (1) for stage 1	pK _a (2) for stage 2		K, =	
	1	2.83	5.69			
	2	4.16	5.61		UNITS	[2]
	3	4.31	5.41			
For comparison	For comparison, the pK_a of ethanoic acid, CH_3CO_2H , is 4.76 .	а, сн ₃ со ₂ н, і	s 4.76.		(b) The initial partial pressures of the two gases in a mixture at 1000K are recorded.	
(i) State the m	State the mathematical relationship between pK_a and the acid dissociation constant K_a .	between pK _a	and the acid di	issociation constant K _a .	H ₂ S(g) 200 atm CH ₄ (g) 100 atm	
				[1]	The mixture is left to reach equilibrium.	
(ii) With referen	With reference to the table above, suggest why the $pK_a(1)$ values • are all smaller than the nK of ethanoic acid	suggest why th	he pK _a (1) value	ŝ	It is found that the equilibrium partial pressure of $CS_2(g)$ is 2 atm and that of the remaining $CH_4(g)$ is 98 atm.	maining
					(i) Calculate the equilibrium partial pressures of H ₂ S(g) and H ₂ (g).	
becom Suggest wh acid.	become larger as n increases. gest why all the $pK_a(2)$ values ir	n the table at	ove are larger	 become larger as n increases. [3] Suggest why all the pK_a(2) values in the table above are larger than the pK_a of ethanoic acid. 		
				[1]		
(b) The monosodiu	(b) The monosodium salts of edible dicarboxylic acids are added to some foodstuffs as buff	xylic acids are	e added to som	ne foodstuffs as buffers.	$p(H_2S) = \dots$	atm
(i) Explain wha	Explain what is meant by the term buffer solution.	uffer solution.			p(H ₂) =	atm [2]
				[2]	(ii) Calculate the value of K_p at this temperature.	
(ii) Write two e as a buffer.	equations to show how r	nonosodium E	vutanedioate, F	Write two equations to show how monosodium butanedioate, HO ₂ CCH ₂ CO ₂ Na, acts as a buffer.		
				D.C.	K _p =	E
<u>www.SmashingScience.org</u>		Patrick Brannac	Ŧ	Page 195 of 703 SWASHING111	www.SmashingScience.org Patrick Brannac Page 196 of 703	LI I DNIHSYMS

Topic: Ch (b) (i)	Topic: Chem 25 Q# 221/ ALvI Chemistry/2016/m/T2 2/Paper 4/Q# 4/www.SmashingScience.org (b) (i) A three-step mechanism has been proposed for the reaction in (a).	2 2/Paper 4/Q# 4/www.Smashing oposed for the reaction in (a) .	Science.org		Topic: Chem 25 Q# 223/ ALvl Chemistry/2015/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Silver sulfate, A_2SO_{44} is sparingly soluble in water. The concentration of its saturated solution is 2.5×10^{-2} moldm ⁻³ at 298 K.	'TZ 1/Paper 4/Q# 4/www.SmashingScie y soluble in water. The concentratic	ence.org on of its saturated solu	tion
	step 1 CH ₃ C + -ÖH	+ -öH ⇒ -čH ₂ c + H ₂ O			(i) Write an expression for the s	Write an expression for the solubility product, ${\rm K}_{\rm sp^{\prime}}$ of ${\rm Ag}_2{\rm SO}_4,$ and state its units.	nd state its units.	
(ii)	H Describe the chemical behaviour of CH ₃ CHO in step 1.	H ₃ CHO in step 1.			جه = م	inu	units:	[1]
Topic: Ch (c) (i)	Topic: Chem 25 Q# 222/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org (c) (i) Explain what is meant by a <i>partition coefficient</i> .	1/Paper 4/Q# 9/www.SmashingS coefficient.	cience.org		(ii) Calculate the value for $K_{sp}(Ag_2SO_4)$ at 298K.	g ₂ SO ₄) at 298 K.		
			[1]					
(ii)	The partition coefficient of a particular pesticide between hexane and water is 6.0 . A solution contains 0.0042g of the pesticide dissolved in $25\mathrm{cm}^3$ of water. The solution is shaken with $25\mathrm{cm}^3$ of hexane.	r pesticide between hexane a esticide dissolved in 25 cm ³ of	nd water is 6.0. f water. The solution is	10	K_{sp} =	$K_{sp} = \dots$ TZ 1/Paper 4/Q# 4/www.SmashingScie c due to the following equilibrium.	ence.org	[1]
	Calculate the mass of pesticide that will be dissolved in the hexane layer at equilibrium.	vill be dissolved in the hexane	e layer at equilibrium.		[Fe(H ₂ O) ₆] ³⁺ (aq) ← [Fe	$[Fe(H_2O)_{\mathfrak{g}}]^{\mathfrak{s}+}(\mathfrak{aq}) \rightleftharpoons [Fe(H_2O)_{\mathfrak{h}}(OH)]^{\mathfrak{s}+}(\mathfrak{aq}) + H^{\mathfrak{s}}(\mathfrak{aq}) K_{\mathfrak{h}}$	$K_{\rm a} = 8.9 \times 10^{-4} {\rm mol dm^{-3}}$	
					Calculate the pH of a 0.1 mol dm ⁻³ solution of iron(III) sulfate, $Fe_2(SO_4)_3$.	lution of iron(III) sulfate, $Fe_2(SO_4)_3$	'n	
							pH =[2]	
					[Total: 13] Topic: Chem 25 Q# 225/ ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org (d) Phosphate ions in water can be removed by adding a solution containing Ca ²⁺ (aq) ions, which form a precipitate of calcium phosphate, Ca ₃ (PO ₄) ₂ .	/TZ 1/Paper 4/Q# 3/www.SmashingScio oved by adding a solution containinate, $Ca_3(PO_4)_2$.	[Total: 13] ience.org ing Ca ²⁴ (aq) ions, which	-
					(i) Write an expression for the K_{sp} of $Ca_3(PO_4)_2$.	of Ca ₃ (PO ₄) ₂ .		
					$K_{sp} =$			
					(ii) The solubility of $Ca_3(PO_4)_2$ is 2.50×10^{-6} mol dm ⁻³ at 298 K.	50×10^{-6} mol dm ⁻³ at 298 K.		
					Calculate the solubility product,	Calculate the solubility product, K_{sp} , of $Ca_3(PO_4)_2$ at this temperature. Include the units.	rre. Include the units.	
					K _{\$P} =	units	[4]	
MWW.	www.SmashingScience.org	Patrick Brannac	[2] Page 197 of 703	C	www.SmashingScience.org	Patrick Brannac	Page 198 of 703	C C C C C C C C C C C C C C C C C C C

(d) 20.0 cm ³ of 0.100 moldm ⁻³ HC <i>t</i> was slowly added to a 10.0 cm ³ sample of 0.150 moldm ⁻³ piperidine. The pH was measured throughout the addition.	(i) Calculate the number of moles of HC l remaining at the end of the addition. moles of HC l =	(ii) Hence calculate the [H*] and the pH at the end of the addition.	= Hq	(iii) On the following axes, sketch how the pH will change during the addition of a total of 20.0 cm ³ of 0.100 moldm ⁻³ HC <i>I</i> . Mark clearly where the end point occurs.		PH			volume HC <i>i</i> added/cm ³	(iv) From the following list of indicators, put a tick in the box by the side of the indicator most suitable for this titration.	indicator pH at which place one tick only colour changes in this column	A 0-1	B 3-4	C 11-12	D 13-14	[9]	[Total: 16]	www.SmashingScience.org Patrick Brannac Page 200 of 703
ience.org			NH + HO	piperidine	to calculate the pH of								[4]				C	Page 199 of 703
Topic: Chem 25 Q# 226/ ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 3/www.5mashingScience.org 3 Piperine is the compound responsible for the hot taste of black pepper.		piperine oe broken down as follows:		piperic acid	Use your expression and the value of K_m in the <i>Data Booklet</i> to calculate the pH 0.150 moldm ⁻³ NaOH(aq).			The pH of a 0.150 mol dm ⁻³ solution of piperidine is 11.9.	()	piperidine	Suggest why this answer differs from your answer in (c)(ii) .							Patrick Brannac
Topic: Chem 25 Q# 226/ ALvl Chemistry/2 3 Piperine is the compound resp	0_0	piperine Piperine is an amide and can be broken down as follows:		piperine (c) (i) Write the expression for ${\cal K}_w$	 (ii) Use your expression and 0.150 moldm³ NaOH(aq). 			(iii) The pH of a 0.150 moldm ⁻³			Suggest why this answer d							www.SmashingScience.org

Topic: Chem 25 Q# 227/ ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org (c) A number of analytical and separation techniques rely on substances having different partition coefficients.	Topic: Chem 25 Q# 228/ ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org Using the symbol HZ to represent a Brønsted-Lowry acid, (c) (i) Explain what is meant by a <i>buffer solution</i> .
State what is meant by the term <i>partition coefficient</i> .	
 [1] [d] The partition coefficient of X between ethoxyethane and water is 40.0. A solution contains 4.00 g of X dissolved in 0.500 dm³ of water. 	(ii) Explain how the working of a buffer solution relies on a reversible reaction involving a Brønsted-Lowry acid such as HZ and a Brønsted-Lowry base such as Z
Calculate the mass of X that can be extracted from this aqueous solution by shaking it with	
(i) 0.050 dm ³ of ethoxyethane,	[4]
	(d) Propanoic acid, $CH_3CH_2CO_2H$, is a weak acid with $K_a = 1.34 \times 10^{-5}$ mol dm ⁻³ . (i) Calculate the pH of a 0.500 mol dm ⁻³ solution of propanoic acid.
(ii) two successive portions of 0.025 dm ³ of ethoxyethane.	Buffer solution F was prepared by adding 0.0300 mol of sodium hydroxide to 100 cm ³ of a 0.500 mol dm ⁻³ solution of propanoic acid. (ii) Write an equation for the reaction between sodium hydroxide and propanoic acid.
	(iii) Calculate the concentrations of propanoic acid and sodium propanoate in buffer solution F.
	[propanoic acid] =moldm ⁻³
	[sodium propanoate] =moldm ⁻³
[4]	

Page **202** of **703**

Patrick Brannac

www.SmashingScience.org

Page **201** of **703**

www.SmashingScience.org

L.	
solution	
of buffer	
the	
Calculate	
(iv)	-

(v) Calculate the K_{o} for this reaction.

$K_{o} =$	(a) The structures of glycine, lysine and glutamic acid at pH 7 are shown. glycine H ₃ N+CH ₂ CO ₂ -	(b) Some organic compounds have very different solubilities in water and in organic solvents such as hexane. They may be extracted from an aqueous reaction mixture by shaking	the mixture with portions of hexane and separating the two layers. The process of distribution of a compound between two solvents is called <i>partition</i> . (i) State what is meant by the term <i>partition coefficient</i> .	E	
pH =	$2Fe^{3*}(aq) + 2I(aq) \stackrel{\longrightarrow}{\rightarrow} 2Fe^{2*}(aq) + I_2(aq)$ (iii) Write the expression for K_c for this reaction, and state its units.	K _o = units	An experiment was carried out using solutions of Fe ³⁴ (aq) and I ⁻ (aq) of equal concentrations. 100 cm ³ of each solution were mixed together, and allowed to reach equilibrium. The concentrations at equilibrium of Fe ³⁴ (aq) and I ₂ (aq) were as follows.	 [Fe²⁺(aq)] = 2.0 × 10⁻⁴ moldm⁻³ [I₂(aq)] = 1.0 × 10⁻² moldm⁻³ (iv) Use these data, together with the equation given in (c), to calculate the concentrations of Fe²⁺(aq) and I⁻(aq) at equilibrium. 	[I ⁻ (aq)] =moldm ⁻³

Page **204** of **703**

Patrick Brannac

www.SmashingScience.org

Page **203** of **703**

Patrick Brannac

ppic: Cherr (b) V	Topic: Chem 25 Q# 231/ ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (b) Water ionises to a small extent as follows.	(ii) Calculate [OH ⁻ (aq)] in a 0.050 moldm ⁻³ solution of NH ₃ . You may assume that only a small fraction of the NH ₃ ionises, so that [NH ₃] at equilibrium remains at
	$H_2O(I) \iff H^+(aq) + OH^-(aq)$ $\Delta H = +58 \text{ kJmol}^{-1}$	0.050 moldm ⁻³ .
)	(i) Write an expression for K_c for this reaction.	
(i	(ii) Write down the expression for K_w , the ionic product of water, and explain how this can be derived from your K_c expression in (i).	[OH ⁻ (aq)] =
	i) State and explain how the value of $K_{\rm w}$ for hot water will differ from its value for cold water.	
(c) k	 (c) K. can be used to calculate the pH of solutions of strong and weak bases. 	(iv) Calculate the pH of this solution.
0	(i) Use the value of K_w in the <i>Data Booklet</i> to calculate the pH of 0.050 moldm ⁻³ NaOH.	[6]
		[Total: 11] Topic: Chem 25 Q# 232/ ALvi Chemistry/2010/w/TZ 1/Paper 4/O# 4/www.SmashingScience.org 4 The most typical oxides of tin and lead are SnO, SnO ₂ , PbO and PbO ₂ .
	pH =	The following two generalisations can be made about the oxides of the elements in Group IV.
	Ammonia ionises slightly in water as follows. NH ₃ (aq) + H ₂ O(I) ↔ NH ₄ ⁺ (aq) + OH ⁻ (aq) The following expression applies to this equilibrium. [H ₂ O] × K _c = [NH ₄ ⁺][OH ⁻]/[NH ₃] = 1.8 × 10 ⁻⁵ moldm ⁻³	 As the metallic character of the elements increases down the Group, the oxides become more basic. The oxides of the elements in their higher oxidation states are more acidic than the oxides of the elements in their lower oxidation states.

Page **206** of **703**

Patrick Brannac

Page **205** of **703**

(c) Le	Lead(II) chloride is slightly soluble in water.	ater.			In an excess of NH_3 , $CH_3CHC1COO^-$ undergoes a nucleophilic substitution reaction	ion reaction.
	$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl^{-}(aq)$	$(t^{-}(aq) = K_{sp} = 2.0 \times 10^{-5}$			reaction 2 CH ₃ CHC1COO ⁻ + NH ₃ \rightarrow CH ₃ CH(NH ₂)COO ⁻ + H ⁺ +	+ C <i>l</i> -
(i)) Write an expression for the solubility product, $K_{\rm sp}$ for lead(II) chloride and st units.	ity product, ${\cal K}_{\sf sp}$ for lead(II) chl	loride and state its		A student investigates the rate of reaction 2. The student mixes $CH_3CHC1COO^-$ with a large excess of NH_3 . The graph in Fig. 5.3 shows the results obtained.	HC1COO- with a large
(II)	K_{sp} = units	units			0.0250	
					0.0200	
A. es	An excess of PbC $l_2(s)$ is stirred with 0.50 moldm ⁻³ NaC l until equilibrium has established. The excess PbC $l_2(s)$ is then filtered off.	0.50 moldm ⁻³ NaC <i>t</i> until equ .n filtered off.	ullibrium has been		0.0150-001 ICH CHC/CODO-1	
(III)) Assuming [C <i>I</i> ⁻] remains at 0.50 mol dm ⁻³ throughout, calculate the [Pb ²⁺ (aq)] remaining solution.	Idm ⁻³ throughout, calculate th	e [Pb ²⁺ (aq)] in the		(moldm ³)	
(iv)) Suggest an explanation for the difference between this value and the value that you calculated in (ii).	srence between this value and	I the value that you			
			[4]		0.0000 0 200 400 600 800 1000 1200 1400 1600	00 1600
Topic: (c) As me	Topic: Chem 26 Q# 233/ ALvI Chemistry/2022/m/T21/Paper 4/Q# 5/www.SmashingScience.org (c) A student studies the reaction of CH ₃ CHCICOOH with aqueous NH ₃ to determine the reaction mechanism.	2/m/T2 1/Paper 4/Q# 5/www.5m C1COOH with aqueous NH ₃ to	[Total: 10] ashingScience.org o determine the reaction		time/ s Fig. 5.3 (ii) Use the graph in Fig. 5.3 to show that reaction 2 is first order with respect to [CH ₃ CHC/COO-]	to [CH3CHC/COO-].
ţ, Ţ	The student finds that when CH ₃ CHC <i>i</i> COOH and NH ₃ are added in a 1:1 stoichiometric ratio, the conjugate acid and base of the reactants are quickly formed.	OOH and NH ₃ are added in a tants are quickly formed.	1:1 stoichiometric ratio,			
	reaction 1 CH ₃ CHCtCOOH + I	$CH_3CHClCOOH + NH_3 \rightarrow CH_3CHClCOO- + NH_4^+$	H4+			
					(iii) Explain why a large excess of $\rm NH_3$ needs to be used in order to obtain the results in Fig. 5.3.	btain the results in
						[1]
M	www.SmashingScience.org	Patrick Brannac	Page 207 of 703	Constant	www.SmashingScience.org	Page 208 of 703

C

The student measures the effect of changing the concentration of $\rm NH_3$ on the rate of reaction 2. Table 5.1 shows the results obtained. (iv)

Table 5.1

experiment	[CH ₃ CHC1COO-] /moldm ⁻³	[NH ₃] /moldm ⁻³	initial rate of reaction /moldm ⁻³ s ⁻¹
1	0.00120	0.00300	1.47×10^{-5}
2	0.00120	0.00450	2.21 × 10 ^{−5}

Use the information in Table 5.1 and in (c)(ii) to determine whether the nucleophilic substitution reaction proceeds via an $S_N 1$ or an $S_N 2$ mechanism. Explain your answer.

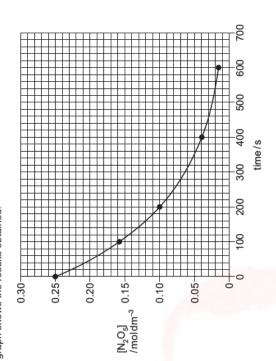
[2]	6	
	f CH ₃ CHC1CO	
	101	
	Ľ,	
	ц.	
	n of	
	ctio	
	rea	
	e of	
	rate	
	the	
	on	
	ture	
	era	
	dua	
	in te	
	be the effect of an increase in temperature on the rate of reaction of	
	crea	
	.ŭ	
	ofai	
	sct	
	effe	
	the	
	ribe	IH.
	esci	٩P
;	õ	ar
	Σ	

Explain your answer.

[2]

Topic: Chem 26 Q# 234/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 2

Dinitrogen pentoxide, N_2O_6 , is dissolved in an inert solvent (solv) and the rate of decomposition of N_2O_6 is investigated. This reaction produces nitrogen dioxide, which remains in solution, and oxygen gas.


 $N_2O_5(solv) \rightarrow 2NO_2(solv) + \frac{1}{2}O_2(g)$

(a) Suggest what measurements could be used to follow the rate of this reaction from the given information Ξ

(b) In a separate experiment, the rate of the decomposition of N₂O₅(g) is investigated.

 $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$

The graph shows the results obtained

The reaction is first order with respect to N₂O₅. This can be confirmed from the graph using half-lives.

Explain the term half-life of a reaction (i)

.. s [1] Determine the half-life of this reaction. Show your working on the graph half-life = (ii)

Ξ

Suggest the effect on the half-life of this reaction if the initial concentration of N_2O_{δ} is halved. (

Page 210 of 703

Patrick Brannac

www.SmashingScience.org

[2]

rate = units =

Patrick Brannac

www.SmashingScience.org

Page 209 of 703

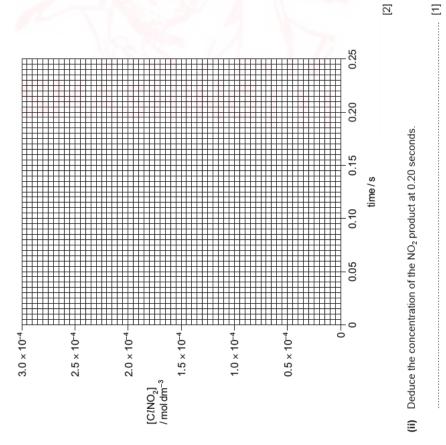
A HINNER

The rate equation for this reaction is shown.	iis reaction is show	۲n.			(i) Use the data to determine	Use the data to determine the order of reaction with respect to $[\rm H_2O_2]$, $[\rm IO_3^-]$ and $[\rm H^+]$.	[H ₂ O ₂], [IO ₃ -] and [H ⁺].
	rate =	rate = $k[N_2O_5]$			Show your reasoning.		
(ii) Use your answer to state its units.	(c)(i) to calculate	the value of th	Use your answer to (c)(i) to calculate the value of the rate constant, <i>k</i> , for this reaction and state its units.	his reaction and	order with respect to $[H_2O_3] =$	=	
		k =	units	[1]			
(d) Nitrogen dioxide reacts with ozone, O_3 , as shown.	with ozone, O ₃ , as	shown.			order with respect to $[IO_3^-]$ =	=	
	$2NO_2 + O_3$	\rightarrow N ₂ O ₅ + O ₂	2				
The rate equation for this reaction is rate = k [NO ₂][O ₃]	is reaction is rate	= k[NO ₂][O ₃].					
Suggest a possible two-step mechanism for this reaction.	-step mechanism	for this reaction	Ĕ		order with respect to [H*] =		
			A	[2]			
				[Total: 9]			
Topic: Chem 26 Q# 235/ ALVI Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 lodates are compounds that contain the IO ₃ - anion.	mistry/2021/m/TZ 2/ it contain the IO_3^- ai	'Paper 4/Q# 3/w [,] nion.	ww.SmashingScience.org				[3]
(a) The IO ₃ ⁻ anion is shown.	Ū.				(ii) Use your answer to (d)(i) t	Use your answer to (d)(i) to write the rate equation for this reaction.	tion.
		6			rate =	rate = $\begin{bmatrix} 1 \\ calculate the value of the rate constant, k, using data from experiment 4 and your answer to (d)(ii).$	[1] riment 4 and your answer
(d) A student collects some data for the reaction of H_2O_2 with acidified IO_3^- , as shown in the table.	C ata for the reaction) of H ₂ O ₂ with ac	cidified IO ₃ -, as shown in	n the table.	Give the units of k.		
experiment [H2O2] /moldm ⁻³	J [IO ₃ -] n-3 /moldm ⁻³	[H+] /moldm ⁻³	initial rate of reaction /moldm ⁻³ s ⁻¹				
1 0.0500	0.0700	0.025	1.47×10^{-5}	2			
2 0.100	0.0700	0:050	2.94×10^{-5}				4-
3 0.100	0.140	0.025	5.88×10^{-5}				- V
4 0.150	0.140	0.025	8.82×10^{-5}				units =[2]
www.SmashingScience.org	ŭ	Patrick Brannac	Page 211 of 703	L of 703	www.SmashingScience.org	Patrick Brannac	Page 212 of 703

	2NO(g) +	2NO(a) + 0,(a) 🕂 2NO,(a)			
The state of the					The rate equation for the reaction in the absence of any catalyst is shown.
	דוופ דמוכ בקטמווטו זטר נווב זטואמוט דבמכנוטו וא אווטאוו.	I IS SHOWIL			rate = k[S,O ₃ -1][1-]
	rate	rate = <i>k</i> [NO] ² [O ₂]			
(a) Complete the following table.	s following table.				(i) Suggest equations for a two-step mechanism for this reaction, stating which of the two steps is the rate-determining step.
	the order of reaction with respect to [NO]	vith respect to [NO]			step 1
	the order of reaction with respect to [0 ₂]	vith respect to [O ₂]			step 2
	the overall order of reaction	r of reaction	5		rate-determining step =
				[1]	(ii) A large excess of peroxodisulfate ions is mixed with iodide ions. Immediately after mixing, $[I_{-}] = 0.00780 \text{ mold} \text{m}^{-3}$. Under the conditions used, the half-life of $[I_{-}]$ is 48 seconds.
(b) Two separate	(b) Two separate experiments are carried out at 30° C to determine the rate of the forward reaction.	1 out at 30°C to detern	nine the rate of the forwa	ard reaction.	Calculate the iodide ion concentration 192 seconds after the peroxodisulfate and iodide
expen	experiment [NO]/moldm ⁻³	[O ₂]/moldm ⁻³	rate / moldm ⁻³ s ⁻¹		ions are mixed.
-	0.00300	0.00200	1.51×10^{-4}		
2		0.00500	6.05×10^{-5}		iodide ion concentration = moldm ⁻³ [1]
(i) Use the of k.	Use the data for experiment 1 to calculate the value of the rate constant, <i>k</i> . State the units of <i>k</i> .	calculate the value of	the rate constant, <i>k</i> . St	ate the units	[Total: 8] Topic: Chem 26 Q# 237/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 (a) Manganese(IV) oxide, MnO ₂ , catalyses the decomposition of hydrogen peroxide, H ₂ O ₂ , as shown.
					MnO ₂
		k =	units =		$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$
(ii) Calculate	Calculate the value of [NO] in experiment 2.	periment 2.		2	The mechanism involves the formation of the intermediate species, Mn ²⁺ , in the first step which is subsequently used up in the second step. (b) The equation for the decomposition of hydrogen peroxide without a catalyst is shown.
					$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
		= [ON]		moldm ⁻³ [1]	Under certain conditions this reaction is found to be first order with respect to hydrogen peroxide, with a rate constant, k , of 2.0 × 10 ⁻⁸ s ⁻¹ at 298 K.
(c) Define the te	(c) Define the term rate-determining step.			[1]	Calculate the initial rate of decomposition of a 0.75moldm ⁻³ hydrogen peroxide solution at 298 K.
					initial rate =
www.SmashingScience.org		Patrick Brannac	Page 213 of 703	II IBUILISEVAS	www.SmashingScience.org Patrick Brannac Page 214 of 703

 $S_2O_8^{2-}$ + 2I⁻ \rightarrow 2SO₄²⁻ + I₂

(d) Peroxodisulfate ions, $S_2O_8^{2-}$, react with iodide ions, I⁻.


Topic: **Chem 26 Q# 236/** ALVI Chemistry/2020/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 Nitrogen monoxide, NO, reacts with oxygen to form nitrogen dioxide, NO₂.

(ii) Determine the rate equation of the reaction.	Show your reasoning, quoting data from the table.					[6]	(iii) Use the results of experiment 2 to calculate the value of the rate constant, k , for this reaction.	Include the units of k.					rate constant, $k = \dots$	units =	iic: Chem 26 Q# 239/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	2 When $CtNO_2$ reacts with NO an equilibrium is established.	$(B) \rightarrow (O^{2}B) \rightarrow (O^{2}B) \rightarrow (O^{2}B)$	In each CtNO ₂ molecule the nitrogen atom is bonded to the chlorine atom and bonded to each of the oxygen atoms separately	(b) The reaction between C1NO ₂ and NO is first order with respect to each reactant.	(i) Write the rate equation for this reaction.	rate =	(ii) Deduce the units of the rate constant, k, when the concentrations of both gases are measured in moldm ⁻³ and the rate is measured in moldm ⁻³ s ⁻¹ .		www.SmashingScience.org Patrick Brannac Page 216 of 703
oxide and iodide							[1]		[1]		[1]	rg under certain	of AuCl ₃ and								[1]		C	Page 215 of 703
A four-step mechanism is suggested for the reaction between hydrogen peroxide and iodic ions in an acidic solution.						mining step.	S	Use this mechanism to construct a balanced equation for this reaction.		Deduce the order of reaction with respect to each of the following.	=+H	Topic: Chem 26 Q# 238/ ALVI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 Gold is an unreactive metal that can only be oxidised under specific conditions. (b) Aqueous gold(III) chloride, AuCI ⁴ , reacts with aqueous hydrogen peroxide, H ₂ O ₂ , under certain	A student carries out separate experiments using different initial concentrations of AuCl ₃ and			rate of production of O ₂ (g) / dm ³ minute ⁻¹	7.66 × 10 ⁻²	1.53×10^{-1}	4.60×10^{-1}	th H ₂ O ₂ .				Patrick Brannac Page
sted for the re	0				ep.	erm rate-deter		truct a balance		with respect	I- =	20/m/TZ 2/Pape n only be oxidis reacts with aqu	eniments using	on is measured	e obtained.	[H ₂ O ₂] /moldm ⁻³	0.50	0.50	1.00	tion of AuCl ₃ w				Patrick
nism is sugge Jution.	→ IO- + H ₂ O	· → HIO	\rightarrow I ₂ + OH ⁻	+ $H^{+} \rightarrow H_{2}O$	letermining stu	neant by the t		anism to cons		der of reactior		e metal that ca norde, AuCl _{3,} 1	t separate exp	e of each react	results that ar	[AuC1 ₃] /moldm ⁻³	0.05	0.10	0.15	on for the react				org
(c) A four-step mechanism is ions in a cidic solution.	step 1 $H_2O_2 + I^-$	step 2 H ⁺ + IO ⁻	step 3 HIO + I ⁻	step 4 OH ⁻ + H ⁺	Step 1 is the rate-determining step.	(i) State what is meant by the term rate-determining step.		(ii) Use this mech		(iii) Deduce the ord	H,O, =	Topic: Chem 26 Q# 238/ ALv 3 Gold is an unreactive (b) Aqueous gold(III) ch	A student carries ou	H ₂ O ₂ . The initial rate	The table shows the results that are obtained.	experiment	-	2	3	(i) Write an equation for the reaction of $AuCt_3$ with H_2O_2 .				<u>www.Smashing</u> Science.org

(iii) State and explain whether or not the reaction could take place in a single step.

Ξ

- (c) An experiment is carried out in which the initial $[CINO_2]$ is 2.0×10^4 moldm⁻³. A large excess of NO is used. The initial rate of reaction is 1.0×10^4 moldm⁻³s⁻¹. The rate of the reaction is assumed to be constant for the first 0.20 seconds.
- (i) Draw a graph on the grid to show how the concentration of $CINO_2$ varies for the first 0.20 seconds.

Topic: Chem 26 Q# 240/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) Chlorate(I) ions undergo the following reaction under aqueous conditions.

 $2NH_3 + CIO^- \rightarrow N_2H_4 + CI^- + H_2O$

A series of experiments was carried out at different concentrations of $C10^{-}$ and NH_{3} .

The table shows the results obtained.

initial rate / moldm ⁻³ s ⁻¹	0.256	2.05	8.20
[NH ₃] /moldm ⁻³	0.100	0.200	0.400
[C10-] /moldm ⁻³	0.200	0.400	0.400
experiment	1	2	3

(i) Use the data in the table to determine the order with respect to each reactant, C10⁻ and NH₃.

Show your reasoning.

(ii) Write the results of experiment 1 to calculate the rate constant, <i>k</i> , for this reaction. Include the units of <i>k</i> .
--

1

[2]

(iii) After 20 seconds the concentration of C1NO₂ remains constant.

Explain this observation.

www.SmashingScience.org

Page 217 of 703

Patrick Brannac

www.SmashingScience.org

Page 218 of 703

Topic: Chem 26 Q# 241/ ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 Nitrogen monoxide, NO(g), reacts with hydrogen, H ₂ (g), under certain conditions.	$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$	(a) Define the term rate of reaction.	[1]	(b) Identify a change in the reaction mixture that would enable the rate of this reaction to be studied.	[1] The rate equation for this reaction is given.	rate = k [NO] ² [H ₂] The result of an experiment in which NO reacted with H ₂ is shown in the table.	initial [NO]/moldm ⁻³ initial [H ₂]/moldm ⁻³ initial rate of reaction/moldm ⁻³ s ⁻¹ $2 \text{ f}_0 \times 10^{-3}$ $2 \text{ f}_0 \times 10^{-3}$ $1 _0 \times 10^{-3}$	e data and the rate equation to calculate a value for the rate equation to calculate a value for the rate			k =	units =	(d) A second experiment is performed at the same temperature. The initial concentration of $H_2(g)$ is 4.60 x 10 ⁻³ moldm ⁻³ . The initial rate of the reaction is 2.31 x 10 ⁻³ moldm ⁻³ s ⁻¹ .	Calculate the initial concentration of NO(g).	www.5mashingScience.org Patrick Brannac Page 220 of 703
ire is					[1] aikali	s and	on is	[2]					E :		LI DUNHSWMS
On the axes sketch a graph to show how the value of k changes as temperature increased.				ţ	s and iodide ions in aqueous	arge excess of chlorate(I) ions	Describe how the results of this experiment can be used to confirm that the reaction first-order with respect to [I-].					this reaction.			Page 219 of 703
raph to show how the value	4		tant, <i>k</i>	temperature	action between chlorate(I) ion	ueous alkali was added to a l; ntervals.	of this experiment can be u [I-].			$I + HClO \rightarrow HIO + Cl^{-1}$	$HIO + OH^- \rightarrow H_2O + IO^-$	Use this mechanism to deduce the overall equation for this reaction.			Patrick Brannac
(iv) On the axes sketch a guincreased.			rate constant, k		(b) In another experiment, the reaction between chlorate(I) ions and iodide ions in aqueous alkali was investigated.	A solution of iodide ions in aqueous alkali was added to a large excess of chlorate(I) ions and [L] was measured at regular intervals.	(i) Describe how the results of first-order with respect to [1].		SIT	step 2 I- +	step 3 HIO	(ii) Use this mechanism to de			www.SmashingScience.org

(e) State the order of the reaction with respect to NO(g) and with respect to H₂(g), and the overall order of the reaction.

(g) A third experiment is performed under different conditions. A small amount of $H_2(g)$ of concentration 0.0200 moldm⁻³ is mixed with a large excess of NO(g). The concentration of $H_2(g)$ is found to have a constant half-life of 2.00 seconds under the conditions used.

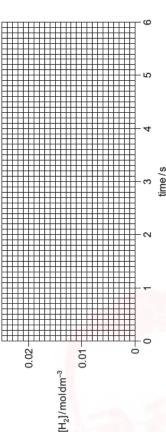
Define the term half-life.

Ξ

		order
[NO]	[H ₂]	overall order

- The reaction is believed to proceed in three steps. (£
- $2NO \rightarrow N_2O_2$.
- $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ 2
- $N_2O + H_2 \rightarrow N_2 + H_2O$ e
- (i) Deduce which of the three steps is the rate-determining step.

Ξ


- Explain your answer to (i). ≣

Ξ

- Ξ

- Use the axes below to construct a graph of the variation in the concentration of $H_2(g)$ during the first 6 seconds under the conditions used. (ii)

Ξ

(h) NO(g) acts as a catalyst in the oxidation of atmospheric sulfur dioxide.

[2]

- (i) Give two equations to describe how NO(g) acts as a catalyst in this process.
- equation 2 equation 1

[]

- Explain why NO(g) can be described as a catalyst in this reaction. (II)
- [] Describe, with the aid of an equation, an environmental consequence of the oxidation of atmospheric sulfur dioxide. (

- [Total: 14]

Ξ

Page 222 of 703

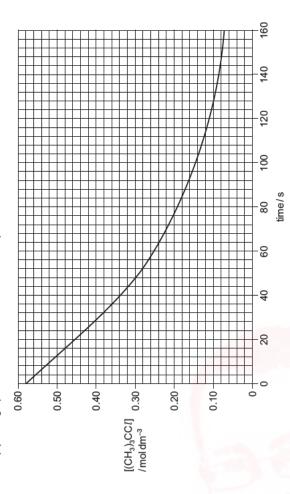
Page 221 of 703

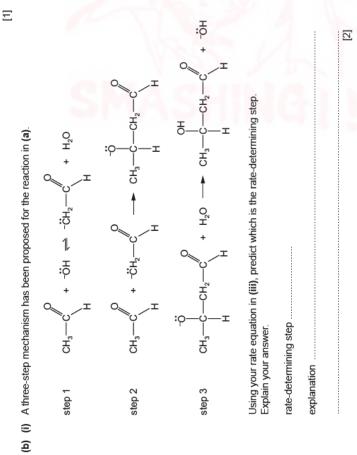
Patrick Brannac

Topic: Chem 26 Q# 242/ ALvI Chemistry/2017/w/TZ 1/Paper 4/O# 4/www.SmashingScience.org (f) Some transition metals and their compounds act as catalysts. The catalysis can be classified as heterogeneous or homogeneous.	/Paper 4/Q# 4/www.Sm ipounds act as cataly	ashingScience.org /sts. The catalysis can be	e classified	(ii) Use the data in the table to deduce the values of <i>a</i> and <i>b</i> in the rate equation. Show your reasoning.
by placing one tick	k (✓) in each row to ii	Complete the table by placing one tick (✓) in each row to indicate the type of catalysis in each reaction.	/sis in each	
	heterogeneous	homogeneous		
Fe in the Haber process				[2]
${\sf Fe}^{24}$ in the $I^-/{\sf S}_2{\sf O}_8^{2-}$ reaction				(iii) Use the data in the table to calculate the initial rate for experiment 4.
NO ₂ in the oxidation of SO ₂				
$\rm V_2O_{\delta}$ in the Contact process		5		initial rate =
emistry/2017/w/TZ 1/ bromide, NOBr, can	Topic: Chem 26 Q# 243/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 The compound nitrosyl bromide, NOBr, can be formed by the reaction shown.	hashingScience.org saction shown.	[2] [Total: 14]	onstant, k, for this re
2NO +	2NO + Br ₂ 🛁 2NOBr			
The rate of the reaction was measured at va Br ₂ , and the following results were obtained.	l at various concentra ained.	The rate of the reaction was measured at various concentrations of the two reactants, NO and Br_{2} , and the following results were obtained.	ls, NO and	rate constant, $k =$
experiment [NO]/moldm ⁻³	[Br ₂]/moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹		
0.03	0.02	3.4×10^{-3}		Ξ
0.03	0.04	6.8 × 10 ⁻³		
0.09	0.04	6.1×10^{-2}		(d) The reaction between X and Y was studied.
0.12	0.06	to be calculated		
of the rate equation f	The general form of the rate equation for this reaction is as follows.	follows.		7 4 1 - 72
rate =	rate = k[NO]ª[Br₂] ^b			s bi
t by the term order o	of reaction with respe	What is meant by the term order of reaction with respect to a particular reagent?	13	step 2 $V + Y \rightarrow Z$
				The general form of the rate equation for this reaction is as follows.
			[1]	rate = $k[X]^m[Y]^n$
				Step 1 is the slower step in the mechanism.
				Deduce the values of m and n in the rate equation.
				m =
۵.	Patrick Brannac	Page 223 of 703		www.5mashingScience.org Patrick Brannac Page 224 of 703

The	The general form of the rate equation for this reaction is as follows.	rate = $k[NO]^{a}[Br_{2}]^{b}$
-----	--	--------------------------------

Fopic: Chem 26 Q; 6 The reaction	t# 244/ ALvi Ch an between 1	hemistry/2017/s/TZ 1/f -chloro-1-phenvletha	Paper 4/Q# 6/wwv ane and hvdroxid	Topic: Chem 26 Q# 244/ ALvI Chemistry/2017/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org 6 The reaction between 1-chloro-1-phenvlethane and hvdroxide ions to produce 1-phenvlethanol	henvlethanol is:	(ii) Write the rate equati	Write the rate equation for this reaction, stating the units of the rate constant, κ	ing the units of th	e rate constant, k.	
						rate =			mol dm ⁻³ s ⁻¹	n-3 s-1
	C ₆ 1-chlo	C ₆ H ₅ CHC1CH ₃ + OH ⁻ 1-chloro-1-phenylethane	· → C ₆ H ₅ CH(OH)CH ₃ 1-phenylethanol	H)CH ₃ + C <i>I</i> - anol		units of k =				
The rate of this solution at a giv ice-cold solvent.	f this reactior a given time lvent.	n can be studied by r e. The reaction can e	measuring the an effectively be sto	The rate of this reaction can be studied by measuring the amount of hydroxide ions that remain solution at a given time. The reaction can effectively be stopped if the solution is diluted with ice-cold solvent.	s that remain in s diluted with an	(iii) Calculate the relative	Calculate the relative rate for experiment 4.			Ξ
(a) Descri given t	Describe a suitable given the following.	e method for studyin	ng the rate of thi	Describe a suitable method for studying the rate of this reaction at a temperature of $40^\circ\text{C},$ given the following.	stature of 40 °C,		relative ra	relative rate for experiment 4 =	t 4 =	[1]
0 n n • • •	a solution of 0.10 n a solution of 0.10 n 0.10 moldm ⁻³ HC <i>l</i>	a solution of 0.10 moldm ⁻³ 1-chloro-1-phenylethane, labelled A a solution of 0.10 moldm ⁻³ sodium hydroxide, labelled B 0.10 moldm ⁻³ HC <i>I</i>	-1-phenylethane, hydroxide, labellƙ	, labelled A ed B		Topic: Chem 26 Q# 245/ ALVI Chemistry/2017/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Chlorine dioxide undergoes the following reaction in aqueous solution.	ry/2017/m/TZ 2/Paper 4/Q: the following reaction in aq	.# 4/www.Smashing. queous solution.	Science.org	2
• •	volumetric glassware ice-cold solvent	ssware It				2C102	+ 20H- \rightarrow CtO ₂ - + CtO ₃ - + H ₂ O) ₃ - + H ₂ O		
• •	stopclock access to stand	stopclock access to standard laboratory equipment and chemicals	pment and chem	licals		The initial rate of the reaction was me The table shows the results obtained	The initial rate of the reaction was measured at different initial concentrations of CtO_2 and OH The table shows the results obtained.	it initial concentration	ns of C1O ₂ and OH ⁻ .	
						experiment	[C10 ₂] [OH-] /moldm ⁻³ /moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹		
						-	1.25 × 10 ⁻² 1.30 × 10 ⁻³	³ 2.33 × 10⁻⁴		
						-				
						m	2.50 × 10 ⁻² 2.60 × 10 ⁻³	⁻³ 1.87 × 10 ⁻³		
						(i) Use the data in the table to determine each reactant. Show your reasoning	Use the data in the table to determine the rate equation, showing the order with respect to each reactant. Show your reasoning.	lation, showing the c	order with respect to	
					4					
(b) The ra The ta	tte of this rea	The rate of this reaction was measured The table shows the results obtained.	at different initia	The rate of this reaction was measured at different initial concentra <mark>tions of</mark> the two reagents. The table shows the results obtained.	e two reagents.					
	experiment	It [C ₆ H ₅ CHC1CH ₃] /moldm ⁻³	[OH ⁻] /moldm ⁻³	relative rate						
	1	0.05	0.10	0.5						
	2	0.10	0.20	1.0			rate equation =	=	[3]	
	3	0.15	0.10	1.5		(iii) Calculate the value of	Calculate the value of the rate constant k using the data from experiment 2. State its	the data from exp	eriment 2. State its	
	4	0.20	0.15	to be calculated						
Ξ Ξ	Deduce the order of rea Explain your reasoning.	der of reaction with re sasoning.	espect to each o	Deduce the order of reaction with respect to each of [C ₆ H ₅ CHC1CH ₃] and [OH]. Explain your reasoning.	[OH-].					
OL	der with resp	order with respect to $[C_6H_5CHC1CH_3]$	۴۰]							
 0	order with respect to [OH-]	sect to [OH ⁻]					k =	units	[2]	
:					[2]					C
<u>www.Smashi</u>	www. Smashing Science.org		Patrick Brannac	Page 225 of 703	5 of 703	www.SmashingScience.org	Patrick Brannac	inac	Page 226 of 703	SMASHING


(b) (i) Explain the difference between heterogeneous and homogeneous catalysts	s and homogeneous catalysts.		(d) (i) Describe, with the aid of a reaction pathway diagram, the effect of a catalyst on a reversible reaction. Suggest why catalysts are used in industrial processes.	pathway diagram, the e e used in industrial pro	iffect of a catalyst on a rev cesses.	ersible
	Ξ					
(ii) Complete the table using ticks (\checkmark) to indicate whether the catalyst used in the reaction is heterogeneous or homogeneous.						
catalysed reaction hete	heterogeneous homogeneous					
manufacture of ammonia in the Haber process						
removal of nitrogen oxides from car exhausts						
oxidation of sulfur dioxide in the atmosphere	5					[3]
	[3]		Topic: Chem 26 Q# 246/ ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Ethanal, CH₃CHO, dimerises in alkaline solution according to the following equation.	6/m/TZ 2/Paper 4/Q# 4 1 alkaline solution acc	<pre>t/www.SmashingScience. cording to the following</pre>	org equation.
(c) Some reactions are catalysed by one of the products of the reaction. This is called autocatalysis. An occurrence of autocotelusic is the monotion between political memory (VIII) is Ma0 ⁻² .	he reaction. This is called autocatalysis.		2CH ₃ C	2cH₃cHo → cH₃cH(oH)cH₂cHo	CH ₂ CHO	
and ethanedioic acid, $(CO_2H)_2$. Mn^{24} ions catalyse this reaction. The reaction is slow in the absence of a catalyst.	actime manyanate $v_{\rm MI}$ with $v_{\rm a}$, $v_{\rm MIO}$, $v_{\rm MIO}$, $v_{\rm a}$, s reaction. The reaction is slow in the		The initial rate of this reaction was measured, starting with different concentrations of CH ₃ CHO and OH ⁻ . The following results were obtained.	as measured, startin were obtained.	g with different concent	rations of CH ₃ CHO
uation for this reaction.			ICH.CHOI/moldm ³	[OH-1/moldm ⁻³	initial rate of reaction	
MnU₄ +H⁺ +(CU2H)₂ →Mn² +	* +			_	(relative values)	
(ii) The graph shown is a concentration-time graph for a typical reaction.	r a typical reaction.		0.10	0.015	2	
•			0.40	0.030	8	
			(i) Deduce the order of the reaction with respect to CH ₃ CHO	action with respect to	o CH ₃ CHO.	
concentration)			[1]
			(ii) Deduce the order of the reaction with respect to OH-	action with respect to	OH-	
						[1]
time	1		(iii) State the overall rate equation for this reaction.	Ition for this reaction.		
On the axes below, sketch the curve you would expect for the autocatalysed reaction in (i)	ect for the autocatalysed reaction in (i).		rate =			[1]
-			(iv) State the units for the rate constant, k .	constant, k.		
concentration of MnO						[1]
time	*					
	[2]	C				
www.SmashingScience.org	Patrick Brannac Page 227 of 703	SMASHINGLI	www.SmashingScience.org	Patrick Brannac		Page 228 of 703


C S ANNUAL STATE

(v) Calculate the initial rate of reaction (relative value) for a reaction where the [CH₃CHO] is 0.30 moldm^3 and [OH] is 0.030 moldm^3 .

The rate of this reaction was investigated using a large excess of sodium hydroxide.

(b) The graph below shows the results of the experiment.

4 In aqueous solution, 2-chloro-2-methylpropane, (CH₃)₃CCI, reacts with sodium hydroxide, NaOH. This is a nucleophilic substitution reaction. Topic: Chem 26 Q# 247/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

 $(CH_3)_3CCI(aq) + NaOH(aq) \rightarrow (CH_3)_3COH(aq) + NaCI(aq)$

www.SmashingScience.org

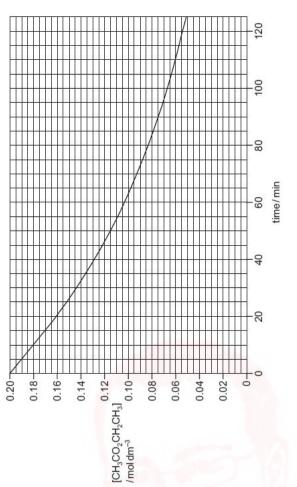
Page 229 of 703

Patrick Brannac

Page 230 of 703

The reaction is first order with respect to [(CH ₃) ₅ CCI]. This can be confirmed from the graph using half-lives. (i) What is meant by the <i>half-life</i> of a reaction? [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ The initial rate of this reaction was measured, starting with reactants. The following results were obtained. $\boxed{\begin{array}{c c c c c c } \hline \\ radial rate of this reaction was measured, starting with reactants. The following results were obtained. \\\hline \hline \\ radial rate of this reaction was measured, starting with reactants. The following results were obtained. \\\hline \\ radial rate of this reaction was measured, starting with reactants. The following results were obtained. \\\hline \\ radial rate of this reaction was measured, starting with reactants. The following results were obtained. \\\hline \\ rate of the data in the table to determine the order with reacting. \\\hline \\ reasoning. \\\hline \\ \end{array}$	ZNO(g) + O ₂ (g) - O ₂ (g). The initial rate of this reaction was measured, reactants. The following results were obtained. experiment [NO] number /moldm ³ 1 0.032 3 0.064 4 0.096 Use the data in the table to determine the reasoning.	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ on was measured, starting with ults were obtained. NO] $[O_2]$ $[O_2]$ oldm ⁻³ /moldm ⁻³ 032 0.012 032 0.012 064 0.024 096 0.036 e to determine the order with re	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ The initial rate of this reaction was measured, starting with different concentrations of the two reactants. The following results were obtained. The following results were obtained with respect to each reactant. Show your reasoning.	of the two Show your
The rate equation for this reaction is shown. [] The rate equation for this reaction is shown. [] rate = k[(CH ₃) ₃ CCl] [] [] Calculate the value of the rate constant, k, for this reaction and give its units.	 (ii) Calculate the initial rate (iii) Write the rate equatic (iv) Use the results of explored the units of k 	Varculate the initial rate in experiment 4 Write the rate equation for this reaction. Use the results of experiment 1 to calculate the units of <i>k</i> .	ient 4. cive your answer initial rate = ction. calculate the rate consta	to two significant.	igures. mol dm ³ s ⁻¹ ion.
<i>k</i> =	rat	rate constant, <i>k</i> =		units	9
www.SmashingScience.org Patrick Brannac Page 231 of 703	www.SmashingScience.org	۵.	Patrick Brannac	Page 232 of 703	C

(b) (i) On the following axes


- draw two Boltzmann distribution curves, at two different temperatures, T_1 and T_2 (T_2 > T_1), label the curves and the mass •

(ii) State and explain, using your diagram, the effect of increasing temperature on the rate of reaction. (c) The compound nitrosyl fluoride, NOF, can be formed by the following reaction. $2NO(g) + F_2(g) \rightleftharpoons 2NOF(g)$ The rate is first order with respect to NO and F_2 . The rate is first order with respect to NO and F_2 . Suggest equations for the two steps of this mechanism, stating which is the rate determining slower step.		
compound nitrosyl fluoride, NOF, can be formed by the following reaction. $2NO(g) + F_2(g) \rightleftharpoons 2NOF(g)$ Tate is first order with respect to NO and F_2 . reaction mechanism has two steps. gest equations for the two steps of this mechanism, stating which is the rate determining ver step.	State and explain, using your reaction.	diagram, the effect of increasing temperature on the rate of
compound nitrosyl fluoride, NOF, can be formed by the following reaction. $2NO(g) + F_2(g) \rightleftharpoons 2NOF(g)$ rate is first order with respect to NO and F_2 . reaction mechanism has two steps. gest equations for the two steps of this mechanism, stating which is the rate determining <i>ver</i> step.		
$2NO(g) + F_2(g) \rightleftharpoons 2NOF(g)$ rate is first order with respect to NO and F_2 . reaction mechanism has two steps. gest equations for the two steps of this mechanism, stating which is the rate determining ver step.	e compound nitrosyl fluoride, N	
rate is first order with respect to NO and F ₂ . reaction mechanism has two steps. gest equations for the two steps of this mechanism, stating which is the rate determining ver step.	2NO(g) + F ₂ (g) → 2NOF(g)
gest equations for the two steps of this mechanism, stating which is the rate determining ver step.	trate is first order with respect reaction mechanism has two	to NO and F ₂ .
	Suggest equations for the two ste slower step.	ps of this mechanism, stating which is the rate determinin

2 Ethyl ethanoate is hydrolysed slowly by water in the following acid-catalysed reaction. Topic: Chem 26 Q# 249/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

The concentration of ethyl ethanoate was determined at regular time intervals as the reaction

Two separate experiments were carried out, with different HCt concentrations. The following graph shows the results of an experiment using $[HCt] = 0.1 \text{ mol dm}^3$. progressed.

(a) When the experiment was carried out using $[HCt] = 0.2 \text{ mol dm}^3$, the following results were obtained.

time/min [CH ₃ CO ₂ CH ₂ CH ₃] 0 0.200 10 0.160 25 0.115 50 0.067 75 0.038 100 0.022

[F	
[CH ₃ CO ₂ CH ₂ CH ₃ /moldm ⁻³	0.200
time/min	0

Page 234 of 703

Patrick Brannac

www.SmashingScience.org

Plot these data on the axes above, and draw a line of best fit.

Page 233 of 703

www.SmashingScience.org

e graphs to show that the reaction is first order with r working, and show clearly any construction lines you dra use the order of reaction with respect to HC.L working, and show clearly any construction lines you dra working, and show clearly any construction with respect to we asible to determine the order of reaction with respect to we al value.	Topic: Chem 26 Q# 250/ ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Catalysts can be described as homogeneous or heterogeneous.	(i) What is meant by the terms <i>homogeneous</i> and <i>heterogeneous?</i>	 (ii) By using iron and its compounds as examples, outline the different modes of action of homogeneous and heterogeneous catalysis. Choose one example of each type, and for each example you should state what the catalyst is, and whether it is acting as a homogeneous or a heterogeneous catalyst, write a balanced equation for the reaction, outline how the catalyst you have chosen works to decrease the activation energy. 				6	www.SmashingScience.org Patrick Brannac Page 236 of 703
	f the graphs to show that the reaction is first order with respect to ${}^{2}\mathrm{CH}_{3}.$	our working, and show clearly any construction lines you draw on the	phs to calculate the order of reaction with respect to HC1. our working, and show clearly any construction lines you draw on the		[7] It possible to determine the order of reaction with respect to water in this	H ₃ CO ₂ CH ₂ CH ₃] decreases during each experiment, [HCI] remains the initial value.		www.SmashingScience.org Patrick Brannac Page 235 of 703

equator $2H_3(g) + 2H_0(g) + 2H_0(g) + H_3(g)$ dreaction, The following table shows how the initial rate of this reaction depends on the pressures of the reagents. am for this $\overline{\frac{1}{2}}$ $\overline{p}(H_2)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{\frac{1}{2}}$ $\overline{p}(H_2)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{\frac{1}{2}}$ $\overline{p}(H_2)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{\frac{1}{2}}$ $\overline{p}(NO)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{p}(NO)/4\pi$ $\overline{p}(NO)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{p}(NO)/4\pi$ $\overline{p}(NO)/4\pi$ $\overline{p}(NO)/4\pi$ am for this $\overline{p}(NO)/4\pi$ \overline	in for this in for this [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	I he reaction betwe	(b) The reaction between SU ₂ , NU ₂ and U ₂ occurs in two steps.	(b) At 800 K, nitrogen	monoxide reacts v	vith hydrogen acc	(b) At 800 K, nitrogen monoxide reacts with hydrogen according to the following equation.	quation
in for this in for this [] [] [] [] [] [] [] [] [] [] [] [] []	in for this in for this [104:10] [Iota: 10] [Iota: 10]			equation I	2H ₂ (g) + 2NO(g	$\rightarrow 2H_2O(g) +$	N ₂ (g)	
an for this (i) Write (ii) Write (ii) Show equal (iii) Show equal (iv) Sugg	an for this (i) Write (ii) Write equa equa equa temperature (ii) Show (ii) Show (iii) Show (iii	The activation ener	NO + $\frac{1}{2}$ O ₂ \rightarrow NO ₂ $\Delta H_2^2 = -5/kJ$ mol ⁻¹ gy of the first reaction, E_{a_1} , is higher than that of the second reaction,	The following tab pressures of the n	e shows how the eagents.	initial rate of this	s reaction depends on t	je pi
an for this (i) Write The follor (ii) Show equa equa (iii) Show equa (iv) Sugg (iv) Sugg (v) Sugg	an for this (i) Write (ii) Write (iii) Show equal (iv) Sugg (v) Sugg (v) Sugg	ت ^ع ر:		experiment	p(H ₂)/atm	p(NO)/atm	initial rate / atm s ⁻¹	
(i) Write (ii) Write (ii) Show equal (iv) Sugg (iv) Sugg (iv) Sugg	(i) Write The follor (ii) Show equa equa temperature temperature	Use the axes belic reaction, labelling E	ly-labelled reaction pathway diagram	~	0.64	1.60	1.50×10^{-7}	
(i) The follor (ii) Write (ii) Show equa equa (iii) Show equa (iv) Sugg (iv) Sugg (iv) Sugg	(i) Write The follo The follo (ii) Show equa temperature temperature			2	0.64	0.80	3.75×10^{-8}	
(i) Write The follor The follor (ii) Show equa equa (iv) Sugg	(i) Write The follo (ii) Show equa (iii) Show equa temperature :temperature			e	0.32	1.60	7.50×10^{-8}	
(i) Write down the rate equation and the units of the rate constant. The following mechanism has been put forward for this reaction. Step 1 NO + NO \rightarrow N ₂ O + O Step 2 H ₂ + O \rightarrow H ₂ O Step 2 H ₂ + O \rightarrow H ₂ O (ii) Show how the overall stoichiometric equation I can be derived from the thr equations for the individual steps given above. [2] [Dtat: 10] [Dtat: 10] temperature	(i) [The The The The The The The The The The			arrive at your	answer.			
The following mechanism has been put forward for this reaction. The following mechanism has been put forward for this reaction. Step 1 $NO + NO \rightarrow N_2O + O$ Step 2 $H_2 + O \rightarrow H_2O$ (ii) Show how the overall stoichiometric equation I can be derived from the three equations for the individual steps given above. [2] [2] [10] [10at: 10] [10at: 10]	(ii) [2] [2] [10tal: 10] www.SmashingScience.org wwhen air is heated to the temperature	energy	SHI	(ii) Write down the rat	e equation and the	units of the rate (constant.	
	[1] [Total: 10] stemperature			The following mechani	sm has been put fo	orward for this rea	ction.	
[iii] Show how the overall stoichiometric equation I can be derived from the the equations for the individual steps given above. [2] [v] Suggest which of the three reactions in the mechanism is the rate determining st temperature : temperature	(ii) [2] [Total: 10] stemperature				\uparrow \uparrow \uparrow) + 0) + H ₂ 0		
[2] [2] (iv) Suggest which of the three reactions in the mechanism is the rate determining st [Total: 10] Explain your answer.	[2] [Total: 10] : temperature				erall stoichiometri ndividual steps give	c equation I can en above.	i be derived from the t	hree
[2] (iv) Suggest which of the three reactions in the mechanism is the rate determining st [Total: 10] Explain your answer.	[2] (iv) [Total: 10] e temperature		extent of reaction					
8		hem 26 Q# 251/ ALvl (trogen monoxide, N a car engine.	[2] Chemistry/2012/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org O, is formed in a reversible reaction when air is heated to the temperature		he three reactions er.	in the mechanism	i is the rate determining	step
								[8]

Page **238** of **703**

Patrick Brannac

www.SmashingScience.org

LI IDNIHSYMS

Page 237 of 703

www.SmashingScience.org

an. $CH_3CHO + 2CH_3OH \stackrel{H^+}{\longrightarrow} CH_3CH(OCH_3)_2 + CH_3CH(OCH_3)$
an. $CH_{3}CHO + 2CH_{3}OH \stackrel{H^{+}}{=} CH_{3}CH(OCH_{3})_{2} + H_{2}O$ ethanal methanol ethanol acetal A When the initial rate of this reaction was measured at various starting concentrations of the three reactants, the following results were obtained. When the initial rate of this reaction was measured at various starting concentrations of the three reactants, the following results were obtained. When the initial rate of this reaction was measured at various starting concentrations of the three reactants, the following results were obtained. $\frac{experiment}{number} \frac{[CH_{3}CHO]}{[Modim^{-3}]} \frac{[H^{+1}]_{-1}}{[Moldm^{-3}]} \frac{[H^{+1}]_{-1}}{[H^{+1}]} \frac{[H^{+1}]_{-1}}{[$
$\begin{array}{c} CH_{3}CHO + 2CH_{3}OH \stackrel{H^{+}}{\Longrightarrow} CH_{3}CHO H \stackrel{H^{+}}{\Longrightarrow} CH_{3}CHO H \stackrel{H^{+}}{\Longrightarrow} CH_{3}CHO H \stackrel{H^{+}}{\Longrightarrow} CH_{3}CHO H \stackrel{H^{+}}{\Longrightarrow} CH_{3}CHO H_{3}CH H_{3}CH \stackrel{H^{+}}{\Longrightarrow} CH_{3}CH CH_{3}CH H_{3}CH \stackrel{H^{+}}{\Longrightarrow} CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH H_{3}CH \stackrel{H^{+}}{\Longrightarrow} CH_{3}CH CH_{3}CH CH_{3}CH H_{3} \stackrel{H^{+}}{\Longrightarrow} CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH \stackrel{H^{+}}{\Longrightarrow} CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH CH_{3} \stackrel{H^{+}}{\diamondsuit} CH_{3}CH CH_{3}CH CH_{3}CH CH_{3}CH CH_{3} \stackrel{H^{+}}{\diamondsuit} CH_{3}CH CH_{3}CH CH_{3} \stackrel{H^{+}}{\diamondsuit} CH_{3}CH CH_{3} CH CH_{3}CH CH CH_{3} CH C C C C C C C C$
. Chen the initi hen the initi e three reated experiment number 2 2 3 3 1 1 1 0 Vse the order with order with order with order with

www.SmashingScience.org

Page 239 of 703

Patrick Brannac

www.SmashingScience.org

Patrick Brannac

C TITONHESWAS Page 240 of 703

Topic: Chem 26 Q# 253/ ALVI Chemistry/2011/s/TZ 1/Paper 4/Q# 4/www.5mashingScience.org 4 The combustion of fuels in motor vehicles, trains, aeroplanes and power stati the pollutant gas NO ₂ .	Chem 26 Q# 253/ ALVI Chemistry/2011/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org The combustion of fuels in motor vehicles, trains, aeroplanes and power stations produces the pollutant gas NO_2 .	ngScience.org d power stations produces		Topic: Chem 27 Q# 254/ ALvI Chemistry/2021/w/T21/Paper 4/Q# 4/www.SmashingScience.org 4 Separate samples of 0.02 mol of calcium carbonate and 0.02 mol of barium carbonate are heated until completely decomposed to the metal oxide and carbon dioxide.
(d) In the atmosphere, NO ₂ a SO ₂ ((d) In the atmosphere, NO ₂ acts as a catalyst for the oxidation of SO ₂ to SO ₃ . SO ₂ (g) + $\frac{NO_2}{2}$ SO ₃ (g) = SO ₃ (g)	$f SO_2$ to SO_3 .		(a) State which of these two Group 2 carbonates requires the higher temperature before it begins to decompose. Explain your answer.
(i) What is the environm	What is the environmental significance of this reaction?			2
The oxidation takes place in <i>reaction 1</i> NO ₂ (g) + SO ₂ (ii) Write an equation to	The oxidation takes place in two steps. The initial reaction is that between NO ₂ and SO ₂ . reaction 1 NO ₂ (g) + SO ₂ (g) \leftrightarrow NO(g) + SO ₃ (g) $\Delta H = -168$ kJmol ⁻¹ (ii) Write an equation to show how the NO ₂ is regenerated in the second step of the	nat between NO ₂ and SO ₂ . $\Delta H = -168$ kJ mol ⁻¹ ad in the second step of the		(b) After decomposition is complete, the 0.02 mol sample of calcium oxide is taken and added to 2.00 dm ³ of water. A solution is formed with no solid present. Dilute sulfuric acid is then added dropowise until a precipitate is seen.
				The same procedure is repeated with the 0.02 mol sample of barium oxide, using the same concentration solution of dilute sulfuric acid.
(iii) Write an expression fi $K_p =$	Write an expression for the equilibrium constant, $K_{ ho}$ for <i>reaction 1</i> , stating its units. $K_{ ho}$ =	K _p for <i>reaction 1</i> , stating its units. units		Explain your answer. You should refer to the solubilities of the precipitates and relevant energy terms in your answer.
(iv) If equal amounts of NO ₂ is found that 99.8% of th Calculate a value for K_{p}°	If equal amounts of NO ₂ (g) and SO ₂ (g) are allowed to react at room temperature, it is found that 99.8% of the gases have been converted into products at equilibrium. Calculate a value for K_p .	act at room temperature, it ito products at equilibrium.		3
 (v) The temperature of the atmosposition of the equilibrium in r 	K_{p} =	= How will this affect the f.		(c) (i) Calculate the mass, in g, of CO ₂ produced by the decomposition of 0.020 moles of calcium carbonate.
		[7] [Total: 11]		(ii) Calculate the minimum mass, in g, of propane that would, on complete combustion, produce the same mass of CO_2 calculated in (c)(i). Give your answer to three significant figures.
				mass of propane =
www.SmashingScience.org	Patrick Brannac	Page 241 of 703	11 IDNUISEVAS	Topic: Chem 27 Q# 255/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (d) (NH ₄) ₂ Cr ₂ O ₇ decomposes readily on heating to form Cr ₂ O ₃ , steam and an inert colourless gas. www.SmashingScience.org Patrick Brannac Page 242 of 703

a red solid that behaves like hydrated serve when crystals of Co(NO ₃)2•6H ₂ O are	rongly.	1/www.SmashingScience.org increases down the group.	[2]	[Total: 8] 0# 2/www.SmashingScience.org e hydroxides of the Group 2 elements vary	Ε	
(c) Hydrated cobalt(II) nitrate, Co(NO ₃) ₂ •6H ₂ O, is a red solid that behaves like hydrated magnesium nitrate, Mg(NO ₃) ₂ •6H ₂ O, when heated. Describe in detail what you would expect to observe when crystals of Co(NO ₃) ₂ •6H ₂ O are	heated in a boiling tube, gentiy at first and then more strongly	Topic: Chem 27 Q# 258/ ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org (d) Explain why the thermal stability of the Group 2 nitrates increases down the group.		[Total: 8] Topic: Chem 27 Q# 259/ ALvI Chemistry/2020/w/T2 1/Paper 4(b)/Q# 2/www.SmashingScience.org (ii) State and explain how the solubilities of the hydroxides of the Group 2 elements vary down the group.		
	[Total: 15] tce.org ends in thermal stability.		Ince.org	E	ite aqueous solutions	E
Construct an equation for the thermal decomposition of $(NH_4)_2 Cr_2 O_7$	[Total: 15] Topic: Chem 27 Q# 256/ ALvl Chemistry/2021/s/T21/Paper 4/Q# 1/www.SmashingScience.org 1 (a) The carbonates and hydroxides of Group 2 elements show similar trends in thermal stability		Topic: Chem 27 Q# 257/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org 1 (a) The most common oxidation states of cobalit are +2 and +3. Commlete the electronic configurations of the following free ions		Co ²⁺ and Co ³⁺ both form complexes with edta ⁴⁻ . $ \frac{half-equation}{Co^{3+} + e^{-} \rightleftharpoons Co^{2+} + 1.82} + 1.82} $ $ \frac{0_{2} + 4H^{+} + 4e^{-} \rightrightarrows 2H_{2}O + 1.23}{[Co(edta)]^{2-} + 0.38} $ Use the data in the table to predict what happens, if anything, when separate aqueous solutions of Co ³⁺ and [Co(edta)] ⁻ are left to stand in the air.	ta)T
(ii) Construct an equation for	Topic: Chem 27 Q# 256/ ALvl Chemistry/ 1 (a) The carbonates and hydro		lopic: Chem 27 Q# 257/ ALvl Chemistry/ 1 (a) The most common oxidation Commlete the electronic com	• Co ²⁺ [Ar]	(b) Co^{2*} and Co^{3*} both form complexes with edta ⁴⁻ . half-equation $Co^{2*} + e^{-} \rightleftharpoons Co^{2*}$ $O_{2} + 4H^{+} + 4e^{-} \rightleftharpoons 2H_{2}^{1}$ $O_{2} + 4H^{+} + 4e^{-} \rightleftharpoons 2H_{2}^{1}$ $Co(edta)]^{-} + e^{-} \oiint [Co(edta)]$ Use the data in the table to predict what happens, of Co^{3*} and $[Co(edta)]^{-}$ are left to stand in the air. aqueous solution of Co^{3+}	aqueous solution of [Co(edta)]

C TI I DNIIHSYMS

(ii) The sulfates of Group 2 elements become less soluble down the group. Explain this trend.		Topic: Chem 27 Q# 262/ ALvI Chemistry/2019/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org 6 The elements in Group 2 include magnesium, calcium, strontium and barium. (b) The Group 2 metal nitrates decompose when heated. (iii) Describe and explain the variation in thermal stability of the Group 2 metal nitrates down the group.	(c) Describe and explain the variation in the solubility of the Group 2 metal sulfates down the group.		[Total: 12]	
Topic: Chem 27 Q# 260/ ALvI Chemistry/2020/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) Describe and explain the trend in the solubility of the Group 2 hydroxides down the group.	[4]	Group 2 hydroxides decompose on heating to give the corresponding metal oxide and water vapour. (ii) Suggest which of Mg(OH) ₂ and Sr(OH) ₂ will decompose at a lower temperature. Explain your answer.	[Total: 6]	Topic: Chem 27 Q# 261/ ALvI Chemistry/2020/m/T2 2/Paper 4/O# 2/www.SmashingScience.org 2 (a) Group 2 metals form stable carbonates and sulfates. (i) State and explain the trend in the thermal stability of the Group 2 carbonates down the group.		[2]

Page **246** of **703**

Patrick Brannac

www.SmashingScience.org

Page 245 of 703

e.org

Patrick Brannac

Topic: Chem 27 Q# 263/ ALvl Chemistry/2019/s/T21/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Group 2 nitrates decompose when heated.	chemistry/2019/s/ decompose whe	'TZ 1/Paper 4/Q# en heated.	¢ 2/www.Smashin	gScience.org	(i) Explain why the solubility of the Group 2 hydroxides, $M(OH)_{2i}$ increases down the group.
Write an equation for the decomposition of strontium nitrate	n for the decomp	oosition of stror	ntium nitrate.		
				[1]	
(b) Describe and explain how the thermal stability of Group 2 nitrates changes with atomic number.	plain how the th	nermal stability	/ of Group 2 nit	trates changes with increasing	[2]
					(ii) Suggest a reason for the general decrease in the solubility of the Group 2 carbonates, MCO_{3} , down the group.
				S	[1]
				[3]	(iii) When carbon dioxide is passed through a saturated solution of calcium hydroxide (limewater), a white precipitate of calcium carbonate is formed.
(c) The variation in the thermal stability of Group 2 amides is similar to that of Group 2	he thermal stabi	lity of Group 2	amides is simil	ar to that of Group 2 nitrates.	Use the data in the table to deduce, for each of Mg. Sr and Ba, whether or not a saturated solution of its hydroxide could also be used to test for carbon dioxide. Explain your answer No calculations are remined
(i) Suggest whe barium amid	Suggest whether calcium amide, Ca(NH ₂) ₂ , V barium amide, Ba(NH ₂) ₂ . Explain your answer.	mide, Ca(NH ₂) plain your answ) ₂ , will decompr ver.	Suggest whether calcium amide, $Ca(NH_{2})_{2}$, will decompose more or less readily than barium amide, $Ba(NH_{2})_{2}$. Explain your answer.	
				E	
(ii) Ba(NH ₂) ₂ deco only products.	composes when s.	heated to for	m barium nitrid	${\sf Ba}({\sf NH}_2)_2$ decomposes when heated to form barium nitride, ${\sf Ba}_3{\sf N}_2$, and ammonia as the only products.	
Write an equ	Write an equation for this reaction.	action.		E	Chemistry/2018/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org ange of solution, ΔH_{sd}^{*} , of the Group 2 sulfates becomes more endot
Topic: Chem 27 Q# 264/ ALV Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org 2 (a) The following table lists the solubilities of the hydroxides and carbonates of some elements, M, at 25°C.	chemistry/2019/m e lists the solubilit 5 °C.	/TZ 2/Paper 4/Q lies of the hydro	(# 2/www.Smashii xides and carbor	m 27 Q# 264/ ALM Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org The following table lists the solubilities of the hydroxides and carbonates of some of the Group 2 elements, M , at 25°C.	down the group. State and explain the trend in the solubility of the Group 2 sulfates down the group.
	N transla	solubility	solubility/moldm ⁻³		
		M(OH) ₂	MCO ₃)	
	Mg	2.0 × 10 ⁻⁴	1.5×10^{-3}		
	Ca	1.5×10^{-2}	1.3×10^{-4}		
	Sr	3.4×10^{-2}	7.4×10^{-5}		
	Ba	1.5×10^{-1}	9.1 × 10⁻⁵		[3]

www.SmashingScience.org

Patrick Brannac

Page 247 of 703

0	
0	
_	
പ	
Ö	
~	
<u>e</u> .	
.8	
(0)	
- 60	
_	
7.0	
co.	
_	
ŝ	
2	
2	
2	
~	

State and explain the variation in the decomposition temperatures.

	Topic: Chem 27 Q# 267/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org [3] 1 (a) (i) State how the solubilities of the hydroxides of the Group 2 elements vary down the group. [1] [1] (ii) Explain the factors that are responsible for this variation.		Metal peroxides contain the ^{-O-O} ion. The peroxides of the Group 2 elements, MO ₂ , decompose on heating to produce a single gas and the solid oxide, MO, only. (i) Write an equation for the thermal decomposition of strontium peroxide, SrO ₂ .	(ii) Suggest how the temperature at which thermal decomposition of MO ₂ occurs varies down Group 2. Explain your answer.
--	--	--	--	---

(d) (i) The ethanedioates of the Group 2 elements, MC_2O_4 , decompose on heating to produce a mixture of two different gases and the solid oxide, MO, only.

Complete the equation for the thermal decomposition of barium ethanedioate.

+ + $BaC_2O_4 \rightarrow$

[]

Topic: Chem 27 Q# 268/ ALVI Chemistry/2017/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) The table lists values of solubility products, K_{sp} , of some Group 2 carbonates.

_			
solubility product in water at 298 K, K₅µ/mol²dm⁻⁵	1.0×10^{-5}	5.0×10^{-9}	1.1×10^{-10}
	MgCO ₃	CaCO ₃	SrCO,

(d) (i) Magnesium nitrate decomposes at a lower temperature than barium nitrate.

÷ 1	
\geq	
-	
-	
~	
~	
_	
<u> </u>	
-	
0	
_	
0	
~	
<u>.</u>	
ш	
_	

		_	
1	:	2	A sample of barium nitrate was heated strongly until no further change occurred. A white solid was formed.
:	:	<u> </u>	.±
1			<u>-</u>
1	:		3
1			-
			\triangleleft
÷			
:	:	:	0
	:		ā
1			£
:	:	:	
1			
÷ .			×
÷ .			ĕ
			0
			e U
:	:	:	Ō
:	:	:	Ë.
1	:	:	8
÷ .			2
			23
			0
:	:		5
	:		ē
:	:		
1		1	E
			-
1			4
			0
	:		Ĕ
:	:		
	:		
1			ŧ
÷ .			1
÷			_
			>
:	:		-
	:		2
1			<u> </u>
÷			0
			1
	:		ŝ
:	:	:	-
	:		0
:	:	:	e
1			100
1			iii ii
÷ .			¥
			<u> </u>
			S
	:		co.
:	:		2
1			-
:			Φ
1			Et .
1			10
1			4
			1
1	:	1	-
1	:	:	E
	:	:	_
1			
1			⊑ ŭ
1			e e
1			9 E
	:		4 2
	:		0 2
:	:	1	41 14
:	1		a s
1			o e
1			<u> </u>
1			
:	:		
:	:	:	s 🔚
			A sample of bariu solid was formed
			A S

(11)

Write an equation for the action of heat on barium nitrate.

_	
_	- 2
Ľ.	(
_	
	_
:	
- i	
	۰ N
:	
	_
:	
	-
	- 7
	-
	_
	- 7
	_
	- 7
	-
	- 7
	_
	- 2
	- 4
	- 75
	-
	- +
	- +
:	
	- 7
	- 7
	- 2
:	
1	
1	- +
1	
1	
	- 7
	When weter was added to the white colid produced in (JVii) on alleding colution was
1	
	<

(iii) When water was added to the white solid produced in (d)(ii), an alkaline solution was produced. Adding sulfuric acid to this solution produced a white precipitate.

Write equations to explain these observations.

[2]	[]
	[Total: 11
:	

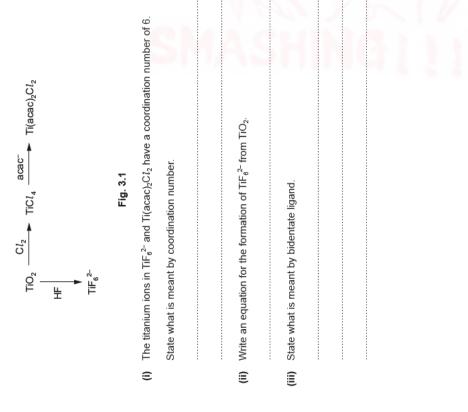
143	
HK	
CO CO M	

Page 250 of 703

Contraction

Page 249 of 703

Patrick Brannac


Topic: Chem 27 Q# 269/ ALvl Chemistr 1 (a) Describe and explain the	Topic: Chem 27 Q# 269/ ALM Chemistry/2017/s/T2 1/Paper 4/O# 1/www.SmashingScience.org 1 (a) Describe and explain the variation in the solubilities of the hydroxides of the Group 2 elements.	ngScience.org oxides of the Group 2 elements.	Topic: Chem 27 Q# 271/ ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) Limewater is a saturated solution of Ca(OH) ₂ in water. It is used to test for the presence of CO ₂ in a gaseous mixture.
			(i) Write an equation for the reaction between limewater and CO ₂ .
			A saturated solution of Ba(OH) ₂ can be used instead of Ca(OH) ₂ to test for CO ₂ . A saturated solution of Mg(OH) ₂ cannot be used for this test.
			(ii) Explain why a saturated solution of Ba(OH) ₂ can be used to test for CO ₂ .
Topic: Chem 27 Q# 270/ ALVI Chemistr 2 (a) When copper(II) carbor carbonates. Predict what would be ol	Topic: Chem 27 Q# 270/ ALvI Chemistry/2016/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) When copper(II) carbonate is heated strongly, it decomposes in a similar way to Group 2 carbonates. Predict what would be observed when anhydrous copper(II) carbonate is heated.	ingScience.org es in a similar way to Group 2 arbonate is heated.	 [1] [1] Explain why a saturated solution of Mg(OH)₂ cannot be used to test for CO₂.
(b) Describe and explain ho	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	[1] 2 carbonates varies down the	
group.			(b) Describe and explain the trend in the thermal stabilities of the carbonates down Group 2.
		3	
(ii) CaCN ₂ decomposes ammonia only.	CaCN ₂ decomposes readily on contact with water forming an insoluble white solid ammonia only.	ng an insoluble white solid and	[3]
Suggest an equation for this reaction	on for this reaction.	[Total: 8]	(c) Nickel carbonate, NiCO ₃ , decomposes on heating. Use the <i>Data Booklet</i> to explain whether NiCO ₃ will decompose more or less readily than CaCO ₃ .
			[Total: 9]
www.SmashingScience.org	Patrick Brannac	Page 251 of 703	www.SmashingScience.org Patrick Brannac Page 252 of 703

27 Q# 272/ ALvl Chemistry/20: :ments, V and W, are in adja	Topic: Chem 27 Q# 272/ ALvI Chemistry/2016/m/T22/Paper 4/Q# 6/www.SmashingScience.org 6 Two elements, V and W, are in adjacent groups in the Periodic Table.		Topic: Chem 27 Q# 274/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (b) (i) Describe and explain the trend in the thermal stabilities of the nitrates of the Group II elements down the group.
oxygen to form an ac	V reacts with oxygen to form an acidic gas, X. V forms an anion with formula VO_m^{-} .		
h oxygen to form an ac	W reacts with oxygen to form an acidic gas, Y. W forms an anion with formula $\mathrm{WO}_{a^{2-}}^{2-}$		
of WO _n ²⁻ forms a white	A solution of WO_n^{2-} forms a white precipitate with Ba ²⁺ (aq) but shows no visible reaction with $Mg^{2+}(aq)$.	tion with	
(a) Complete the table below.			
	identity or value		[3]
>			When lithium nitrate, LiNO ₃ , is heated, it readily decomposes giving off a brown gas. This reaction is similar to that which occurs when manuscian nitrate is heated but if does not occurs
×			reaction is similar to triat which occurs when magnesian music is reaced, put it does not occur with other Group I nitrates.
E			(ii) Suggest an equation for the action of heat on LiNO ₃ .
w	V		
Y			
c		[3]	(iii) Suggest why the Group I nitrates other than LiNO ₃ do not decompose in this way when heated.
ng to enthalpy change visible reaction with	(b) By referring to enthalpy changes, explain why WO _n ²⁻ forms a white precipitate with Ba ²⁺ (aq) but shows no visible reaction with Mg ²⁺ .	*(aq) but	[1] [1]
		E	Topic: Chem 27 Q# 275/ ALvl Chemistry/2013/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) Gaseous ammonia reacts with gaseous hydrogen chloride to form solid ammonium chloride.
		[]	$NH_3 + HCI \rightarrow NH_4CI$
. 73/ ALvI Chemistry/20: en anhydrous calciurr tifv this white solid ar	Topic: Chem 27 Q# 273/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) (i) When anhydrous calcium nitrate is heated strongly, it decomposes to leave a white solid Identify this white solid and suppost another observation for this reaction	white solid.	The bonding in ammonium chloride includes ionic, covalent and co-ordinate (dative covalent) bonds. (b) When a sample of dry ammonia is needed in the laboratory, the gas is passed through a tower containing lumps of solid calcium oxide. CaO.
		Ξ	(i) Suggest why the usual drying agent for gases, concentrated H ₂ SO ₄ , is not used for ammonia.
The ease of thermal decc Explain this trend.	The ease of thermal decomposition of the Group II nitrates decreases down the group. Explain this trend.	the group.	(ii) Write an equation for the reaction between CaO and H ₂ O.
			(iii) Suggest why CaO rather than MgO is used to dry ammonia.
		[2]	
www. Smashing Science.org	Patrick Brannac Page 253 of 703	SMASSHING LI	www.SmashingScience.org Patrick Brannac Page 254 of 703

(c) ((i) Write an equation showing the thermal decomposition of calcium nitrate, $Ca(NO_3)_2$.	(b) The TiO ²⁺ ion forms when TiO ₂ reacts with an excess of sulfuric acid.
(j	(ii) State and explain how the thermal stabilities of the nitrates vary down Group II.	TiO ²⁺ can be reduced by zinc metal in acidic conditions to form a purple solution containing Ti ³⁺ (aq). (i) TiO ²⁺ (aq) is a colourless ion.
		Suggest why.
	[4]	[2]
Topic: 6	Topic: Chem 27 Q# 276/ ALvI Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	 (ii) Give the electronic configuration of an isolated Ti³⁺ ion. 1s²
(e)	Describe and explain the trend in the solubilities of the sulfates of the elements in Group II.	$$ an ionic equation for the reduction of $\widehat{\mathrm{TiO}^{2*}}$ by zinc metal in acidic conditions.
1		(c) Acidified Ti ³⁺ (aq) reacts with oxygen dissolved in water as shown.
L.		$4Ti^{3+} + O_2 + 2H_2O \rightarrow 4TiO^{2+} + 4H^+ \qquad \Delta G^* = -436.1 \text{ kJ moF}^1$
a 1		The standard reduction potential, E^{\bullet} , of $O_2 + 4H^{+} + 4e^{-} \rightleftharpoons 2H_2O$ is +1.23 V. (ii) When aqueous citrate ions, $C_{0}H_{5}O_{7}^{3+}$, are added to $Ti^{3+}(aq)$, the $[Ti(C_{0}H_{5}O_{7})_{2}]^{3-}(aq)$ complex forms.
a t	[4]	Explain, in terms of d-orbitals, why Ti ³⁺ is able to form complex ions.
	[Total: 18] Tonic: Cham 28 O# 277/ Mul Chomistry/2003 /m /771/Broord / (0# 3 /www.constitutesingson or and	
3 II 5	Tatanium is a transition element in Period 4. It is commonly found as TiO ₂ in minerals.	(iii) Acidified $[Ti(C_6H_5O_7)_2]^{3-}$ (aq) does not react with oxygen dissolved in water, unlike acidified Ti^{3+} (aq).
-		Suggest what this means for the value of the standard reduction potential, E° , of the following half-cell.
		$[\mathrm{Tr}(C_6H_5O_7)_2]^{2-}(aq) + e^- \rightleftharpoons [\mathrm{Tr}(C_6H_5O_7)_2]^{3-}(aq)$
	(ii) Identify two typical properties of transition elements.	Explain your answer.
	1 2 [1]	[1]
<u>N</u>	www.SmashingScience.org Patrick Brannac Page 255 of 703	www.SmashingScience.org Patrick Brannac Page 256 of 703

The anion, acac⁻, is a bidentate ligand.

E

[]

(iv) $Ti(acac)_2Ct_2$ shows both optical and geometrical (cis/trans) isomerism.

Ti(acac) $_2$ C l_2 exists as three stereoisomers.

The structure of one stereoisomer of $TI(acac)_2 CI_2$ is shown in Fig. 3.2.

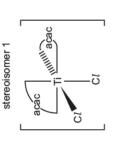
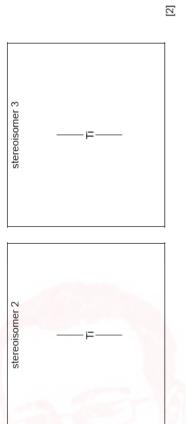



Fig. 3.2

(v) The acac⁻ anion is symmetrical.

[2]

Deduce which, if any, of stereoisomers 1, 2 and 3 in (d)(iv) are polar. Explain your answer.

	[2]
:	<u> </u>
1	
:	
	1
:	:
:	:
:	:
:	:
	1
-	
	1
	1

[Total: 19]

		1	A	111
C	6	5	X	SHING
Y	1	A	1	SMAS

Page **257** of **703**

Page 2

Patrick Brannac

Topic: Chem 28 Q# 280/ ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 6/www.5mashingScience.org 6 An excess of sodium iodide is added to a solution of copper(II) sulfate. Iodine and a white precipitate of copper(I) iodide are formed.	(a) Write an equation for the reaction that occurs.	[1]	(b) (i) Explain why the copper(II) sulfate solution is coloured.		[4]	(ii) Suggest why the precipitate of copper(I) iodide is white.	(c) Use suitable <i>E</i> [*] values from the <i>Data Booklet</i> to predict whether iodide ions can reduce Cu ²⁺ to Cu ⁺ under standard conditions. Explain your answer.		(d) An excess of sodium iodide is added to copper(II) sulfate solution. Copper(I) iodide forms as a precipitate. After precipitation, [Cu ⁺] is much lower than 1.0 moldm ⁻³ .	Use this information and your answer to (c) to explain how the relevant electrode potentials change and hence why I^- ions can reduce Cu^{24} ions.	[2]	www.smashingScience.org Patrick Brannac Page 260 of 703
with) ₃ -,					[1]		[2]			IT I BUILISYNS
.SmashingScience.org d by the reaction of Cu ²⁺ ions v		ontaining thiosulfate ions, S ₂ C	e 3d orbitals.				SmashingScience.org talysed by Fe ³⁺ ions.					Page 259 of 703
/2022/m/T2 1/Paper 4/Q# 1/www i in a solution can be determine	$2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$	The I_2 produced in reaction 1 is titrated against a solution containing thiosulfate ions, $S_2O_3^{2-}$ using a suitable indicator.	$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$ (II) both contain electrons in all fiv	Sketch the shape of a $3d_{yy}$ orbital on the axes provided.	N	×	 /2022/m/T2 1/Paper 4/Q# 1/www :rsulfate ions, S₂O8²-, can be ca	$2I^{-} + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$ w Fe ³⁺ catalyses this reaction.				Patrick Brannac
Topic: Chem 28 Q# 278/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) The concentration of Cu^{24} (aq) in a solution can be determined by the reaction of Cu^{24} ions with I ⁻ ions.	reaction 1 2	The I_2 produced in reaction 1 using a suitable indicator.	reaction 2 $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$ (iii) Copper(I) and copper(II) both contain electrons in all five 3d orbitals.	Sketch the shape of a 3d			Topic: Chem 28 Q# 279/ ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.5mashingScience.org (d) The reaction of I ⁻ ions with persulfate ions, $S_2O_8^{2-}$, can be catalysed by Fe^{3+} ions.	2I ⁻ + $S_2O_4^{2-} \rightarrow I_2 + 2SO_4^{2-}$ Write equations to show how Fe ³⁺ catalyses this reaction.				www.SmashingScience.org

		[2]		[1]		r the bidentate cometrical and		Ē	(en) ₂] ²⁺ .									[2]	[Total: 14]			C
						reviation en is used fo ex ion shows both ge			l isomers of [Co(NH ₃) ₂					Co								
f NaC <i>l</i> (aq)			at occurs in (b)(iii) .			(NH ₃) ₂ (en) ₂] ^{24.} The abb H ₂ CH ₂ NH ₂ . The comple	nd.		ams for the two optica	ented using N N.												
(iii) $[Co(H_2O)_6]^{2+}$ and an excess of NaCI(aq)	equation	odservation	(iv) Name the type of reaction that occurs in (b)(iii)			(c) Cobalt forms the complex ion [Co(NH ₃) ₂ (en) ₂] ²⁺ . The abbreviation en is used for the bidentate ligand 1,2-diaminoethane, H ₂ NCH ₂ CH ₂ NH ₂ . The complex ion shows both geometrical and optical isomerism.	(i) Define the term bidentate ligand.		(ii) Draw three-dimensional diagrams for the two optical isomers of [Co(NH ₃) ₂ (en) ₂] ²⁺	Each en ligand can be represented using N				S								
		[1]		nplex.							[2]		ch of NaOH(aq),	t can be made ining product.				[2]		Ē	[7]	đ
imashing Science.org	-2-	oxidation state =	ond angles.	e of the $[MnCl_4]^{2-}$ cor			S	M	À	S	H	Co(H ₂ O) ₆] ²⁺ .	vith an excess of eac	one observation that the of the cobalt-conta								
2021/w/TZ 1/Paper 4/Q# 5/www.S	Deduce the oxidation state of manganese in $[MnCl_4]^2$	oxi	The [MnC I_4] ^{2–} complex does not contain any 180° bond angles.	Draw a three-dimensional diagram to show the shape of the [MnC l_4] 2 - complex.	on your diagram.			чW				A solution of cobalt(II) sulfate contains the complex ion $[\text{Co}(\text{H}_2\text{O})_{6}]^{2+}$	A solution containing $[Co(H_2O)_{6}]^{2+}$ is reacted separately with an excess of each of NaOH(aq), NH ₃ (aq) and NaCI(aq).	Write an equation for each of these reactions. State one observation that can be made immediately after the reaction, include the colour and state of the cobalt-containing product.	xcess of NaOH(aq)			xcess of NH ₂ (ad)				
Topic: Chem 28 Q# 281/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) [MnC I_4] ²⁻ is a complex ion.	(i) Deduce the oxidation s		(ii) The $[MnCl_4]^{2-}$ complex	Draw a three-dimensic	State one bond angle on your diagram.							(b) A solution of cobalt(II) sulf	A solution containing [Co(F NH ₃ (aq) and NaC <i>t</i> (aq).	Write an equation for eau immediately after the react	(i) $[Co(H_2O)_6]^{2+}$ and an excess of NaOH(aq)	equation	observation	(ii) [Co(H_O)]_1 ²⁺ and an excess of NH-(ad)		observation		

Topic: Chem 28 Q# 282/ ALvl Chemistry/2021/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Samples of [Cu(H ₂ O) ₆] ²⁺ are reacted separately with an excess of aqueous sodium hydroxide or with an excess of aqueous ammonia.	(c) The reaction between $S_2O_8^{2-}(aq)$ and $I^{-}(aq)$ is catalysed by adding a few drops of $Fe^{3+}(aq)$. (i) Use equations to show the catalytic role of Fe^{3+} in this reaction.
Give the following information about these reactions.	
(i) reaction 1: $[Cu(H_2O)_{al}^{24}$ with an excess of aqueous of sodium hydroxide	
colour and state of the copper-containing species	
ionic equation	 (ii) Fe³⁺(aq) can oxidise I⁻(aq), whereas [Fe(CN)_al³⁻(aq) cannot oxidise I⁻(aq).
type of reaction [3]	Use E^{\bullet} values to explain these observations.
(ii) reaction 2: [Cu(H ₂ O), ₆ l ²⁴ with an excess of aqueous ammonia	
colour and state of the copper-containing species	
ionic equation	
type of reaction [3]	[2]
(b) Copper(I) oxide is added to hot dilute sulfuric acid. A blue solution, X, and a red-brown solid, Y. form.	(d) When aqueous solutions of S ₂ O ₈ ²⁻ and tartrate ions are mixed the reaction proceeds very slowly. However, this reaction proceeds quickly in the presence of an Fe ³⁴ (aq) catalyst. The overall equation for this reaction is shown.
Suggest the identities of X and Y. Name the type of reaction.	tartrate ions OH
X	-0_2C $+3S_2O_8^{2-} + 2H_2O \rightarrow 2CO_2 + 2HCO_2^{-} + 6H^{+} + 6SO_4^{2-}$
tvpe of reaction	Ч
	(i) Suggest why this reaction is slow without the Fe^{3+} catalyst.
Topic: Chem 28 Q# 283/ ALVI Chemistry/2021/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) (i) Define the term <i>transition element</i> .	[1]
	Topic: Chem 28 Q# 284/ ALvl Chemistry/2021/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org
[1]	
(ii) State how the melting point and density of iron compare to those of calcium.	tartaric acid
	HOLCOLH
E	HO
www.SmashingScience.org Patrick Brannac Page 263 of 703	www.SmashingScience.org Patrick Brannac Page 264 of 703

(ii) Tartaric acid reacts with the amine 1-phenylethylamine, $C_6H_6CH(NH_2)CH_3$, to form an ionic salt.

Draw the structure of the salt formed in this reaction. Include the charges on the ions.

Topic: Chem 28 Q# 286/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Explain why chromium complexes are coloured. [4]

(b) Four different compounds can be obtained when anhydrous chromium(III) chloride reacts with water under various conditions. When samples of each compound are reacted separately with aqueous silver nitrate, different amounts of silver chloride are precipitated. The precipitation leaves the complex ions P, Q, R and S in solution.

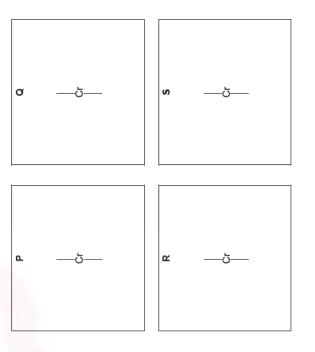
[1]

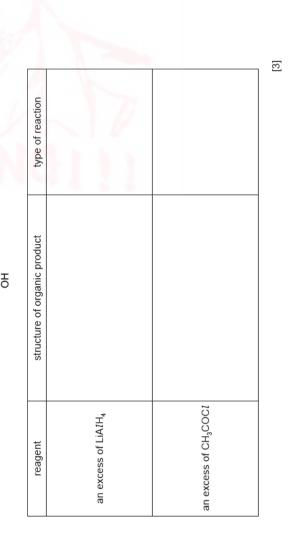
[Total: 17]

(e) (i) Complete the following table to show the structures of the organic products formed when

Topic: Chem 28 Q# 285/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

tartaric acid reacts separately with each reagent. Identify each type of reaction.


tartaric acid


НО

HO,C

property of complex ion	non-polar	polar	polar	non-polar
complex ion	Р	ð	R	s
moles of AgC <i>1</i> precipitated per mole of complex ion	3	2	Ļ	Ļ
formula of compound	CrCl ₃ (H ₂ O) ₆	CrCl ₃ (H ₂ O) ₅	CrC1 ₃ (H ₂ O) ₄	CrC1 ₃ (H ₂ O) ₄

(i) Draw three-dimensional diagrams for the structures of complex ions P, Q, R and S. Include the charges for each complex ion.

Page 266 of 703

Patrick Brannac

LI TI DUUISSU

www.SmashingScience.org

Page **265** of **703**

Patrick Brannac

non-polar.
<u>s</u>
S
ion
complex
it why
Sugges
(ii)

	te al II	[1] as.
 (c) The structure of picolinic acid is shown. picolinic acid picolinic acid picolinic acid picolinic acid picolinic acid is a bidentate ligand, Z. (i) Define the term <i>bidentate ligand</i>. (ii) Draw the structure of Z. 	 [1] [1] Z reacts with aqueous chromium(III) ions, [Cr(H₂O)₆]³⁺, in a 3:1 ratio to form a new neutral complex. State the coordination number and the geometry of the chromium(III) centre in the complex. 	 coordination number geometry geometry (I) (d) (NH₄)₂Cr₂O₇ decomposes readily on heating to form Cr₂O₃, steam and an inert colourless gas. (i) Deduce the oxidation numbers of chromium in (NH₄)₂Cr₂O₇ and in Cr₂O₃. (NH₄)₂Cr₂O₇

Chem 28 Q (a) Carbol

		Ē
satraplatin	$C_{C_{1}}^{(1)} \rightarrow O_{1}^{(1)} \rightarrow O_{1}^{(1)$	
carboplatin	(ii) Suggest the geometry of the platinum centre in the carboplatin complex.	
	(

(iii) Suggest why carboplatin does not show cis-trans isomerism.

 (iv) Satraplatin is a neutral complex, containing the ligands CH₃CO₂⁻, C₆H₁₁NH₂, C<i>1</i>⁻ and NH₃. Deduce the oxidation state of platinum in satraplatin. 	
--	--

	Copic: Chem 28 Q# 288/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org	4 THE DATE OF THE OF TH
--	--	---

(a) State the meaning of transition element.

	_
	<u>_</u>
:	
:	
:	:
:	
:	
	1
1	1
:	:

	:
•	
	:
•	
	:
•	
	:
	:
:	:
:	:
•	
	:
	:
	:

	· · · · · · · · · · · · · · · · · · ·

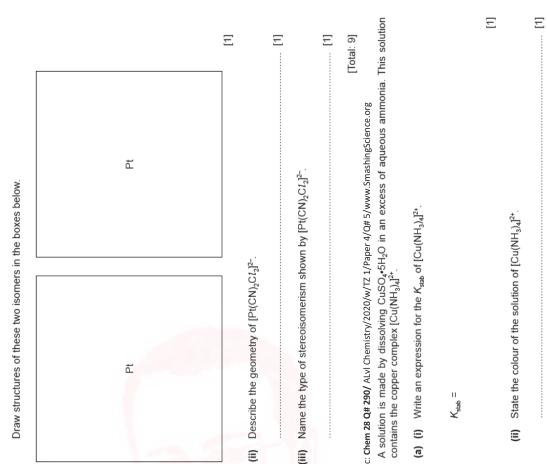
	· · · · · · · · · · · · · · · · · · ·
	单子 医子子的 医水杨素 医液体 医液体 医尿道 医胃尿道 医胃尿道 医外外的 医外外的 医鼻子 网络马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马
	· · · · · · · · · · · · · · · · · · ·
	医外外外 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化
	单子 计分子子 医骨骨 医马马马 医子子子 化分子子 医骨骨 医马马氏 医丁二氏 医丁二氏 医丁二氏 网络白垩 医鼻子
	医外外外的 医骨骨 医白白 化化合金 化化合金 化化合金 化化合金 化合金 化合金 医外外的 化化化合金 医外外的
	单行 计 医外外 医结肠 医 法 法有 医 计分子 化 化分子 医 医 医 医 医 医 计分子 化 医 医 医 医 医 医 医 医 医 医 医 医 化 化 化 化 化 化
	学行 化水合合 医脊髓炎 医结肠 化化化合合合物 化化合物 化化合物 化合物 化合物 化合物 化合物 化合物 化
	学行 化水杨烯 医脊骨 医皮肤 医白 医子子 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化
	单行 化水杨油 医脊髓 医血液 医水子 化化分子 化化分子 化化分子 医外外的 医外外的 化化合物 化化合物 化化合物 化化合物 化化合物 化化合物
	医外外外 医脊髓炎 医皮肤 医白细胞 化化合物 化化合物 化化合物 医外外的 医外外的 化化化合物 医外外的 化化合物 化化合物 化化合物 化化合物 化化合物 化化合物 化化合物 化化合
	医外子骨 医周周 医血液 法 医子子 化分子 医外外 医外外 医生物 法法 医外外 化分子 医皮肤 医血液 医白白 网络白白 网络白白 网络白白
	医外外外骨 医外周 医白 医白 医白白 医白白 医白白 医白白白 医白白白 医白白白 医白
	医外外外 医外周 医外周 医外周 医外外的 化化合物 医外外 医外外 医外外外 医外外 医外外 医白白白白白白白白白白白白白白白白
	医外外骨骨 医外周 医白白 医小白白 医白白白 医白白白 医白白白 医白白白 医白白白 医白白白
	医牙后角骨的 医皮肤 医皮肤 经资格 计存储器 化合物 医生物 医生物 医生物 医生物 医生物 医生物 医生物 医生物 医生物 医生
	医外外外骨的 化化甲基 医外外 化化分子 化分子 化化合金 医外外 医外外 医外外外的 化化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化合金 化化
	医牙后角骨的 医皮肤 医皮肤 经资格 计存储器 化合物 医生物 建合物 化化物 化化物 化化物 医生物 医生物 医生物 医外外 化化物 医生物 医生物 医生物 医生物 化化物
	医牙后肠骨的 化氟化物 化化化物 化化化物 化化化物 化化物 化化物 化化物 化化物 化化物
	医牙结肠管 化 医肠管 化乙基基 化过程 医外外 医外外 医外外 医外外 医外外 医外外 医外外 医白白白 网络白白 网络金属 化化合物 医外外的 化化合物 化合物 化合物
	医牙后肠骨的 化氯化化 化氯化 化化化化化化化化化化化化化化化化化化化化化化化化化化化化

G	LI I DNIHSVWS
	Page 268 of 703

Patrick Brannac

www.SmashingScience.org

(ii) [Fe(edds)] ⁺ is red and [Fe(edta)] ⁻ is yellow.	Explain why the two complexes have different colours.		[2] When edds⁴ (aq) is added to Fe³⁴ (aq), the following reaction occurs.	$[Fe(H_2O)_6]^{3+}(aq) + edds^{4-}(aq) \rightleftharpoons [Fe(edds)]T(aq) + 6H_2O(I)$	(iv) Write an expression for the stability constant, K _{ean} , of [Fe(edds)]'(aq).		K _{stab} =		E	(v) The table shows the values for the stability constants, K_{stab} , of both complexes.	complex K _{sab} /mol ⁻¹ dm ³ [Fe(edds)] 3.98 × 10 ²⁰ [Fe(edda)] 1.26 × 10 ²⁵	Predict which of the [Fe(edds)] ⁻ and [Fe(edta)] ⁻ complexes is more stable.	Explain your answer with reference to the $K_{ m stab}$ value for each complex.						www.SmashingScience.org
d orbitals	ctahedral				III							[2]	0.					Fe(edds)] ⁻ .	of 703 SPACEFING111
rate. In complexes, the (urbital energy levels in o			tateshadral	complex		nedral complex thedral complex.		higher energy level	z —	×		complexes with Fe ³⁴ (aq	edta⁴∽ 	N 002-	CO2-	respectively.	nd to the Fe ³⁺ ion in [Fe(6	Page 269 of
ion metal ion are degene	v the arrangement of d o		degenerate d orbitals	icolated transition	metal ion	tals:	rr energy level in an octal er energy level in an octa		higher				nds that form octahedral	-co-		٢	e(edds)] ⁻ and [Fe(edta)] ⁻	ach atom that forms a bor	Patrick Brannac
(b) The d orbitals in an isolated transition metal ion are degenerate. In complexes, the d orbitals occupy two energy levels.	(i) Complete the diagram to show the arrangement of d orbital energy levels in octahedral and in tetrahedral complexes.	•	energy		complex	(ii) Sketch the shape of two d orbitals:	 one d orbital from the lower energy level in an octahedral complex one d orbital from the higher energy level in an octahedral complex. 	Use the axes below.	lower energy level	z —	×	_	(c) Edds ⁺ and edta ⁺ are polydentate ligands that form octahedral complexes with $Fe^{34}(aq)$.	edds ⁴⁻	-02C H H CO2-	-c02-	The formulae of the complexes are [Fe(edds)]- and [Fe(edta)]- respectively.	(i) On the diagram of edds ⁺ , circle each atom that forms a bond to the Fe ²⁺ ion in [F	www.SmashingScience.org


 $[Fe(edds)]^{(aq)} + edta^{(aq)} \rightleftharpoons [Fe(edta)]^{(aq)} + edds^{(aq)}$

Calculate the equilibrium constant, $K_{\rm co}$ for this equilibrium, using the $K_{\rm stab}$ values given in the table in (c)(v).

K ₅ =
m 28 Q# 289/ ALvI Ch When 1.0 mol dm ⁻³ P, is formed. S ₂ O ₃ (i) Define the terr Give the formu When 1.0 mol dm ⁻³ linear complex, Q, concentration of P. (i) Write an equal in the mixture.

(iii) Name the type of reaction in which P forms Q.

- (c) Platinum forms a complex ion with the formula $[Pt(CN)_2 CI_2]^{2-}$. In this complex ion the carbon atom of each CN⁻ ligand bonds to the platinum ion. This complex shows stereoisomerism.
- There are only two isomers of this complex.

CARAN

Page 272 of 703

Patrick Brannac

www.SmashingScience.org

Ξ

The solution of $[Cu(NH_3)_4]^{2+}$ remains in solution and son	The solution of $[Cu(NH_3)_4]^{2*}$ is heated gently in a fume cupboard so that NH_3 is release remains in solution and some forms NH_3 gas. The colour of the solution changes; a	The solution of [Cu(NH ₃) ₄] ²⁺ is heated gently in a fume cupboard so that NH ₃ is released. Some NH ₃ remains in solution and some forms NH ₃ gas. The colour of the solution changes; a precipitate of	ne NH ₃ itate of	Topic: Chem 28 Q# 291/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 10/www.SmashingScience.org 10 (a) The electronic configuration of transition element Q is [Ar] 3d ² 4s ² .	: Chem 28 Q# 291/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 10/www.Smashing ⁶ (a) The electronic configuration of transition element Q is [Ar] $3d^2 4s^2$	ningScience.org 4s ² .	
Cu(OH) ₂ forms and is collected.	cted.	-		Predict the likely oxidation st	Predict the likely oxidation states of element ${f Q}$ in compounds.		
A sample of Cu(OH) ₂ is adde coloured copper complex, Y .	ded to concentrated hydrochlori	A sample of $Cu(OH)_2$ is added to concentrated hydrochloric acid. A reaction takes place forming a coloured copper complex, Y.	ming a				Ξ
A sample of Cu(OH) ₂ is ad copper complex, Z .	A sample of Cu(OH)_2 is added to dilute sulfuric acid. A reaction takes place forming copper complex, ${\bf Z}.$	eaction takes place forming a col	a coloured	(b) Suggest why transition elements often show vari tvoical s-block elements such as calcium do not.	Suggest why transition elements often show variable oxidation states in their compounds, but tvoical s-block elements such as calcium do not.	n states in their compound	ds, but
$[Cu(NH_3)_4]^{2+},Y$ and Z are different colours	ifferent colours.						
(b) Suggest an equation for of $[Cu(NH_3)_4]^{24}$ is heated.	or the reaction of $[Cu(NH_3)_4]^{2*}$ to d.	Suggest an equation for the reaction of $[Cu(NH_3)_4]^{2*}$ to form $Cu(OH)_2$ as the aqueous solution of $[Cu(NH_3)_4]^{2*}$ is heated.	olution		20/s/TZ 1/Paper 4/Q# 1/www.Smashi	ngScience.org	[1]
(c) Suggest an equation for	r the reaction of $Cu(OH)_2$ with co	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	[1] ning Y.	 (a) An aqueous solution of cobalt(II) (i) Define the term complex ion 	An aqueous solution of cobalt(II) contains the [Co(H ₂ O) _b] ²⁺ complex ion. (i) Define the term <i>complex ion</i> .	nplex ion.	
			[2]				. [1]
(d) Complete the table with formula of complex Z.	h the colour and geometry of c	(d) Complete the table with the colour and geometry of complex Y and the colour, geometry and formula of complex Z.	iry and	(ii) Samples of [Co(H ₂ O) ₆] ²⁺ are read an excess of aqueous ammonia.	Samples of $[Co(H_2O)_{6}]^{24}$ are reacted separately with aqueous sodium hydroxide and with an excess of aqueous ammonia.	ous sodium hydroxide an	d with
	7	Z		Give the following inform	Give the following information about these reactions.		
colour of complex				the reaction of [Co(H	the reaction of $[Co(H_2O)_{\theta}]^{2+}$ with aqueous sodium hydroxide	roxide	
geometry of complex				colour and state of t	colour and state of the cobalt-containing species		
formula of complex		6		ionic equation			
			[2]	type of reaction			
(e) Explain why complexes Y a	Explain why complexes ${f Y}$ and ${f Z}$ are coloured and why their colours are different.	ir colours are different.		 the reaction of [Co(H 	the reaction of $[Co(H_2O)_{6}]^{24}$ with an excess of aqueous ammonia	s ammonia	
				colour and state of t	colour and state of the cobalt-containing species		
				ionic equation			
				type of reaction			5
							6
			-				
]	[5]				
		[Total: 12]					C
www.SmashingScience.org	Patrick Brannac	Page 273 of 703	TI TONIHSVWS	www.SmashingScience.org	Patrick Brannac	Page 274 of 703	W

Carles

Topic: Chem 28 Q# 293/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org 6 Valinol can be synthesised by the following reactions. Reaction 1 uses valine as the starting	material. valine	, н н		$C_1 - C_1 - C_2 - C_1 + C_1 + C_2 $	н NH ₂ H H (iii) Valinate, Va ⁺ , is the anion of valine. It takes part in a ligand substitution reaction with hexaaquanicke(II) ions. Complex Z is formed.	z [Ni(H ₂ O) _k] ²⁺ (aq) + 2Var(aq) \leftrightarrow [Ni(H ₂ O) ₂ (Val) ₂](aq) + 4H ₂ O(I)	Write an expression for K_{stab} for this equilibrium.	K _{ata} =	E	(iv) At room temperature, the numerical value of K_{stab} is 2.34 × 10 ⁵ .	Explain what this value indicates about the equilibrium and the stability of complex Z.		(v) Z is an octahedral complex with formula $[Ni(H_2O)_2(Val)_2]$.	Use this information to state the type of ligand that the valinate ion is acting as in this complex.	[Total: 11]		
ontaining [Co(H ₂ O) _ð] ²⁺ , a blue stablished.	0	ins when silver nitrate solution answer.	[2]	ers of [Co(NH ₃) ₃ C(<i>i</i> ₃].		A	0	H X		[2]					in a 1:1 ratio to form a new	1	[1]
When concentrated hydrochloric acid is added to a solution containing $[Co(H_2O)_6]^{2+}$, a blu solution of $[CoCt_4]^{2-}$ is formed and the following equilibrium is established.	[Co(H2O)6] ²⁺ + 4C1 ⁻ ⇒ [CoCl4] ²⁻ + 6H2O	Use Le Chatelier's principle to suggest the expected observations when silver nitrate solution is added dropwise to the blue solution of $[CoCt_4]^{2-1}$. Explain your answer.		The [Co(NH ₃) ₃ Ct ₃] complex shows stereoisomerism. Complete the three-dimensional diagrams to show the two isomers of [Co(NH ₃) ₃ Ct ₃].	omerism.						etradentate ligand.	× NH	Suddest why one molecule of X can form four dative bonds		C ₆ H ₁₈ N ₄ reacts with aqueous cobalt(II) ions, [Co(H ₂ O) ₆] ²⁴ , in a 1:1 ratio to form a new	or this reaction.	
(b) When concentrated hydroc solution of [CoCI4] ²⁻ is form	[Co(H ₂	Use Le Chatelier's principle is added dropwise to the bl		(c) The [Co(NH ₃) ₃ Cl ₃] complex shows stereoisomerism. Complete the three-dimensional diagrams to show the structure of the structure o	Suggest the type of stereoisomerism.	_	_8	-	type of stereoisomerism		(d) Compound X, $C_{6}H_{18}N_{4}$, is a tetradentate ligand.	H ₂ N	(i) Suggest why one molect		(ii) C ₆ H ₁₈ N ₄ reacts with aqu	Construct an equation for this reaction.	

: Chem 28 Q# 294/ ALvI Chemistry Iron is a transition element in th Fe ³⁺ .	Topic: Chem 28 Q# 294/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org 1 Iron is a transition element in the fourth period. Iron forms compounds containing the ions Fe ²⁺ and Fe ³⁺ .	nashingScience.org unds containing the ions Fe ²⁺ and	(b) When an excess of CN'(aq) ions is added to green [Fe(H ₂ O) ₆] ²⁴ (aq) ions, yellow [Fe(CN) ₆] ⁴ complex ions are formed. Heating (Fe(CN))14- with dilute nitric acid and then neutralising the product with Ma CO (24)	ions, yellow [Fe(CN) _ð] ⁴⁻
(a) (i) Define the term transition element.	sition element.		rearing [retCN _{Ma}] ⁻ with didute intric actor and then neutralising the product with Na ₂ CO ₃ (ad) produces red crystals, containing the [Fe(CN) ₈ NO] ²⁻ complex ion.	roduct with Na ₂ CO ₃ (aq)
			NO is a neutral, monodentate ligand.	
			(i) State the shape of the $[Fe(H_2O)_{b}]^{2+}(aq)$ complex ion.	
		[1]		[1]
(ii) Compare the melting I the fourth period.	Compare the melting point and density of iron with those of calcium, an s-block element in the fourth period.	of calcium, an s-block element in	(ii) Write the equation for the reaction between $[Fe(H_2O)_{n}]^{2*}(aq)$ ions and an excess of CN-(aq) ions.	ions and an excess of
melting point				[1]
density			(iii) Deduce the oxidation states of iron in:	
(iii) Complete the electron	Complete the electronic configuration of an isolated gaseous Fe ²⁺ ion.	[1] [1] eous Fe ²⁴ ion.	[Fe(CN) ₈] ⁴ [Fe(CN) ₅ NO] ²⁻	[1]
	,	[1]	(iv) Define the term <i>monodentate ligand</i> .	2
(iv) Aqueous Fe ³⁺ ions for	Aqueous Fe ³⁺ ions form coloured complexes.			
Explain the origin of th	Explain the origin of the colour in transition element complexes.	plexes.		[2]
			(v) Complete the diagram to show the three-dimensional structure of the [Fe(CN) ₅ NO] ²⁻ complex ion.	e of the [Fe(CN) ₅ NO] ²⁻
			£	
		[4]	(vi) The two commlex ions [Ea/CNI) 1 ⁴⁻ and [Ea/CNI) NO ¹²⁻ are different colours	[1]
				[2]
www.SmashingScience.org	Patrick Brannac	Page 277 of 703	www.SmashingScience.org	Page 278 of 703

(c) E is a complex ion, $[Fe(C_2O_4)_2Ct_2]$	(c) E is a complex ion, $[Fe(C_2O_4)_2CI_2]^{4-}$, containing Fe^{24} with a coordination number of 6.	Topic: 0	Topic: Chem 28 Q# 295/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 Manganese, chromium and ruthenium are all transition elements.
(i) Define the term coordination number.	number.	2)	(a) Explain what is meant by a <i>transition element</i> .
(ii) E shows both optical isomerism and <i>cis-trans</i> isomerism.	sm and <i>cis-trans</i> isomerism.		
One isomer of E is shown. Th	One isomer of E is shown. The $C_2O_4^{2-}$ ion is represented as \searrow_{OX} .		2
In the boxes, draw three-dimensional diagrams to show: the <i>trans</i> isomer of E the optical isomer of E. 	ensional diagrams to show:	(1	(b) $MnO_4^-(aq)$ and $Cr_2O_7^{-2-}(aq)$ act as oxidising agents in acidic solution. Both these oxidising agents will oxidise a solution of Sn^{2+} to give a solution of Sn^{4+} . Solutions containing Sn^{2+} and solutions containing Sn^{4+} are colourless.
	S		(i) Describe the colour change seen when an excess of $Sn^{24}(aq)$ is added separately to
	-4		 dilute acidified MnO₄⁻(aq)
	1		from to to the second sec
			 dilute acidified Cr₂O₇²⁻(aq).
ш			from to
4−_			
	trans isomer		(II) Write an equation for the reaction between Sn ^{-*} (aq) and aciditied Ur ₂ U ₇ ^{**} (aq).
Ct Ct cis isomer	-+	0	(c) Ruthenium, Ru, forms complex ions. In one such complex ion, X , the ruthenium ion has a co-ordination number of six. Each complex ion X contains one Ru ²⁺ ion, one Ct ⁻ ion, one SO ₂ molecule and the remaining ligands are NH ₃ molecules.
	@		The SO ₂ molecule acts as a monodentate ligand and is attached to the Ru ²⁺ ion via the sulfur atom. $\bf X$ exists in two isomeric forms.
	_		(i) State what is meant by a co-ordination number of six.
	optical isomer		(ii) State the formula of X. Include its charge.
		[2]	
www.SmashingScience.org	Patrick Brannac Page 279 of 703	I I I I I I I I I I I I I I I I I I I	www.SmashingScience.org Patrick Brannac Page 280 of 703

				[1] In these			[1]			E			LI I BUIHSWAS
igScience.org		×		[1] Cadmium forms the two ions, $\mathrm{Cd}_2^{2^*}$ and Cd^{2^*} . The electronic configuration of cadmium in these ions is shown.		ı element.			ext.				Page 282 of 703
Topic: Chem 28 Q# 296/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Sketches of the shapes of some atomic orbitals are shown.		×		l Cd ²⁴ . The electronic co		Use this information to explain why cadmium is not a transition element.		te ligand.	State what is meant by the term monodentate in this context.				Patrick Brannac
mistry/2019/s/TZ 1/P. tpes of some atomi	orbital, s, p, or d.	×		two ions, Cd ₂ ²⁺ and		to explain why cad		H ₂ , is a monodenta	leant by the term <i>m</i>				ĕ
 Chem 28 Q# 296/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 4/www.Sma. (a) Sketches of the shapes of some atomic orbitals are shown. 	Identify the type of orbital, s, p, or d.	shape of orbital	type of orbital		 [Kr] 4d¹⁰5s¹ [Kr] 4d¹⁰ 	Use this information		(c) Methylamine, CH ₃ NH ₂ , is a monodentate ligand.	(i) State what is m				www. Smashing Science.org
Topic: Ch 4 (a)				(q)				9					www
		[N	33	5	E	5			[3]	[Total: 12]	TT DNIHSVAS
our diagrams should show	n ion.		Ru		1,4		lex such as X.					[]	Page 281 of 703
X in the boxes below. Yo	d to the central rutheniun					shown by X .	transition element compl						Patrick Brannac
La	 how each ligand is attached to the central ruthenium ion. 		Ru			(iv) Suggest the type of isomerism shown by X.	(v) Explain the origin of colour in a transition element complex such as X						www. Smashing Science.org

		[2]	
[9]	colour and state of the copper-containing product		explanation
	type of reaction		[[Cd(CH ₃ NH ₂)₄(H ₂ O) ₂] ²⁺]
	ionic equation		K _{stab}
	reaction with concentrated hydrochloric acid	decreases no change increases	
	colour and state of the copper-containing product	temperature will arect ∧ _{stab} and the equilibrium 1. Explain your answer.	temperature will affect r_{sab} and the equilibrium 1. Explain your answer, $[[Cd(CH_3NH_2)_4(H_2O)_2]^{2+1}]$, for equilibrium 1. Explain your answer.
	type of reaction	Complete the table by placing one tick (/) in each row to suggest how increasing to an and the available of the readmine complexing the readmine compl	(ii) Complete the table by placing
	ionic equation	[1]	
	reaction with aqueous sodium hydroxide		
	Give the following information for each of these reactions.	stability constant.	(d) (i) State what is meant by the term stability constant.
ingScience.org ed [Cu(H ₂ O) ₆ 1 ²⁺ complex ion. us sodium hydroxide and with	Topic: Chem 28 Q# 297 / ALvl Chemistry/2019/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) Aqueous solutions of copper(III) salts contain the blue-coloured [Cu(H ₂ O) ₈] ²⁺ complex ion. Separate portions of this blue solution react with aqueous sodium hydroxide and with concentrated hydrochloric acid.	[2]	
ain your answer.	Predict which complex is formed in the larger amount. Explain your answer	<u>ی</u>	<u> </u>
EDTA is added to $[Cd(H_2O)_{6}]^{2+}$.	(iii) A solution containing equal numbers of moles of CH_3NH_2 and EDTA is added to $[Cd(H_2O)_{6}]^{24}$.		
	[CdEDTA] ²⁻ 4.0 × 10 ¹⁶		
	$[Cd(CH_3NH_2)_4(H_2O)_2]^{24}$ 4.0 × 10 ⁶	ur diagrams.	Use L to represent CH ₃ NH, in your diagrams.
	Kstab	Complete the three-dimensional diagrams to show the isomers of $[Cd(CH_3NH_2)_4(H_2O)_2]^{24}$.	(ii) Complete the three-dimensional
e shown.	The values for the stability constants for two Cd ²⁺ complexes are shown.	$[Cd(H_2O)_6]^{2*} + 4CH_3NH_2 \rightleftharpoons [Cd(CH_3NH_2)_4(H_2O)_2]^{2*} + 4H_2O \qquad \Delta H_7^{\bullet} = -57 \text{ kJ mol}^{-1}$	ilibrium 1 $[Cd(H_2O)_{6}]^{2+} + 4CH_3NH_2 =$
added to [Cd(H ₂ O) ₆] ²⁺ a new	EDTA ⁴⁻ is a polydentate ligand. When a solution of EDTA ⁴⁻ is added to $[Cd(H_2O)_{6}]^{2+}$ a new complex $[CdEDTA]^{2-}$ is formed.	In the presence of aqueous methylamine, [Cd(H ₂ O) ₆ l ²⁺ reacts to form a mixture of two isomeric octahedral complexes.	In the presence of aqueous methylam octahedral complexes.

equilibrium 1

Page **284** of **703**

Patrick Brannac

www.SmashingScience.org

Page **283** of **703**

www.SmashingScience.org

Patrick Brannac

													C	K.
i can be used to determine the	(b		sample of brass in concentrated \mathfrak{m}^3 solution of thiosulfate ions,	(aq)	oint was 28.35 cm³. brass.		s of copper = [3] [3] he complex ion $[CuCI_4]^2$ (aq)			[1] [1] ²⁻ (aq). Include the units in		units = [2]	[Total: 17] iashingScience.org	Page 286 of 703
(b) Brass is an alloy of copper and zinc. The following reaction can be used to determine the amount of copper in a sample of brass.	$2Cu^{2*}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2}(aq)$	The procedure was carried out using the following steps.	A solution of Cu^{24} (aq) was obtained by dissolving a 1.50g sample of brass in concentrated sulfuric acid and diluting with water. An excess of Γ (aq) was added. The iodine produced was titrated against a 0.500 moldm ⁻³ solution of thiosulfate ions, $S_2O_3^{2-}$ (aq).	$I_2(aq)$ + $2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq)$ + $S_4O_6^{2-}(aq)$	• The volume of $S_2O_3^{2-}$ solution needed to reach the end-point was 28.35 cm ³ . Calculate the percentage by mass of copper in the sample of brass.		percentage by mass of copper = o a solution containing Cu ²⁺ (aq), the complex ic	q) and [CuC <i>t</i> ₄] ^{2–} (aq).	[$GuCt_4$] ²⁻ (aq) [$GuCt_4$] ²⁻ (aq) is formed from Cu^{2+} (aq)	Write an expression for the stability constant, K_{sab} , for [CuC l_{4} ²⁻ (aq). Include the units in your answer.			2019/m/TZ 2/Paper 4/Q# 1/www.Sm	Patrick Brannac
(b) Brass is an alloy of copper amount of copper in a samp	2Cu ²⁺ (The procedure was carried	 Asolution of Cu^{22*}(aq) was obtained sulfunic acid and diluting with water. An excess of I⁻(aq) was added. The iodine produced was titrated : S₂O₃^{2*}(aq). 	$I_2(aq) +$	• The volume of $S_2O_3^{2-s}$ s Calculate the percentage by		percentage by mass of copper =	 (i) State the colours of Cu²⁺(aq) and [CuC1₄]²⁻(aq) Cu²⁺(aq) 	[CuCt ₄] ²⁻ (aq)	(iii) Write an expression for the your answer.	$K_{\text{stab}} =$		Topic: Chem 28 Q# 299/ ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	www. Smashing Science.org
		oresent .0 cm ³ .	itration			[3]	[Total: 9]	E			[4]		C	A CHINA
, AgNO ₃ (aq).		vater. All the chlorine atoms p he solution is diluted to 100) moldm ⁻³ AgNO ₃ (aq). The ti ow all your working.			e of sulfur =								Page 285 of 703
ïed using aqueous silver nitrate	Ag ⁺ (aq) + $Cl^{-}(aq) \rightarrow AgCl(s)$	0.303g of a chloride of sulfur is completely hydrolysed with water All the chlorine atoms present in the chloride of sulfur are converted into chloride ions. The solution is diluted to 100.0 cm ³	A 25.00 cm² sample of this solution is titrated with 0.0500 moldm² AgNO₃(aq). The titration requires 22.40 cm³ of 0.0500 moldm³ AgNO₃(aq). Calculate the empirical formula of the chloride of sulfur. Show all your working.			empirical formula of chloride of sulfur =	0# 298/ ALvi Chemistry/2019/m/TZ 2/Paper 4/Q# 4/www.Sn Complete the electronic configuration of a copper atom. 1 ⁴²²⁰⁵²⁰¹⁸	Explain why most copper(II) salts are coloured.		Suggest why copper(I) salts are usually white.				Patrick Brannac
(b) Chloride ions can be identified using aqueous silver nitrate, AgNO ₃ (aq)	1	0.303 of a chloride of sulfu in the chloride of sulfur are	A 25.00 cm² sample of this requires 22.40 cm³ of 0.050 Calculate the empirical form				Topic: Chem 28 Q# 298/ ALvl Chemistry/2019/m/Tz 2/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (i) Complete the electronic configuration of a copper atom.	(ii) • Explain why most or		 Suggest why coppet 				www.SmashingScience.org

 (ii) Describe how the co-ordination number of the iron changes during this reaction. (ii) Only one stereoisomer of Fe(CO)₂(NO)₂ exists. (iii) Only one stereoisomer of Fe(CO)₂(NO)₂ exists. (i) Only one stereoisomer of Fe(CO)₂(NO)₂ exists. (i) The complex Ru(NO)L₂CL₃ exists in three isometric forms. L represents the monodentate ligand C₆H₂P(CH₃)₂. (i) Complete the three-dimensional diagrams to show the three isomers of Ru(NO)L₂CL₃. (i) Complete the three-dimensional diagrams to show the three isomers of Ru(NO)L₂CL₃. (i) Complete the three-dimensional diagrams to show the three isomers of Ru(NO)L₂CL₃. (i) Complete the three-dimensional diagrams to show the three isomers of Ru(NO)L₂CL₃. (ii) Suggest the type of isomerism show. 	$\label{eq:constraints} \begin{split} \rho(N_{c}O_{d}(g)) &= & & & & & & & & & & & & & & & & & $	$k_p = \dots$ NO ₂ (g) t 25 °C depends on the initial rate initial rate initial rate initial rate and m ⁻³ s ⁻¹ ach reactant. Explair ach reactant. Explair stannac	vith oxygen. 2NO(g) + $O_2(g) \rightarrow 2NO_2(g)$ 2NO(g) + $O_2(g) \rightarrow 2NO_2(g)$ w the initial rate of this reaction at 25 °C w the initial rate of this reaction at 25 °C w the initial rate of this reaction at 25 °C w the initial rate of this reaction at 25 °C w the initial rate of this reaction at 25 °C w the initial concentration/mold m ⁻³ initial concentration with respect to each reaction 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	$\mu_{0,2}(g_{3}(g_{3})) = \dots \qquad \qquad$	 p(N₂O₃(g)) = p(N₂O₃(g)) = (d) NO reacts readily with of the reactants. of the reactants. (i) Deduce the order order order order with respect
	e initial concentrations	it 25°C depends on th initial rate /mol dm ³ s ⁻¹	e of this reaction a ration / mol dm ⁻³ [O ₂ (g)]	nows how the initial rate ants. [nitial concent [NO(g)]	The table st of the react
		NO ₂ (g)	g) + $O_2(g) \rightarrow 2$	2NO(
Use this information to suggest the geometry of the complex.				eadily with oxygen.	(d) NO reacts n
Only one stereoisomer of Fe(CO) ₂ (NO) ₂ exists.	[2]	K _p =			
				g)) =	p(N2O3((
E				= ((p(NO(g)) =
(i) State what is meant by the term co-ordination number.					
During this reaction the co-ordination number of the iron changes.					
$Fe(CO)_5 + 2NO \rightarrow Fe(CO)_2(NO)_2 + 3CO$	Calculate the partial pressures of NO(g) and $N_2O_3(g)$ at equilibrium. Hence calculate the value of K_5 at 25 °C.	4₂O₃(g) at equilibrium	s of NO(g) and N	te the partial pressure f K _p at 25 °C.	(ii) Calculati value of
(e) NO reacts with iron pentacarbonyl, Fe(CO) ₅ , as shown. NO and CO are both monodentate ligands.	of 0.60 atm.	at an initial pressure 8 atm.	rith pure N ₂ O ₃ (g) e of NO ₂ (g) is 0.4	A 1.00 dm ³ flask at 25 °C is filled with pure N ₂ O ₃ (g) at an initial pressure of 0.60 atm. At equilibrium, the partial pressure of NO ₂ (g) is 0.48 atm.	A 1.00 dm ³ fl. At equilibriur
units of <i>k</i> =[3]	[1]	units =			
rate constant, $k =$				11	κ Ε
	our answer.	Include the units in)	r this equilibrium.	Write the expression for \mathcal{K}_{b} for this equilibrium. Include the units in your answer.	(i) Write the
Include the units for the rate constant in your answer.		NO ₂ (g)	$N_2O_3(g) \rightleftharpoons NO(g) + NO_2(g)$	N ₂ O ₃ (g	
(ii) State the rate equation for this reaction. Use the rate equation to calculate the rate constant.			ates.	(c) At room temperature N_2O_3 dissociates	:) At room tem

3 (a) Complete the table to show the total number of unpaired electrons in the 3d and each isolated gaseous atom.
number of unpaired electrons
3d 4s
Solid potassium manganate(VII), KMnO ₄ , decomposes on heating manganese(IV) oxide, potassium manganate(VI) and a colourless gas.
Construct an equation for this reaction.
(c) Explain the origin of colour in transition element complexes.
(d) The reaction scheme shows some reactions of [Cu(H ₂ O) _a] ²⁺ .
 precipitate A reaction 2 solution of B excess NH₃(aq) reaction 4 solution of CH₃CO₂H(aq)
Patrick Brannac Page 289 of 703

	[2]	[1]		[2]	Z	C
<10 ⁻³ g dm³ at 298 K. CaC₂O₄. Include its units.	units =	204)2(H2O)2] ⁻ .		< 10 ⁻³ g dm³ at 298 K. f CaC₂O₄. Include its units.	units =	Page 292 of 703
ate, CaC ₂ O ₄ , is 6.65 [,] Iubility product, K ₅ , ol	intate ligands. <i>ligand</i> .	he complex ion [Cr(C mplex ion. $\$ nt $C_2O_4^{2-}$.		ate, CaC ₂ O ₄ , is 6.65 >		Patrick Brannac
 (c) The solubility of calcium ethanedioate, CaC₂O₄, is 6.65 × 10⁻³g dm⁻³ at 298 K. (i) Write an expression for the solubility product, K₅₀, of CaC₂O₄. Include its units. K₅₀ = 	 2 (a) Ethanedioate ions, C₂O₄²⁻, are bidentate ligands. Explain what is meant by the term <i>ligand</i>. 	(b) $C^{5*}(aq)$ and $C_2O_4^{2*}(aq)$ ions form the complex ion $[Cr(C_2O_4)_2(H_2O)_2]^-$. Draw two stereoisomers of this complex ion. You may use $\sqrt{2}$ to represent $C_2O_4^{2-}$.		(c) The solubility of calcium ethanedioate, CaC_2O_4 , is 6.65×10^3 gdm ⁻³ at 298 K. (i) Write an expression for the solubility product, K_{sp} , of CaC_2O_4 . Include its units.	K _{sp} =	www. <mark>Smashing</mark> Science.org
noi		E	Ξ		[3]	C C C
The use of <i>cis</i> -platin can cause side effects so nedaplatin has been developed. Nedaplatin can be synthesised from <i>cis</i> -platin, $Pt(NH_3)_2CI_{2}$, by replacing the two chloride ion ligands with a single bidentate ligand as shown. Suggest the structure for nedaplatin.		nedaplatin Smashing Science. org	-[²(0 ² H)²(Page 291 of 703
ts so nedaplatin has t blatin, Pt(NH ₃) ₂ C1 ₂ , by shown.		nec /Paper 4/Q# 2/www.Sm ate ligands. and.	complex ion [Cr(C ₂ O ₄ llex ion. C ₂ O4 ²⁻ .	, III (Patrick Brannac
(g) The use of <i>cis</i> -platin can cause side effects so nedaplatin has been developed. Nedaplatin can be synthesised from <i>cis</i> -platin, Pt(NH ₃) ₂ Cl ₂ , by replacing the tv ligands with a single bidentate ligand as shown. Suggest the structure for nedaplatin.		Topic: Chem 28 Q# 301 / ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Ethanedioate ions, C ₂ O ₄ ²⁻ , are bidentate ligands. Explain what is meant by the term <i>ligand</i> .	(b) $Cr^{3+}(aq)$ and $C_2O_4^{2-}(aq)$ ions form the complex ion $[Cr(C_2O_4)_2(H_2O)_2]^{-1}$. Draw two stereoisomers of this complex ion. You may use $\sqrt{0}$ to represent $C_2O_4^{2-}$.			a.org
 (g) The use of <i>cis</i>-plat Nedaplatin can be ligands with a sing Suggest the struct 	Pt(NH ₃) ₂ Cl ₂ + cis-platin -O	Topic: Chem 28 Q# 301/ Al 2 (a) Ethanedioate Explain what i	(b) Cr ³⁴ (aq) and C ₂ (Draw two steree You may use O			www.SmashingScience.org

						[2]										C
n. is complex.					-		ss, two chemical reaction:	œ ≜	ion.							[4] Page 294 of 703
Cu ²⁺ ions exist as [Cu(H ₂ O) ₆] ²⁺ complex ions in aqueous solution. Complete a three-dimensional diagram to show the shape of this complex. Name its shape. Label and state the value of one bond angle.		CC				name of shape	(d) When NH ₃ (aq) is added to Cu ^{2*} (aq), dropwise at first and then in excess, two chemical reactions occur as shown.	dropwise NH ₃ (aq) A excess NH ₃ (aq) reaction 1 A reaction 2	For each reaction, describe what you would see and write an equation.							Patrick Brannac
(c) Cu ²⁺ ions exist as [Cu(H ₂ O) ₆ J ²⁺ complex ions Complete a three-dimensional diagram to sh Name its shape. Label and state the value of one bond angle	L			-		па	(d) When NH ₃ (aq) is added to C occur as shown.	[Cu(H ₂ O) ₈] ²⁺	For each reaction, describe	reaction 1	observation	equation	reaction 2	observation	equation	www.SmashingScience.org
d form	[2] ITotal [:] 71			[2]					[2]							C
. Give your answer in standar	K _{\$} cac ₂ 04 =		a 00. 101.		nonodentate ligands.	charge.										Page 293 of 703
Calculate the numerical value of K_{sp} CaC ₂ O ₄ at 298 K. Give your answer in standard to two significant figures.		2018/s/T2 1/Paper 4/0# s/www.S : with atomic number 29.	(a) comprete une electronic conjugurations of a curation and a curron. Curatom 1s ² 2s ² 2p ⁶		(b) Cu^+ ions form a linear complex with Ct^- ions, which are monodentate ligands.	Draw the structure of this complex and include its overall charge.										Patrick Brannac
(ii) Calculate the numerical v to two significant figures.		Topic: Chem 28 Q# 302/ ALM Chemistry/2018/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 Copper is a transition element with atomic number 29.	(a) complete the electronic of Cu atom 1s ² 2s ² 2p ⁶	Cu ⁺ ion 1s ² 2s ² 2p ⁶	(b) Cu⁺ ions form a linear con	Draw the structure of this										www.SmashingScience.org

Page 296 of 703	Page 29	Patrick Brannac		w.ww.SmashingScience.org	Correction of the second secon	Page 295 of 703	Patrick Brannac	www.SmashingScience.org	
⁰ mol dm ⁻³	.SmashingScience.org m. $K_a = 6.2 \times 10^{-10} \text{ mol dm}^3$	y/2018/m/T2 2/Paper 4/Q# 3/www s a weak acid in aqueous solutio HCN(aq) ➡ H*(aq) + CN*(aq)	mistry/2018/m/T2 2 CN, is a weak acid HCN(aq) ़ ़	Topic: Chem 28 Q# 304 / ALVI Chemistry/2018/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Hydrogen cyanide, HCN, is a weak acid in aqueous solution. HCN(aq) \Rightarrow H ⁺ (aq) + CN ^{-(a)} $K_a = 6.2 \times 10^{-10}$. [2]				
[Total: 7]			C 711 m/ 0100/ mtoim	add hold AD 00 #0 00 model officer					
[]		р .	State the appearance of compound J	(iii) State the appea		his complex is not octahedral.	Give the formula of this complex ion and explain why this complex is not octahedral.	Give the formula of this	
[2]				Z	ct as	1. All four ethanedioate ions act as	containing four $C_2O_4^{2-}$ ions and one Zr^{4+} ion is formed. All four ethanedioate bidentate ligands in this complex.	containing four $C_2O_4^{2-}$ ions and o bidentate ligands in this complex.	
	nplexes.	Write the formulae of the following compounds or complexes.	ae of the following	(ii) Write the formu	[2]	-			
				X W					
	olexes.	State the colours of the following compounds or complexes	s of the following c	(i) State the colour			Explain what is meant by the term <i>bidentate ligand</i> .		
	z	Μ	-	Co ²⁺ (aq)	E		an act as a bidentate ligand.	(f) Ethanedioate ions. C.O. ²⁻ . can act as a bidentate ligand	-
	HC <i>i</i> (aq) K	J J	NH ₃ (aq) H	Cu ²⁺ (aq)	5	ion.	State what this tells us about the [CuEDTA] ²⁻ complex ion.	State what this tells us a	
	an excess of	an excess of	an excess of	solution		10 ¹⁹ at 298 K.	The numerical value of the K_{slab} of [CuEDTA] ²⁻ is 6.3×10^{19} at 298K.	(iii) The numerical value of t	
hen an excess rately added to	nd N, are formed w eous HC <i>l</i> are sepa	s, H, J, K, L, M al concentrated aqu or Co ²⁺ (aq).	unds or complexes queous NaOH and ontaining Cu ²⁺ (aq)	(b) Six different compounds or complexes, H, J, K, L, M and N, are formed when an excess of aqueous NH ₃ , aqueous NaOH and concentrated aqueous HC <i>i</i> are separately added to separate solutions containing Cu ²⁺ (aq) or Co ²⁺ (aq).	Ξ				
[1]						CuEDTA] ^{2–} in this reaction.	Write an expression for the stability constant, K_{stab} , of $[CuEDTA]^{2-}$ in this reaction.	(ii) Write an expression for t	
compounds.	State the two highest oxidation states of chromium commonly seen in its compounds.	ates of chromium cc	ghest oxidation sta	(ii) State the two h	[1]		on occurring nere.	 Name the type of reaction occurring here. 	
	atom.	μ# 303/ ALM UTERINSU// 2016/01/12 2/ Faper 4/μ# 203/ ALM Complete the electronic configuration of a chromium atom.	ectronic configurati	5 (a) (i) Complete the el	guin	⁻ is added to a solution containing complex is [CuEDTA]²	EDTA ⁺⁻ is a polydentate ligand. When a solution of EDTA ⁺⁻ is added to a solution $[Cu(H_2O)_{\theta}]^{2+}$ a new complex is formed. The formula of this complex is $[CuEDTA]^{2-}$.	(e) EDTA ^{4−} is a polydentate ligal [Cu(H ₂ O) ₆] ²⁺ a new complex i	
	SmashingScience.org	2/Paper 4/Q# 5/www	mistrv/2018/m/TZ 2	Topic: Chem 28 Q# 303/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org					

Topic: Chem 28 Q# 305/ ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Complete the following electronic structures.	• the iron atom Fe 1s ² 9s ² 9p ⁶	-e ³⁺	(b) Solutions of iron(III) salts are acidic due to the equilibrium shown.	$[Fe(H_2O)_{6}]^{3*}(aq) \rightleftharpoons [Fe(H_2O)_{5}(OH)]^{2*}(aq) + H^{*}(aq)$ $K_a = 8.9 \times 10^{-4} \text{ mol dm}^{-3}$ Calculate the pH of a 0.25 mol dm ⁻³ FeC I_3 solution.		[2][2]	 (c) The table shows numerical values of the stability constants for the following equilibrium where M can be one of the metal ions listed and L one of the ligands which replaces one H₂O molecule. 	$[M(H_2O)_{\delta}]^{n+}(aq) + L^{-}(aq) \rightleftharpoons [M(H_2O)_{\delta}L]^{(n-1)+}(aq) + H_2O(I)$	metal ion, M ligand, L stability constant, K_{stab}	Fe ³⁺ F- 1.0 × 10 ⁶	C1-	SCN ⁻ 9.0	Hg ²⁺ Ct^{-} 5.0 × 10 ⁶	(i) What is meant by the term stability constant, K_{stab} ?	 [1] [1] Use the data in the table to predict the formula of the complex formed in the greatest amount when 	• a solution containing equal concentrations of both F ⁻ and SCN ⁻ ions is added to Fe ³⁺ (aq),	• a solution containing equal concentrations of both Fe^{34} and Hg^{24} ions is added to $Ct^{-}(aq)$.	www.SmashingScience.org Patrick Brannac Page 298 of 703
(b) Adding a measured quantity of KCN to a solution of NiC I_2 produces the complex [Ni(CN) ₂ C I_2] ^x .	his complex.	$x = \dots$ [1] The complex can exist as two separate isomers with the same geometry (shape) around the nickel ion.	by these isomers.	If bromide ions are present in the solution, the complex [Ni(CN) ₂ C/Br] ^x can form. Assuming that [Ni(CN) ₂ C/Br] ^x has the same geometry as [Ni(CN) ₂ C/ ₂] ^x , state the number of isomers of [Ni(CN) ₂ C/Br] ^x that could exist, and draw their structures in the box.	2CIBrit	structures of the isomers of [Ni(CN) ₂ C/Br]*	AS			5	An aqueous solution of KCN is gradually added to a solution of NiSO4 until the KCN is in	ns takes place.	KCN in excess	yellow solution	The oxidation state of nickel does not change during these reactions. None of C , D or E contains sulfur. C contains no potassium. The K:Ni ratio in D is 2:1. The K:Ni ratio in E is 3:1. the information to suggest the formulae of C , D and E .		[3] [Total: 15]	Patrick Brannac Page 297 of 703
(b) Adding a measured quantity of KCN to	(i) Deduce the overall charge, x , on this complex.	The complex can exist as two separat nickel ion.	(ii) State the type of isomerism shown by these isomers	 If bromide ions are present in the s Assuming that [Ni(CN)₂CIBr]^x has of isomers of [Ni(CN)₂CIBr]^x that of 	 number of isomers of [Ni(CN)₂C1Br]^x 	structures of the i					(c) An aqueous solution of KCN is gradu	excess. The following series of reaction	NISO4 KCN C more KCN	green precipitate	 The oxidation state of nickel does not change during t None of C, D or E contains sulfur. C contains no potassium. The K:Ni ratio in D is 2:1. The K:Ni ratio in E is 3:1. Use the information to suggest the formulae of C, D and E. 	C	Ш	www.SmashingScience.org

- 9
- þ

TITIONIHSTWAS	Page 300 of 703	Patrick Brannac	www.SmashingScience.org	III BNIHSWIS	[lotal: 1:3] Page 299 of 703	Patrick Brannac	www.SmashingScience.org
²⁴ ion.	groups in the $[Co(NH_3)_5Br]^3$	State the type of bonding between the cobalt ion and NH $_3$ groups in the $[Co(NH_3)_5Br]^{24}$ ion.	(iii) State the type of bo	[1]	R.	WINCH HAS HO UIPOLE IIIOIITEH	
E	٦		shape	[1]			
		[Co(NH ₃) ₅ Br] ²⁺		. [1]	h show optical isomerism.	mers of [Fe(<i>ed</i>) ₂ C1 ₂] ³⁻ which	(iii) Give the letters of the two isomers of $[Fe(ed)_2CI_3]^{3-}$ which show optical isomerism.
				each	are geometrical isomers of ϵ	ers of [Fe(ed) $_2$ C t_2] 3 - which a	(ii) Give the letters of two isomers of $[Fe(ed)_2 CI_2]^3$ -which are geometrical isomers of each other.
				[3]		isomer C	
	of the ion [Co(NH ₃) ₅ Br] ²⁺ .	Draw a three-dimensional diagram to show the structure of the ion [Co(NH ₃) ₅ Br] ²⁺ Name its shape.	(ii) Draw a three-dime Name its shape.			Le company	
E -					N	-	
	o(NH₃)₅SO₄]Br.	Cobalt can form the compounds [Co(NH₃)₅Br]SO₄ and [Co(NH₃)₅SO₄]Br. These two compounds are structural isomers.	(c) (i) Cobalt can form the These two compou				
Ξ.						1	
		Iransition metals can form complexes. What is meant by the term transition metal complex?	(b) Iransition metals can form complexes What is meant by the term transition m	12] ² .	e stereoisomers of [Fe(ed) ₂ C	mensional diagrams to show the thre O^{-1} to represent ed^{2-1}	(i) Complete the three-dimensional diagrams to show the three stereoisomers of $[Fe(ed)_2 U_2]$ You may use -0^{-1} to represent ed^{2-1}
[3]						and optical isomerism.	(e) [Fe(ed) ₂ Ct_2] ³⁻ shows geometrical and optical isomerism.
			explanation	[2]	units		
			melting point of cobalt.				$K_{stab} =$
					tate its units.	ibrium constant, ${\cal K}_{\sf stab}$, and st	Write the expression for the equilibrium constant, \mathcal{K}_{slab} and state its units.
			explanation		(aq) + 4H ₂ O(I)	$[Fe(H_2O)_4Cl_2]^*(aq) + 2ed^2(aq) \rightleftharpoons [Fe(ed)_2Cl_2]^3^*(aq) + 4H_2O(I)$	[Fe(H ₂ O) ₄ C <i>l</i> ₂] ⁺ (aq) + 2
			density of cobalt		quation shown.	e formed according to the e	(d) The complex $[Fe(ed)_2Ct_2]^{3-}$ can be formed according to the equation shown.
cium.	ingScience.org alt compare to those of cal	Topic: Chem 28 Q# 306/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) Describe and explain how the density and melting point of cobalt compare to those of calcium.	Topic: Chem 28 Q# 306 / ALvl Chemist 4 (a) Describe and explain h	sent	ion ed ²⁻ can be used to repre	:ntate ligands. The abbreviati	Ethanedioate ions, $-O_2CCO_2^-$, are bidentate ligands. The abbreviation ed^{2-} can be used to represent ethanedioate ions.

(iv) State the oxidation number of cobalt in

- oxidation number of Co = [Co(NH₃)₅Br]²⁺
- oxidation number of Co =

[Co(NH₃)₅SO₄]⁺

Ξ

(d) Solutions of the compounds $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ can be distinguished from each other by simple chemical tests.

Assume that any species bonded to the cobalt ion does not react in these tests

Complete the table with two **different** tests that could be used to positively identify each compound. Give the expected observation with each compound.

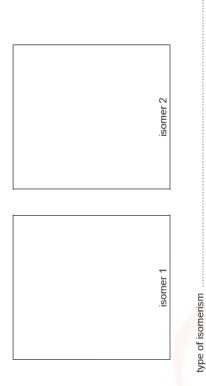
observation with [Co(NH ₃) ₅ SO ₄]Br(aq)	
observation with [Co(NH ₃)₅Br]SO₄(aq)	
test	

- [2]
- (e) The two compounds [Co(NH₃)₅Br]SO₄ and [Co(NH₃)₅SO₄]Br are different colours.

Explain why the colours of the two compounds are different.

1		
:	:	
1	1 1	
:	: :	
	: :	
	: :	
	: .	h
		2
i	i i	- 2
:	: :	
		 a
:	: :	7
1	1 1	~
:		D
i	i i	
		ž
:		0
		2
:	: :	
		<u> </u>
	: :	. α
		2
:	: :	2
		v
:	:	-
:	: :	<
		5
:	: :	2
		2
:	: :	<
i	i i	_
:	: :	
		+
:	: :	
1	: · · · ·	
:	: :	
i	i i	
:	: :	2
		u u
:	: :	<u>د</u>
		a a
1		Ó
:	: :	-
	• •	_
:	: :	
:	: :	_ i_
1		-
:	: 1	u
1	: :	~
:		
		-
		5
:	: :	5
		0
:	: :	1
		>
	: :	
	: :	: <u>†</u>
:		
		2
:	: :	٥
÷		- 2
:	: :	ĉ
	: :	
:		-
:	: :	>
		_
:	: :	<
:		1
	: :	
		Ċ
:	: :	2
		a 28 O# 307/ ALVI Chemistry/2017/s/T7 1/Paner 4/O# 3/www SmashingScience org
:	: :	±
		- 7
:	: :	<u>ر</u>
		~
1		
	: :	. с

[2]


- Topic: Chem 28 Q# 307/ ALVI Chemistry/2017/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 Bubbling air through different aqueous mixtures of $CoCI_{2}$. NH₄C1 and NH₃ produces various complex ions with the general formula [Co(NH₃)_{8-n}CI_n]³⁻ⁿ.
- Determine the oxidation state of the cobalt in these complex ions. (a) (i)
- Name the two types of reaction undergone by the cobalt ions during the formation of these complex ions 1

Ξ

[2]

(iii) The complex [Co(NH₃)₄Cl₃]⁺ shows isomerism.

Draw three-dimensional structures of the two isomers, and suggest the type of isomerism shown here.

(b) (i) What is meant by the term co-ordination number?

3

[1]	(ii) Complete the table by predicting appropriate co-ordination numbers, formulae and charges	for the complexes C, D, E and F.
	-	

		:		
complex metal ion ligand	ligand	co-ordination number	formula of complex	charge on complex
Cr ³⁺ CN ⁻	CN-			3–
Ni ²⁺ H ₂ NCH ₂ CH ₂ NH ₂	H ₂ NCH ₂ CH ₂ NH ₂	6		
Pt ²⁺ C <i>l</i> -	C1-			2–
Fe ³⁺ -0 ₂ C-C0 ₂ -	-02C-C02-		[Fe(O ₂ CCO ₂) ₃]	

complex	metal ion	ligand	co-ordination number	formula of complex	charge on complex
ပ	Cr ³⁺	CN-			3–
D	Ni ²⁺	H ₂ NCH ₂ CH ₂ NH ₂	9		
Е	Pt²+	-10			2-
L	Fe ³⁺	-02C-C02-		[Fe(O ₂ CCO ₂) ₃]	

Patrick Brannac

www.SmashingScience.org

Fe³⁺(aq) + 4C*l*⁻(aq) ➡ [FeC*l*₄]⁻(aq)

equilibrium 2

equilibrium 1 Fe³⁺(aq) + SCN⁻(aq) ➡ [FeSCN]²⁺(aq)

(c) Iron(III) forms complexes in separate reactions with both SCN⁻ ions and Ct^- ions.

[9]

www.SmashingScience.org

Page 301 of 703

Patrick Brannac

for these two equilibria.	
$K_{stab},$	
/ constants,	
or the stability	
or the	SWPro
 Write the expressions for the 	de units in vour answ
Write	Inclus
Ξ	

 $K_{\text{stab1}} =$

units =

 $K_{stab2} =$

units =

3

equilibrium 3 (ii) An equilibrium can be set up between these two complexes as shown in equilibrium 3. $[FeCl_4]$ (aq) + SCN⁻(aq) \rightleftharpoons $[FeSCN]^{2+}$ (aq) + 4Cl⁻(aq) Write an expression for K_{eq3} in terms of K_{stab1} and K_{stab2} .

The numerical values for these stability constants are shown. $K_{eq3} = ..$ (111)

Ξ

 $K_{\text{stab1}} = 1.4 \times 10^2$ $K_{\text{stab2}} = 8.0 \times 10^{-2}$

Calculate the value of Kea3 stating its units.

units = $K_{eq3} = .$ [Total: 19]

[2]

Topic: Chem 28 Q# 308/ ALVI Chemistry/2017/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) One atom of each of the four elements H, C, N and O can bond together in different ways. Two examples are molecules of cyanic acid, HOCN, and isocyanic acid, HNCO. The atoms are bonded in the order they are written.

(d) The cyanate ion, NCO⁻, can act as a monodentate ligand.

(i) State what is meant by the terms

monodentate,

ligand.

[2]

Silver ions, Ag⁺, react with cyanate ions to form a linear complex.

(ii) Suggest the formula of this complex, including its charge.

Patrick Brannac

www.SmashingScience.org

Page 303 of 703

[2]

Topic: Chem 28 Q# 309/ ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org

6 (a) (i) Draw the shape of one of the d orbitals.

Complete the following electronic configurations. Ni 1s ² 2s ² 2p ³ 3s ² 3p ⁶ Ni ² 1s ² 2s ² 2p ³ 3s ² 3p ⁶ Ni ² 1s ² 2s ² 2p ³ 3s ² 3p ⁶ Complete the diagram to show how the presence of ligands around an isolated transit energy		e following electron p ⁶ 3s ² 3p ⁶	ic configurations.		
Ni 15*2s ² p ⁵ 3s ² 3p ⁶ Ni* 1s*2s ² p ⁵ 3s ² 3p ⁶ Complete the diagram to show how the presence of ligands around an isolated transit metal ion affects the energy of the d orbitals. energy energy energy energy energy energy catahedral d orbitals d orbitals complex Explain why transition metal complexes are coloured. [Cu(H ₂ O) ₄] ^{2*} is pale blue but [Cu(NH ₃) ₄ (H ₂ O) ₂] ^{2*} is deep purple-blue. Suggest a reason for this.		p°3s²3p° n°3≈²3n°			
 (b) (1) Complete the diagram to show how the presence of ligands around an isolated transition metal ion affects the energy of the d orbitals. energy energy energy cotahedral complex metal ion complex for the purple-blue. (1) [Cu(rH₂O)₂I²⁺ is pale blue but [Cu(NH₃)₄(H₂O)₂I²⁺ is deep purple-blue. 					[1]
energy energy degenerate d orbitals complex complex Explain why transition metal ion complex Explain why transition metal complexes are coloured. [Cu(H ₂ O) ₆] ²⁺ is pale blue but [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ is deep purple-blue. Suggest a reason for this.		e diagram to show lects the energy of	how the presence of ligands the d orbitals.	around an isolated tr	ansition
energy degenerate degenerate degenerate dorbitals dorbitals complex metal ion contract interanet counted interanet counted interanet counted interanet counted interanet conter interanet conter inter conter inter conter inter conter inter conter <	•				
octahedral isolated transition tetrahedral complex metal ion complex Explain why transition metal complexes are coloured. complex complex [Cu(H2O) ₆] ²⁺ is pale blue but [Cu(NH3) ₄ (H2O) ₂] ²⁺ is deep purple-blue. Suggest a reason for this. complex	energy		degenerate d orbitals		
Explain why transition metal complexes are coloured. [Cu(H ₂ O) ₆] ²⁺ is pale blue but [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ is deep purple-blue. Suggest a reason for this.		octahedral complex	isolated transition metal ion	tetrahedral complex	[1]
$[Cu(H_2O)_{6}]^{2^+}$ is pale blue but $[Cu(NH_3)_4(H_2O)_2]^{2^+}$ is deep purple-blue. Suggest a reason for this.		transition metal cor	nplexes are coloured.		
[Cu(H ₂ O) ₆] ²⁺ is pale blue but [Cu(NH ₃)₄(H ₂ O) ₂] ²⁺ is deep purple-blue. Suggest a reason for this.					
		is pale blue but [Cu ason for this.	(NH ₃)₄(H ₂ O) ₂] ²⁺ is deep purp	e-blue.	<u>r</u>

Page **304** of **703**

Patrick Brannac

(e) (i) The complex [V(H ₂ O) ₆] ³⁺ also reacts with ethane-1,2-diamine (en), H ₂ NCH ₂ CH ₂ NH ₂ , to form a mixture of isomeric octahedral complexes.	$[V(H_2O)_6]^{3*} + 3en \rightleftharpoons [V(en)_3]^{3*} + 6H_2O$	Complete the three-dimensional diagrams to show the two isomers of $[V(en)_j]^{3*}$.	You may use N N to represent <i>en</i> .			_	isomer 1 isomer 2 [2]	(ii) State the type of isomerism shown by isomer 1 and isomer 2 in (i).	(f) The reaction of INi(H ₂ O) _*] ²⁺ with aqueous ammonia produces the complex INi(NH ₂) _*] ²⁺ .		$(i) Write the expression for K_{state} for [Ni(NH_3)_6]^{24}.$	$K_{\rm stab} =$	E	(ii) $[Ni(H_2O)_6]^{24}$ also reacts with <i>en</i> to form $[Ni(en)_3]^{24}$. The values of the stability constants for the two complexes are shown.	$K_{\text{stab}} [\text{Ni(NH}_3)_6]^{2+} = 4.8 \times 10^7 \text{ mol}^{-6} \text{ dm}^{18}$	K_{stab} [Ni(en) ₃] ²⁺ = 2.0 × 10 ¹⁸ mol ⁻³ dm ⁹	A solution containing equal numbers of moles of ammonia and en is added to $[{ m Ni}({ m H_2O})_{ m 6}]^{24}.$	State which complex is produced in the larger amount. Explain your answer.	[1]	www.SmashingScience.org
																				C Servising 11
										Ire of isomeric octanedral	ers of [V(H ₂ O)₄Ct ₃]⁺.		b G	1	[2]		[1]			Page 305 of 703
m of a solution of [V(H₂O) ₆] ³⁺ .					blue green red 350 400 450 500 550 600 650 700	waverengur/mm				(H ₂ O)പ്പ് reacts to form a mixu	$[V(H_2O)_{61}^{3+} + 2Ct^- \rightleftharpoons [V(H_2O)_4Ct_3]^+ + 2H_2O$ three-dimensional diagrams to show the two isom			<u> </u>	isomer 2	by isomer 1 and isomer 2 in				Patrick Brannac
(c) The diagram shows the visible spectrum of a solution of $[V(H_2O)_6]^{3+}$			absorption	>	350 400 4	wave State and exnlain what colour the colution is	colour of solution	explanation		(d) (i) In the presence of chloride ions, [V(H ₂ O) ₆] ⁴⁷ reacts to form a mixture of isomeric octahedral complexes.	$[V(H_2O)_6]^{3+} + 2Ct^- \rightleftharpoons [V(H_2O)_4Ct_2]^+ + 2H_2O$ Complete the three-dimensional diagrams to show the two isomers of $[V(H_2O)_4Ct_2]^+$.			/	isomer 1	(ii) State the type of isomerism shown by isomer 1 and isomer 2 in (i).				www.SmashingScience.org

(ii) State the colour of the following solutions.	[Co(H ₂ O) ₆] ²⁺ solution of B	solution of C [2]	Topic: Chem 28 Q# 311/ ALvl Chemistry/2016/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 Copper is a transition element and has atomic number 29.	(a) Complete the electronic configuration for the copper atom and the copper ion in the +2 oxidation state.	copper atom [Ar]	copper ion in the +2 oxidation state [Ar] [2]	(b) The following equilibrium exists between two complex ions of copper in the +2 oxidation state.	$[Cu(H_2O)_{6}]^{2+} + 4Cl^{-} \rightleftharpoons [CuCl_4]^{2-} + 6H_2O$	(i) Name the type of reaction occurring here.		 (ii) State the colours of these two complex ions. [Cu(H₂O)₂]²⁺ 	ape of the $[CuCI_4]^{2-}$ ion.	[1]	(iv) Write the expression for the stability constant, K_{stab} , for this equilibrium.	$K_{\rm stab} =$	[1]	(c) Copper also forms the complex ions [Cu(NH ₃) ₂ (H ₂ O) ₄] ²⁺ and [Cu(en)(H ₂ O) ₄] ²⁺ where en is the bidentate ligand ethane-1,2-diamine, H ₂ NCH ₂ CH ₂ NH ₂ .	$[Cu(H_2O)_{a}]^{2^{4}} + 2NH_3 \rightleftharpoons [Cu(NH_{3})_2(H_2O)_{a}]^{2^{4}} + 2H_2O$ equilibrium 1	$[Cu(H_2O)_6]^{24} + en \rightleftharpoons [Cu(en)(H_2O)_4]^{24} + 2H_2O$ equilibrium 2	(i) What is meant by the term <i>bidentate ligand?</i>		[2]	www.SmashingScience.org Patrick Brannac Page 308 of 703
(iii) Adding a limited amount of en to $[Ni(H_2O)_6]^{2+}$ forms the complex $[Ni(H_2O)_2(en)_2]^{2+}$.	Suggest the number of possible stereoisomers of [Ni(H ₂ O) ₂ (<i>en</i>) ₂] ²⁴ . Explain your answer. You are advised to include three-dimensional diagrams in your answer.							[2]	Traise Cham 20 CH 210/ At ul Chamister/2016/u/T7 1 /baner / 1/OH // /uniue Charling Cianas and	 (a) Cobalt is a transition element that forms complex ions with oxidation states +2 and +3. 	Explain what is meant by the term transition element.			(b) The following scheme shows some reactions of $[Co(H_2O)_{\delta}]^{2*}$.	OH-(aq) [cco(H ₂ O) ₆] ²⁺ excess excess NH.(an)	CI ^{-(aq)}	precipitate A solution of B solution of C	(i) State the formula of each of the following.	Α	8	c [2]		www.SmashingScience.org Patrick Brannac Page 307 of 703 Swashing 11

		[1]	ed to an aqueous	G	with the formula $\label{eq:relation} \mbox{vi}(R_3 P)_2 I_2.$		[3]	[Total: 9]
1 opic: cnem z8 u# 31 2/ Auvi Cnemistry/z01205/12 1/Paper 4/U# z/www.>masningscience.org 2 (a) (i) Complete the following electronic configurations.	6	e	State the colours you would observe when concentrated $HCI(aq)$ is added to an aqueous solution of cobalt(II) nitrate, $Co(NO_3)_2$. Give the formulae and geometry of the complexes formed.		(b) There are two isomers with the formula Ni(R_3P) ₂ I_2 , but only one structure with the formula $Co(R_3P)_2I_2$. (R = alkyl, R_3P is a monodentate ligand) Draw diagrams showing the structure of $Co(R_3P)_2I_2$ and the two isomers of Ni(R_3P) ₂ I_2 .	Ni(R ₃ P) ₂ I ₂	 21 ² (c	
Cursts// Auv Unemistry/zuto/s/ iz 1/Paper 4/U# z/w Complete the following electronic configurations	the cobalt atom, Co 1s ² 2s ² 2p ⁶	the cobalt(II) ion, Co^{24} 1s ² 2s ² 2p ⁶	State the colours you would observe when concentrated H solution of cobatt(II) nitrate, $Co(NO_3)_2$. Give the formulae and geometry of the complexes formed.		o isomers with the formula N R = alkyl, R ₃ P is a monodentat s showing the structure of Co	Ni(R ₃ P) ₂ I ₂	Co(R ₃ P) ₂ I ₂	
1 optic: Cnem 28 Q# 312 / A 2 (a) (i) Complete	the c	• the c	(ii) State the solution of Give the		(b) There are tw Co(R ₃ P) ₂ I ₂ . (F Draw diagram			
				[1]	E	[2]		C
wo complexes. K _{tab}			What do these K_{sab} values tell us about the relative positions of equilibria 1 and 2?	 (d) Nickel forms the complex ion [Ni(<i>en</i>)₃^{2*} in which it is surrounded octahedrally by six nitrogen atoms. (i) Name the type of stereoisomerism displayed by [Ni(<i>en</i>)₃^{2*}. 	Draw three-dimensional diagrams to show the two stereoisomers of $[Ni(en)_3]^{2*}$.			
onstants for these to stability constant,	7.94×10^7	3.98×10^{10}	ut the relative positi	which it is surroun played by [Ni(<i>en</i>) ₃]	show the two stered			
e values of stability co	[Cu(NH,),(H,O),] ²⁺	[Cu(<i>en</i>)(H ₂ O) ₄] ²⁺	_{stab} values tell us aboi	tel forms the complex ion [Ni(en) ₃] ²⁺ in which it is surroundens. Name the type of stereoisomerism displayed by [Ni(en) ₃] ²⁺ .	nsional diagrams to s			
(ii) The table lists the values of stability constants for these two complexes. Stability constant, $\kappa_{\rm tab}$		<u></u>	What do these <i>K</i> ,	 (d) Nickel forms the compatoms. (i) Name the type of 	(ii) Draw three-dimer			

Topic: Chem 28 Q# 313/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3 (a) Complete the electronic structures of the following species.	(ii) This complex exists as two isomers.
Co [Ar]	Draw the structure of these isomers and give their names.
Co ²⁺ [Ar]	
(b) In an isolated transition metal atom the five d orbitals have the same energy. When a transition metal ion forms a tetrahedral complex the d orbitals are split into two groups of different energies.	
Complete an orbital energy diagram to show this, indicating the number of orbitals in each group.	
S	[13] [31] [31] [31] [32] [31] [32] [33] [33] [33] [33] [33] [34] [35] [35] [35] [35] [35] [36] [37] [37] [37] [37] [37] [37] [37] [37
increasing — — — — — — — — — — — — — — — — — — —	State which isomer this is and explain why this isomer is effective.
isolated transition metal ion tetrahedral complex [1]	isomer
(c) Cobalt(II) forms a six co-ordinate complex containing three water molecules and three chloride ions.	
(i) Write the formula of this complex showing the overall charge, if appropriate.	
(ii) Explain, with the aid of diagrams, how many isomers of the complex in (i) exist.	(e) Transition metal ions often exist as hexa-aqua complexes in aqueous solution. The reactions which involve ligand exchange are reversible.
	$[Cu(H_2O)_{8}]^{2+}$ + 4NH ₃ \rightleftharpoons $[Cu(NH_3)_4(H_2O)_2]^{2+}$ + 4H ₂ O
	(i) Write an expression for the stability constant, K_{sab} , for this equilibrium. Give its units.
	$K_{\text{stab}} =$
[2]	units =[2]
(d) Platinum(II) forms a four co-ordinate complex containing two ammonia molecules and two chloride ions.	(ii) The numerical value for K_{sab} for this equilibrium at 298K is 1.20 × 10 ¹³ .
(i) Write the formula of this complex showing the overall charge, if appropriate.	Explain how this value relates to the relative stabilities of the two complexes.
[1]	[1]
	[Total: 15]
www.SmashingScience.org Patrick Brannac Page 311 of 703	www.SmashingScience.org Patrick Brannac Page 312 of 703

:hem 28 Q# 314/ ALvI Chemistry/2015/w/Tz 1/Paper 4/Q# 3/www.SmashingScience he transition element iron is the most abundant element in the Earth's core.
o a

(a) What is meant by the term transition element?

[-]
:
-
1
1

(b) In aqueous solution, iron can form complex ions which contain ligands.

(i) Name the type of bonding that occurs between a ligand and a transition element.

Ξ

Which of the following species can act as a ligand? Complete the table by placing a tick (\checkmark) in the appropriate column to indicate whether the species can act as a ligand or not. 1

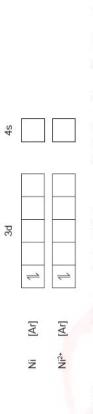
H ₂ NCH ₂ CH ₂ NH ₂

[2]

(c) Manganese ions, Mn²⁺(aq), show some similar chemical properties to those of copper(II) ions, Cu²⁺(aq). Use this information and the *Data Booklet* to suggest the formula of the manganese species formed in each of the following reactions. State the *type of reaction* taking place in each case.

	formula of manganese species formed	type of reaction
Mn ²⁺ (aq) + NaOH(aq)		
Mn ²⁺ (aq) + concentrated HC <i>l</i>		
Mn ²⁺ (aq) + H ₂ O ₂ (aq)		

Topic: Chem 28 Q# 315/ ALvI Chemistry/2014/w/TZ 1/Paper 4/O# 3/www.SmashingScience.org (c) (i) Phosphorus(\square) oxide, P_4O_6 , contains no P–P or O–O bonds.


- In the P₄O₆ molecule, all oxygen atoms are divalent and all phosphorus atoms are trivalent.
 - P_4O_6 can act as a ligand. (11)

What is meant by the term ligand?

Topic: Chem 28 Q# 316/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

Ξ

(a) Complete the electron configurations for Ni and Ni²⁺ 2

(b) The presence of electrons in d orbitals is responsible for the colours of transition element compounds.

[2]

- The d orbitals in an isolated transition metal atom or ion are all at the same energy level. What term is used to describe orbitals that are at the same energy level? (i)
- Complete the diagram to show the splitting of the d orbital energy levels in an octahedral complex ion. (11)

On the axes below, sketch the shapes of one d orbital from the lower energy level and one d orbital from the higher energy level.

higher energy level

Patrick Brannac

www.SmashingScience.org

Page **313** of **703**

[Total: 9] 🏴 [2]

www.SmashingScience.org

Patrick Brannac

(iii) Platinum forms square-planar complexes, in which all four ligands lie in the same plane as the Pt atom. There are two isomeric complexes with the formula Pt(NH ₃) ₂ Cl ₂ . Suggest the structures of the two isomers, and, by comparison with a similar type of isomerism in organic chemistry, suggest the type of isomerism shown here.	Structures of isomers:			isomer 1 isomer 2	Type of isomerism:	(b) Copper forms two series of compounds, one containing copper(II) ions and the other containing copper(I) ions.	(i) Complete the electronic structures of these ions.	Cu(II) [Ar]	Cu(I) [Ar]	(ii) Use these electronic structures to explain why	copper(II) saits are usually coloured,		copper(I) salts are usually white or colourless.		
in the origin of the colour of this complex.		[3]	ning [Ni(H ₂ O) ₈] ²⁺ , a grey-green precipitate, of NH ₃ (aq) to give a blue-violet solution, B . or the two reactions producing A and B .		[4]	2/www.SmashingScience.org cting with <i>ligands</i> .					$U(H_2O)_{a}P^{a}$ and $CuCI_{a}P^{-}$. ctures in the boxes and name their shapes.	CuC14*		shape:	
The octahedral complex [Ni(H ₂ O) ₆] ²⁺ is green. Explain the origin of the colour of this complex			(d) When $NH_3(aq)$ is added to the green solution containing $[Ni(H_2O)_{a}]^{24}$, a grey-green precipitate, A , is formed. This precipitate dissolves in an excess of $NH_3(aq)$ to give a blue-violet solution, B . Suggest formulae for A and B and write equations for the two reactions producing A and B .			Topic: Chem 28 Q# 317/ ALvl Chemistry/2014/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org2The ions of transition elements form <i>complexes</i> by reacting with <i>ligands</i> .	(a) (i) State what is meant by the terms:	complex,	bucal	ligario.	(ii) Two of the complexes formed by copper are $[Cu(H_2O)_{a}]^{2+}$ and $CuCI_{a}^{2-}$. Draw three-dimensional diagrams of their structures in the boxes and name their shapes	[Cu(H ₂ O) ₆] ²⁺		shape.	

Topic: Chem 28 Q# 318/ ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

A capsule containing 500 mg of this iron(II) complex was dissolved in dilute H₂SO₄ and titrated (c) The iron(II) complex ferrous bisglycinate hydrochloride is sometimes prescribed, in capsule form, to treat iron deficiency or anaemia. with 0.0200 mol dm⁻³ KMnO₄.

18.1 cm³ of KMnO₄ solution were required to reach the end point.

The equation for the titration reaction is as follows.

 $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_9O$

Describe how you would recognise the end point of this titration.

(ii) Calculate

- the number of moles of Fe²⁺ in the capsule,
- the mass of iron in the capsule, •
- the molar mass of the iron(II) complex, assuming 1 mol of the complex contains 1 mol of iron. •

[4] [Total: 16]

(b) In general, reactions of the compounds of transition elements can be classified under Topic: Chem 28 Q# 319/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org one or more of the following headings.

acid-base

ligand exchange

precipitation redox Choose the most suitable heading to describe each of the following reactions, by placing Only one tick should be placed against each reaction. a tick (V) in the appropriate column in the table below.

reaction	acid-base	ligand exchange	precipitation	redox
$[Cu(H_2O)_{6}]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+} + 6H_2O$				
$[Cu(H_2O)_{6}]^{2+} + 4HCl \rightarrow [CuCl_4]^{2-} + 4H^{+} + 6H_2O$				
$2FeCl_2 + Cl_2 \rightarrow 2FeCl_3$	6 8			
$[Fe(H_2O)_{6}]^{2*} + 2OH^- \rightarrow Fe(OH)_2 + 6H_2O$				
$2Fe(OH)_2 + 1/2O_2 + H_2O \rightarrow 2Fe(OH)_3$				
$CrO_3 + 2HCI \rightarrow CrO_2CI_2 + H_2O$				
$Cr(H_2O)_3(OH)_3 + OH^- \rightarrow [Cr(H_2O)_2(OH)_4]^- + H_2O$				
$[Cr(OH)_4]^- + 1\%H_2O_2 + OH^- \rightarrow CrO_4^{2-} + 4H_2O_4 + 2H_2O_4 $		οų.		

Topic: Chem 28 Q# 320/ ALVI Chemistry/2012/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 Nitrogen monoxide, NO, is formed in a reversible reaction when air is heated to the temperature of a car engine.

[8]

Patrick Brannac

www.SmashingScience.org

Page 317 of 703

Patrick Brannac

Topic: Chem 28 Q# 321/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 3/www.5mashingScience.org 3 (a) On the following diagram draw a clear labelled sketch to describe the shape and	symmetry of a typical d-orbital.			2	(b) Although the five d-orbitals are at the same energy in an isolated atom, when a transition element ion is in an octahedral complex the orbitals are split into two groups.	(i) Draw an orbital energy diagram to show this, indicating the number of orbitals in each group.	•	energy	(ii) Use your diagram as an aid in explaining the following.	Transition element complexes are often coloured.		The colour of a complex of a given transition element often changes when the ligands around it are changed.		<u>www.SmashingScience.org</u> Patrick Brannac Page 320 of 703
													(III BUILISYMS
reaction between HNO ₃ and an	E• = +0.77V E• = +0.94V E• = +0.99V	product of this reaction.	ontaining product.	h an excess of FeSO₄(aq). nation?			[4]	[Total: 17]						Page 319 of 703
ilf-reactions relates to the	$\begin{array}{rcl} & \rightarrow & \text{Fe}^{2+} \\ & \rightarrow & \text{HNO}_2 & + & \text{H}_2\text{O} \\ & & \rightarrow & \text{NO} & + & \text{H}_2\text{O} \end{array}$	nitrogen-containing final	ormation of this nitrogen-	a dark brown complex wit volved in the complex for		complex.								Patrick Brannac
(c) The following information on half-reactions relates to the reaction between ${\sf HNO}_3$ and an excess of ${\sf FeSO}_4.$	Fe ³⁺ + e ⁻ $3H^{+} + NO_{3}^{-} + 2e^{-}$ HNO ₂ + H ⁺ + e ⁻	(i) Suggest the formula of the nitrogen-containing final product of this reaction.	(ii) Write an equation for the formation of this nitrogen-containing product	 (iii) Nitrogen monoxide forms a dark brown complex with an excess of FeSO₄(aq). What kind of honding is involved in the complex formation? 	2	(iv) Suggest a formula for this complex								www.SmashingScience.org

																		(THE REAL
(b) Read the following description of some reactions of copper(II) sulfate, and answer the questions that follow.	When 0.1 mol of white anhydrous CuSO ₄ is dissolved in liquid ammonia at -33°C, a deep blue solution C results. When 0.2 mol of solid NaOH is added to solution C , and the ammonia solvent	allowed to evaporate, a solid residue is obtained. Heating this residue to 200°C produces a dark coloured mixture of two solids. When water is added to this mixture, a black solid D and a colourless solution E are formed. Neither D nor E contains nitrogen. Adding BaCI ₃ (aq) to solution E produces a white precipitate F .	Solid D dissolves in HNO ₃ (aq) on warming, without evolution of gas, to give a pale blue solution containing $Cu(NO_3)_2(aq)$.	 Suggest the formula of the compound contained in each of the following. solution C 	solid D	solution E	 white precipitate F (ii) Name the type of reaction that is occurring when D reacts with HNO₃(aq). 	 [5] [5] Topic: Chem 28 Q# 323/ ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Describe three characteristic chemical properties of transition elements that are not shown by Group II elements. 			(b) When $NH_3(aq)$ is added to a green solution containing $Ni^{2*}(aq)$ ions, a grey-green precipitate is formed. This precipitate dissolves in an excess of $NH_3(aq)$ to give a blue-	violet solution. Suagest an explanation for these observations, showing your reasoning and including	equations for the reactions you describe.					[4]	www.SmashingScience.org Patrick Brannac Page 322 of 703 A
								2 ⁰											
								19							-			(111 DATE
I) ethanedioate and 3, which contains the			[1]	The iron atom in the $[Fe(C_2O_4)_3]^{3-}$ ion is surrounded octahedrally by six oxygen atoms. Complete the following displayed formula of this ion.				[2] 2# 322/ ALvI Chemistry/2010/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org What is meant by the term <i>ligand</i> in the context of transition element chemistry?	Decide which of the following species could be a ligand, and which could not be.						2	[5]			Page 321 of 703
Heating a solution containing potassium ethanedioate, iron(II) ethanedioate and hydrogen peroxide produces the light green complex $K_3Fe(C_2O_4)_3$, which contains the ion (Fe(C ₂ O ₁), 1 ³⁻ .	ollows.	6 .0	n [Fe(C ₂ O ₄) ₃] ³⁻	is surrounded octahe d formula of this ion.				Topic: Chem 28 Q# 322/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) What is meant by the term <i>ligand</i> in the context of transition element of	cies could be a ligand,	column.	cannot be a ligand								Patrick Brannac
aining potassium es the light green	The structure of the ethanedioate ion is as follows.		Calculate the oxidation number of iron in [Fe(C ₂ O ₄) ₃] ³⁻ .	[Fe(C ₂ O ₄) ₃] ^{3–} ion ollowing displaye		o	- He	 .try/2010/w/TZ 1/Pa / the term <i>ligand</i> ir	the following spec	Place a tick (🗸) in the appropriate column.	can be a ligand c								Patı
a solution conta peroxide produce O.).1 ³⁻ .	ure of the ethane		late the oxidatior	ron atom in the s. Complete the f	Ĺ			# 322/ ALvl Chemis What is meant by	Decide which of	Place a tick (🗸) II	species	-H0	NH4 ⁺	CH ₃ OH	CH ₃ NH ₂				ngScience.org
(c) Heating a solution hydrogen peroxide ion [Fe(C,O.),13	The struct		(ii) Calcu	(iii) The ir atoms				Topic: Chem 28 Q i 2 (a) (i) \	(ii)	-	1	1							www. Smashing Science.org

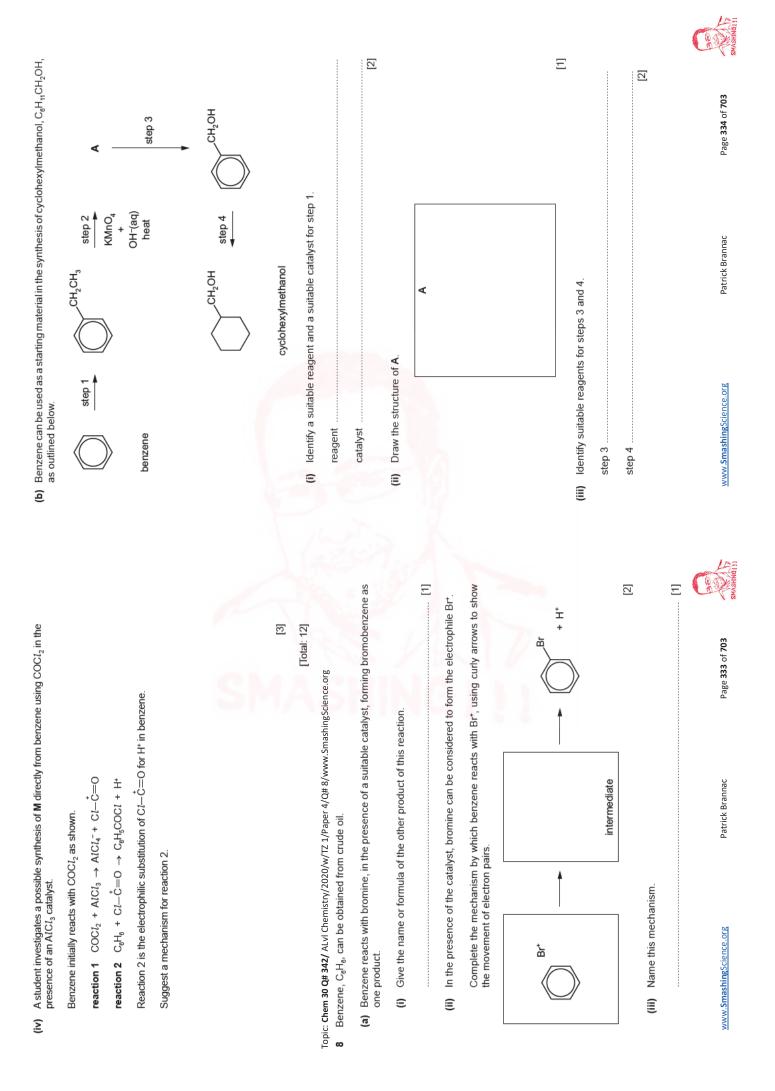
(a) Describe three characteristi shown by Group II elements.	(a) Describe three characteristic chemical properties of transition elements that are not shown by Group II elements.	lot 	Topic: Chem 28 Q# 324/ ALvl Chemistry/2009/w/TZ 1/Paper 4/Q# 3/www.5mashingScience.org 3 One major difference between the properties of compounds of the transition elements and those of other compounds is that the compounds of the transition elements are often coloured.
		ł	(a) Explain in detail why many transition element compounds are coloured.
		[3]	
(b) When NH ₃ (aq) is added to a green so precipitate is formed. This precipitate dis violet solution. Suggest an explanation for these obser equations for the reactions you describe.	(b) When NH ₃ (aq) is added to a green solution containing Ni ²⁺ (aq) ions, a grey-green precipitate is formed. This precipitate dissolves in an excess of NH ₃ (aq) to give a blue-violet solution. Suggest an explanation for these observations, showing your reasoning and including equations for the reactions you describe.	e- Jg	
		1	[3]
			(b) The following graph shows the absorption spectrum of two complexes containing copper.
			blue green yellow red infra-red
			absorbance
 (c) Dimethylglyoxime, DMG, i forms an insoluble salt with 	Dimethylglyoxime, DMG, is a useful reagent for the quantitative estimation of nickel. If forms an insoluble salt with nickel ions according to the following equation.	H.	[Cu(H ₂ O) ₆] ²⁺
$Ni^{2+}(aq) + C_4 H_8 N_2 O_2 DMG$	J ₈ N ₂ O ₂ → NiC₄H ₆ N ₂ O ₂ (s) + 2H ⁺ (aq) DMG Ni-DMG		
A small coin of mass 3.4 added. The precipitated 1	A small coin of mass 3.40g was dissolved in nitric acid and an excess of DMG was added. The precipitated Ni-DMG was filtered off, washed and dried. Its mass was	as	400 500 600 700 800 900 1000 wavelength / nm
4.uug. Calculate the % of nickel in the coin.	n the coin.		(i) State the colours of the following complex ions.
			[Cu(H ₂ O) ₆] ²⁺ [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺
			(ii) Using the spectra above give two reasons why the colour of the $[Cu(NH_3)_4(H_2O)_2]^{2+}$ ion is deeper (more intense) than that of the $[Cu(H_2O)_6]^{2+}$ ion.
	percentage of nickel =	[3]	(iii) Predict the absorption spectrum of the complex $[Cu(NH_3)_2(H_2O)_4]^{24}$, and sketch this spectrum on the above graph. [6]
	[Total: 10]	[]	
www. Smashing Science.org	Patrick Brannac Page 323 of 703	TITENUISYMS	www.SmashingScience.org Patrick Brannac Page 324 of 703

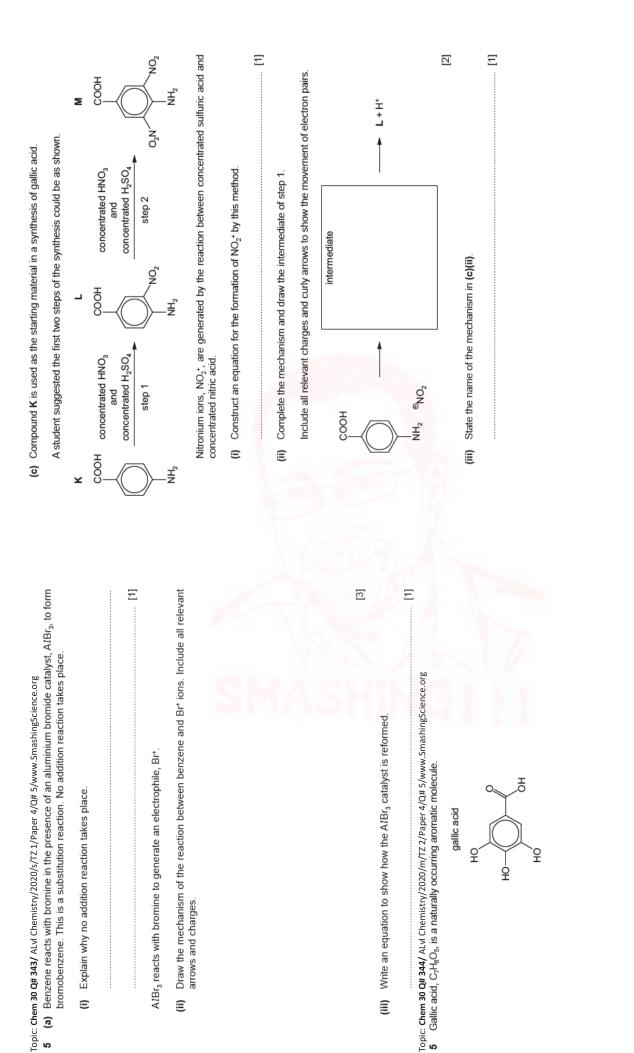
													[2]			C	TI I BNIHSWIS
Topic: Chem 29 Q# 326/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org 4 Compound F has been found in small quantities in some cereals and dried fruit.	₽	B H B		(a) (i) Give the name of the functional groups labelled A and B.A	8	(ii) State the number of chiral carbon atoms in one molecule of F.	Topic: Chem 29 Q# 327/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Benzene can be converted into cyclohexane.		(ii) State the bond angles in benzene and cyclohexane.	bond angle in benzene	Explain your answers.		Topic: Chem 29 Q# 328/ ALvI Chemistry/2019/m/T2 2/Paper 4/Q# 6/www.SmashingScience.org 6 The names of many durgs used in medicine often include parts of the names of the functional	(a) Suggest two functional groups present in a molecule of the drug named chloramphenicol.	1	[1] Topic: Chem 29 Q# 329/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 6(b)/www.SmashingScience.org	www.SmashingScience.org Patrick Brannac Page 326 of 703
												[2]				C	TI TONIHSYMS
g equilibrium.	this reaction, stating its		ol dm ⁻³ .	[3] [Total: 12]	ww.SmashingScience.org	Г но		\succ									Page 325 of 703
Nex with chlorine according to the followin. $Cu^{2+(a\alpha)} + 4CJ^{(a\alpha)} \implies [CuCJ]^{2-(a\alpha)}$	Write an expression for the equilibrium constant, K_{c} , for this reaction, stating its units.	units	The numerical value of K_c is 4.2 × 10 ⁵ . Calculate the [[CuC l_4] ² -]/[Cu ²⁺] ratio when [C l^-] = 0.20 mol dm ⁻³ .		:try/2022/m/TZ 1/Paper 4/Q# 4/w n Fig. 4.1.	K	ы	Ein 41	ne functional group.	nal groups in F and J.							Patrick Brannac
(c) Copper forms a complex with chlorine according to the following equilibrium $Cu^{2+}(a\alpha) + 4CI^{-}(a\alpha) = 1CuCI^{-1}(a\alpha)$	(i) Write an expression for the units.	K _c =	(ii) The numerical value of K_0 is Calculate the [[CuC l_4] ²⁻]/[Cl		Topic: Chem 29 Q# 325/ ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 Compounds F and J are shown in Fig. 4.1.	0= Ľ		∕ v²H	(a) F and J both contain the arene functional group	(i) Identify the other functional groups in ${\sf F}$ and ${\sf J}$	Ĺ	J.					www. Smashing Science.org

www.SmashingScience.org

Patrick Brannac

Page 327 of 703


1 INNIHASY


Page **328** of **703**

Patrick Brannac

spberries. 3	J_zı	onto the fibres of the cloth.	Indigo is insoluble in water but this disadvantage can be overcome by converting it into the water-soluble colourless leuco-indigo. If cloth soaked in a solution of leuco-indigo is left to dry in the air, the leuco-indigo is converted into the insoluble blue indigo, which is precipitated out the fibers of the cloth.	indigofera, it is now almo	Topic: Chem 29 Q# 338/ ALVI Ch 3 Indian is the dive read	org raspberries.	Ĩ		Explain your answer.	(ii) Suggest the molecular geometry required for this molecule to conduct.	(i) Suggest how this polymer conducts electricity.	o stimulate the	E	can conduct electricity and/or emit light. A length of one such polymer is shown.	Topic. (d)
 (a) State the names of three functional groups in the noradrenaline molecule. (a) State the names of three functional groups in the noradrenaline molecule. 5 Compound G is a naturally occurring aromatic compound that is present in raspberries compound G is a naturally occurring aromatic to moradic compound G is a naturally occurring aromatic compound G is a naturally occurring aromatic compound that is present in raspberries (a) Identify the functional groups present in compound G. 		(a) Identify the functional groups present in compound G.	compound G			ic: Chem 29 Q# 336/ ALvl Chemistry/2012/w/T2 1/Paper 4/Q# 5/www.SmashingScle Compound G is a naturally occurring aromatic compound that is prese		(a) State the names of three functional groups in the noradrenaline molecu	noradrenaline	Ор	HO	Topic: Chem 29 Q# 335/ ALM Chemistry/2014/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 Noradrenaline is a hormone and neurotransmitter, which is released during stress to stimulate the heart and increase blood pressure.		Suggest one benefit of taking a drug in this way.	(b) Oseltamivir is a chiral drug. This drug is usually taken as a single optical isomer rather than as a mixture of isomers.

]		<u>6</u>	Correction
ashingScience.org ene in three steps.	3-aminobenzoic acid		ashing Science. org	Page 332 of 703
l/s/TZ 1/Paper 4/Q# 7/www.Sma ynthesised from methylbenze M		Draw the structures of M and N in the boxes. Suggest reagents and conditions for each step of the synthesis. step 1	21/m/T2 2/Paper 4/Q# 5/www.Sm nethylbenzene in a two-step syn L C ₈ H ₆ O ₄ step 2 C1	Patrick Brannac
Topic: Chem 30 Q# 340/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) 3-aminobenzoic acid can be synthesised from methylbenzene in three steps. methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene methylbenzene		 (i) Draw the structures of M and N in the boxes. (ii) Suggest reagents and conditions for each st step 1	/ALvI Chemistry/20 made from 1,3-din nzene step 1	www.SmashingScience.org
e of an	3- [1] nt curly	<u></u>		C C C C C C C C C C C C C C C C C C C
w.SmashingScience.org the starting material. oromethane in the presence	hese is the carbocation +CH ine and A <i>I</i> C <i>I</i> ₃ . and +CH ₃ , Include all relevan	- -		Page 331 of 703
hem 30 Q# 339/ ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org structure of phenylethanoic acid is shown. $f_{\rm off}$	 Chloromethane reacts with AIC1₃ to form two ions. One of these is the carbocation +CH₃. (i) Write an equation for the reaction between chloromethane and AIC1₃. (ii) Draw the mechanism of the reaction between benzene and +CH₃. Include all relevant arrows, charges and the structure of the intermediate. +CH₃ intermediate 			Patrick Brannac
 Topic: Chem 30 Q# 339/ ALVI Chemistry/2021/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org The structure of phenylethanoic acid is shown. Phenylethanoic acid is shown. Phenylethanoic acid can be synthesised using benzene as the starting material. In the first stage of this synthesis, benzene reacts with chloromethane in the pre AICI₃ catalyst to form methylbenzene. 	Chloromethane reacts with A (i) Write an equation for the 	\uparrow		www.SmashingScience.org

Patrick Brannac

www.SmashingScience.org

Page 335 of 703

www.SmashingScience.org

Topic: Chem 30 Q# 346/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Benzene can be converted into cyclohexane.	 (i) For this reaction name the type of reaction and identify the reagent and conditions needed. 	type of reaction	benzenesulfonic acid + SO ₃ + SO ₃	The mechanism of this reaction is similar to that of the nitration of benzene. Concentrated H.SO. is used in an initial sten to generate the SO.H* electronhile as shown		 (i) Draw a mechanism for the reaction of benzene with SO₃H⁺ ions. Include all necessary curly arrows and charges. benzenesulfonic acid 	So ₃ H ⁺	 (ii) Write an equation to show how the H₂SO₄ catalyst is reformed. [1] 			www.SmashingScience.org Patrick Brannac Page 338 of 703
		e starting materials. ion conditions.	[2]	nula of one organic product eaction you should write 'no	name of mechanism			7		[9]	Page 337 of 703
019/w/TZ 1/Paper 4/0# 4/www.SmashingS chemical with many uses.	phenylethanone	(a) Phenylethanone can be synthesised using benzene as one of the starting materials. Identify the other reagents used and describe any essential reaction conditions.	Phenylethanone is treated separately with three reagents.	Complete the table, for each reagent, to give the structural formula of one organic product formed and the name of the mechanism involved. If there is no reaction you should write 'no reaction'.	organic product						Patrick Brannac
Topic: Chem 30 Q# 345/ ALvl Chemistry/2019/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 Phenylethanone is an important chemical with many uses.		(a) Phenylethanone can be syn Identify the other reagents u	(b) Phenylethanone is treated set	Complete the table, for eacl formed and the name of the reaction'.	reagent	chlorine gas at 10°C in the presence of ultra-violet light	a mixture of concentrated nitric and sulfuric acids at 50°C		bromine water		www.SmashingScience.org

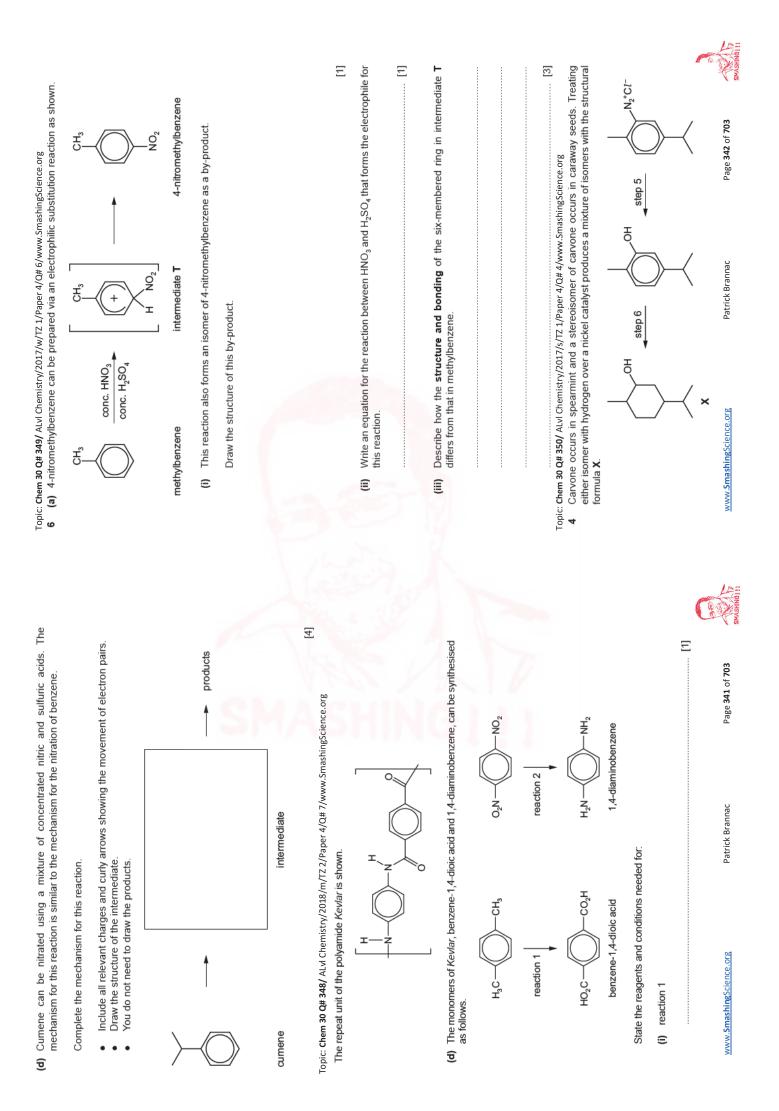
(c) 3-dodecylbenzenesulfonic acid can be prepared from benzenesulfonic acid.

	 (i) Name the reactant D and the non-organic product E. D	 (b) Cumene undergoes substitution reactions with chlorine to give several different isomeric products with the formula C₉H₁₁CI. The substitution can occur in the aromatic ring or in the side-chain of cumene. (i) Describe the conditions that are used to ensure substitution takes place only in the aromatic ring.
--	--	---

- (b) Cumene undergoes substitution reactions with chlorine to give several different isomeric products with the formula $C_0H_{11}CL$ The substitution can occur in the aromatic ring or in the side-chain of cumene.
- (i) Describe the conditions that are used to ensure substitution takes place only in the aromatic ring.
- [1] [ii) Draw the structures of the **two** major isomeric products of the reaction, formula $C_{9}H_{tt}Ct$, when substitution takes place in the aromatic ring.

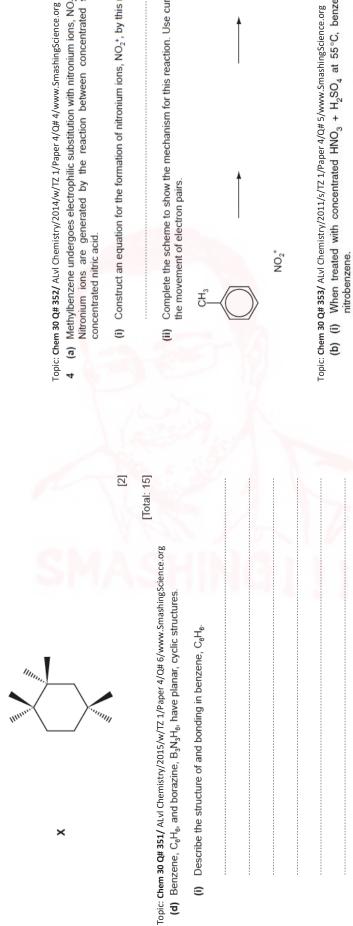
(c) Complete the following table to show the structures of the organic products formed when cumene reacts with each reagent.

	H ₂ + Ni, high pressure	hot KMnO₄(aq)	reagent structure of organic product
--	------------------------------------	---------------	--------------------------------------



www.SmashingScience.org

Page **340** of **703**


Patrick Brannac

[2]

~	
(c) During step 6, hydrogen is added to the benzene ring to produce the cyclohexane ring in X. The six hydrogen atoms are all added to the same side of the benzene ring.	(i) State the reagents and conditions needed for this reaction.

Complete the part structure to show the structure of the isomer of X that would most likely be obtained during this reaction. ≣

Ξ

In borazine, B₃N₃H₆, the boron and nitrogen atoms alternate around the ring. Each ring All boron-nitrogen bonds in borazine are 0.144 nm in length, whereas in simple compounds B–N and B=N bond lengths are 0.154 nm and 0.136 nm respectively. atom has a single hydrogen atom bonded to it.

Suggest and draw the structure of borazine.

Ξ

Ē

[Total: 10]

Nitronium ions are generated by the reaction between concentrated sulfuric acid and (a) Methylbenzene undergoes electrophilic substitution with nitronium ions, NO2

- concentrated nitric acid.
- Construct an equation for the formation of nitronium ions, NO₂⁺, by this method.
- Complete the scheme to show the mechanism for this reaction. Use curly arrows to show the movement of electron pairs.

 NO_2^{\uparrow}

[4]

(b) (i) When treated with concentrated $HNO_3 + H_2SO_4$ at 55°C, benzene produces Topic: Chem 30 Q# 353/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org nitrobenzene.

Outline the mechanism of this reaction. You should include all charges, and use curly arrows to represent the movement of electron pairs.

3

Page 344 of 703

Patrick Brannac

www.SmashingScience.org

Page 343 of 703

Patrick Brannac

			<u></u>		
Use the <i>Data Booklet</i> to suggest two reasons why the chlorine atom in compound H substitutes into the ring at the position shown, instead of the other positions in the ring.	v.SmashingScience.org	HC <i>t</i> e following compounds. C ₆ H ₅ C <i>t</i>	# 4/www.SmashingScience.org In Fig. 4.5.		346 of 703
ef to suggest two reasons why t ng at the position shown, instead	2 Topic: Chem 31 Q# 355/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.5mashingScience.org 9 (a) Organochlorine compounds can undergo hydrolysis.	$R-CI + H_2O \rightarrow R-OH + HCI$ State and explain the relative rates of hydrolysis of the following compounds. CH_3CH_2CI CH_3COCI C_6H_5CI	Chemistr eact wit	concentrated HNO ₃ concentrated HNO ₃ concentrated H ₂ SO ₄	Explain why the reagents and conditions for these two reactions are different and set of the set of
 Use the Data Bookle substitutes into the ni 	2 Z Topic: Chem 31 Q# 355/ ALvl Chemi 9 (a) Organochlorine comp	State and explain the	Topic: Chem 32 Q# 356/ Atvice (e) Phenol and benzene both r		Explain why the reagents.
9		0			E
In aromatic substitution of monosubstituted benzenes, the orientation of an incoming group depends on the nature of the group already attached to the ring. For example, using the same reagents and conditions as in (i), methylbenzene and benzoic acid produce the following nitro compounds.	CO2H NO2	Using this information as an aid, suggest a structure for compound C in the following synthesis of 3-bromobenzoic acid.	SHIN	[6 ww.SmashingScience.org as shown.	Page 345 of 703
ubstituted benzenes, ti e group already attache tgents and conditions i nitro compounds.	■ CO ₂ H	d, suggest a structure facid.	c ons for steps 1 and 2.	:: Chem 31 Q# 354/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.Smash (c) Compound H is formed in one step of a different synthesis, as shown.	Cl ₂ and FeCl ₃ HO ⁻ step.
In aromatic substitution of monosubstituted benzen group depends on the nature of the group already att For example, using the same reagents and conditi benzoic acid produce the following nitro compounds.	CH ₃	Using this information as an aid, su synthesis of 3-bromobenzoic acid. CH ₃	Suggest reagents and conditions for steps 1 and 2.	54/ ALvI Chemistry/202 is formed in one step (of Fect ₃ in this
In aromatic s group depen For example, benzoic acid	CH3	(ii) Using this synthesis (CH ₃	(iii) Suggest step 1	Topic: Chem 31 Q# 354/ ALvI Chemistry/2020/m/T2 2/Paper 4/Q# 4/www.SmashingScience.org (c) Compound H is formed in one step of a different synthesis, as shown.	(i) State the role

(c) Phenol reacts with an excess of aqueous bromine.	(i) Draw and name the organic product of this reaction in the box.			name	visual observations that can be made when phenol reacts with an excess of time.	observation 1	(d) Write an equation for a neutralisation reaction in which phenol behaves as an acid.		Place these three compounds in order of acidity, starting with the most acidic. Explain your answer.			[3]	www.SmashingScience.org Patrick Brannac Page 348 of 703
Topic: Chem 32 Q# 357/ ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 The structure of chemvlethanoic acid is shown		(b) Phenylethanoic acid, ethanol and phenol can all behave as acids. Commare and evolain the relative acidities of these three commonings	most acidic > > east acidic	S		Topic: Chem 32 Q# 358/ ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org [4] 7 Phenol, Ce ₀ H ₂ OH, is a weak acid.	(a) Phenol can be made from phenylamine, $C_6H_5NH_2$. Give the reagents and conditions for this reaction.	[2]	(b) Phenol reacts with dilute aqueous nitric acid under room conditions to give a mixture of two isomeric products with molecular formula $C_6H_5NO_3$.	Use the <i>Data Booklet</i> to draw the structural formulae of these two products in the boxes and name each product.		name	www.SmashingScience.org Patrick Brannac Page 347 of 703 Swishing 1

	to forr
	A1Rr
Topic: Chem 32 Q# 359/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	5 (a) Benzene reacts with bromine in the presence of an aluminium bromide catalyst A/Br. to four
59/ AL	P rear
em 32 Q# 3	Renzene
pic: Ch	(e)
To	ç

(b) When phenol is reacted with bromine dissolved in an inert solvent, two isomeric bromophenols,

Suggest structures for these products. Name each compound.

C₆H₄BrOH, are formed.

נסז to form v≀שוא (b) Suggest why bromination of phenol occurs more readily than bromination of benzene. bromobenzene. This is a substitution reaction. No addition reaction takes place. a 2

Topic: Chem 32 Q# 360/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org 5 Gallic acid, C₇H₆O₅, is a naturally occurring aromatic molecule.

name:

2]

gallic acid 오 宁 (a) Gallic acid contains the carboxylic acid and phenol functional groups.

오

State and explain the relative acid strength of these two functional groups.

Explain why.

Some reactions of zingerone are shown. **7** (a) Chlorobenzene and phenol both show a lack of reactivity towards reactants that cause the breaking of the C–X bond (X = Ct or OH).

Complete the table to identify the functional groups in zingerone.

shogaol

CHO

[2]

Topic: Chem 32 Q# 361/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

(c) Zingerone is formed from gingerol.

red ppt.	orange ppt.	no change
benzenediazonium chloride, 5°C, alkaline solution	2,4-dinitrophenylhydrazine	warm with Tollens' reagent
	oride,	ař.

functional group in zingerone indicated by the observation			
observation	red ppt.	orange ppt.	
reagent and conditions	benzenediazonium chloride, 5 °C, alkaline solution	2,4-dinitrophenylhydrazine	

TITIDIUHS WS

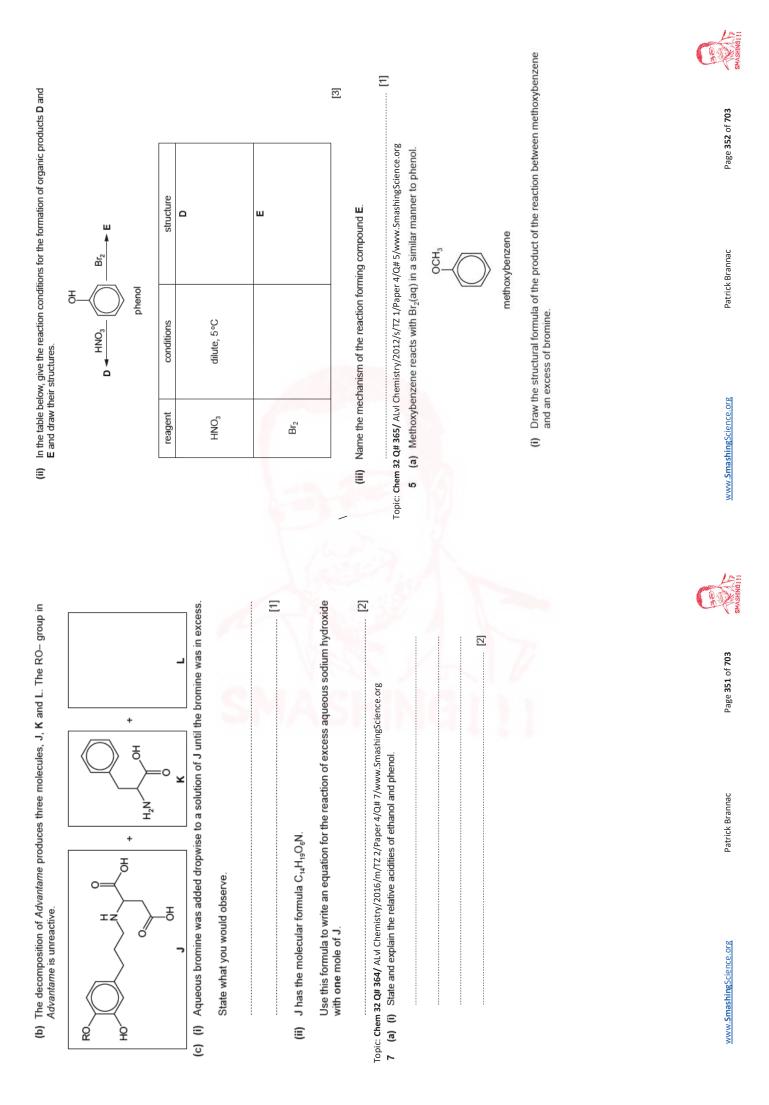
[2]

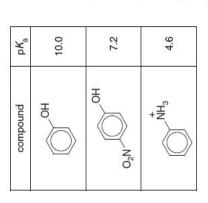
Topic: **Chem 32 Q# 363/** ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 7/www.5mashingScience.org Patrick Brannac Page **350** of **703**

Page 349 of 703

Patrick Brannac

www.SmashingScience.org


[3]


Topic: Chem 32 Q# 362/ ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

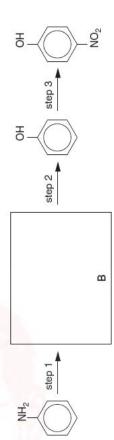
name:

(b) The structure of shogaol is shown.

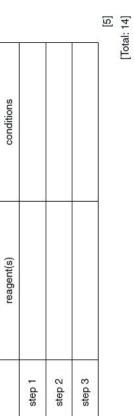
(ii) Suggest a chemical reaction you could use to distinguish between methoxybenzene and phenol. State the reagent, describe the observations you would make, and give an equation for the reaction.	(iii) Using the information in the table opposite, predict which of the is the most likely for the 4-nitrophenylammonium ion.	dict which of th um ion.
reagent	+ NH ₃	
observation	O ₂ N SO	
equation	Place a tick (\checkmark) in the box beside the value you have chosen.	u have chosen.
	pKa	
[4] Tunic: Chem 32 Off 366/ Al vI Chemistrv /2011 /w/T7 1/Paner 4/Off 4/www SmashingScience arg	1.0	÷
(b) (i) Write an equation for a reaction in which phenol, C ₆ H ₅ OH, acts as a Brønsted-Lowry	4.5	÷
acid.	7.0	÷
	10.0	
The pK _a values for phenol, 4-nitrophenol and the phenylammonium ion are given in the table.		-

(ii) Suggest an explanation for the difference in the pK_a values of phenol and nitrophenol.

			3	
:	:	:		
	:	:		
:				
:	:	:	1	
:	:	:	1	
:	:	:	:	
:	:	:		
	:	:		
:	:	:	:	
:	:	:		
:	:	:		
:		:		
	:	:		
:	:	:		
:	:	:		
	:		1	
:	:			
:	:	:		
			1	
:	:	:		
:	:	:		
-		1		
:	:	:		
			1	
1				
:	:	:		


(iii) Using the information in the table opposite, predict which of the following pK_a values

(iv) Explain your answer to part (iii).


1	1	
1	1	
1		
1		
1	1	
1	1	
1		
1	1	
1	1	
1	1	
1	1	
1	1	
1		
1	1	
1		
1	1	
1		
1		
1	1	
1	1	
1		
	•	

[2]

(c) Phenylamine can be converted to 4-nitrophenol by the following steps.

- (i) Suggest the identity of intermediate B by drawing its structure in the box above.
 - (ii) Suggest reagents and conditions for the three steps in the above scheme.

www.SmashingScience.org

www.SmashingScience.org

CELES

4 Cyclohexanol and phenol are both solids with low melting points that are fairly soluble in Topic: Chem 32 Q# 367/ ALvI Chemistry/2009/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

water.

(a) Explain why these compounds are more soluble in water than their parent hydrocarbons cyclohexane and benzene.

_		
[2]	[2]	
N		
Explain why phenol is more acidic than cyclohexanol.		
lohexa		
an cyc		
idic tha		
ore aci		
ol is mo		
pheno		
n why		
b) Explain why phenol is more acidic than cyclohexanol.		
(q		

(c) For each of the following reagents, draw the structural formula of the product obtained for each of the two compounds. If no reaction occurs write *no reaction* in the box.

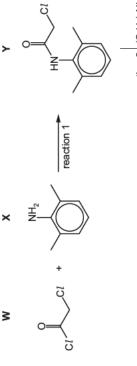
						Ε
product with phenol						
product with cyclohexanol						
reagent	Na(s)	NaOH(aq)	Br ₂ (aq)	I ₂ (aq) + OH ⁻ (aq)	an excess of acidified $Cr_2O_7^{2-}(aq)$	

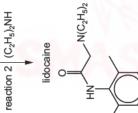
- (d) Choose **one** of the above five reagents that could be used to distinguish between cyclohexanol and phenol. Describe the observations you would make with each compound.
- reagent

	[2]
	[2]
observation with cyclohexanol	observation with phenol

Page **356** of **703**

Patrick Brannac


www.SmashingScience.org



Page **355** of **703**

Patrick Brannac

(a) W can be formed by reacting HOCH₂COOH with an excess of SOCl₂.

Write an equation for this reaction.

[]

(b) After W and X have reacted together, an excess of CH₃COONa(aq) is added to the reaction mixture.

Suggest why.

Ξ

(c) The reaction of W with X, reaction 1, follows an addition-elimination mechanism.

Complete the mechanism for the reaction of W with X. Include all relevant curly arrows, lone pairs of electrons, charges and partial charges. Use Ar–NH₂ to represent X.

Ar ----NH₂

(d) $(C_2H_5)_2NH$ reacts with Y in reaction 2.

[4]

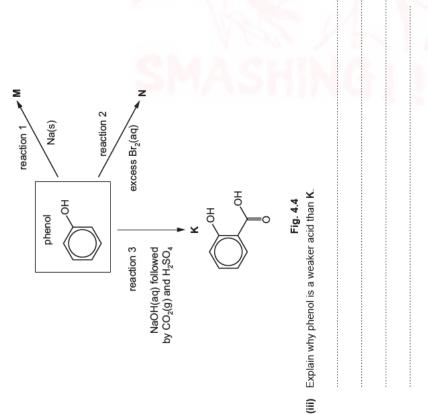
Explain why (C₂H₅)₂NH can act as a nucleophile.

[]

Page **358** of **703**

Patrick Brannac

www.SmashingScience.org



Page **357** of **703**

Patrick Brannac

9/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	synthesised from phenol, C ₆ H ₅ OH.
hem 33 Q# 369/ ALvI Chemis) K can also be synthesised
C C	¥
Topic	(p)

Fig. 4.4 shows several reactions of phenol.

ice.org	inol, ethanoic acid and water.
shingScier	oic acid, ethanol,
4/Q# 6/www.Sma	of butanoic acid,
iemistry/2021/s/TZ 1/Paper 4/	acidities (
/2021/s/1	relative
Lvl Chemistry/	pare and explain the re
: Chem 33 Q# 370/ ALvl Che	F
oic: Che	6 (a) Cor
Τoμ	9

						[4]
	least acidic					
1	9				-	
	ac					
1	÷					
1	as					
1	ü					
	_					
			1			
:						
Λ						
1						
1			-			
1					-	
1						
1						
^					-	
~						
1						
1					-	
1		1				
1				1		
:						
Λ						
1						
1			-			
	C					
	p					
	^o					
	most acidic					
	SI					
-	2			1		
1		1	1	1		1
1			1	1		

(b) Three carboxylic acids, methanoic acid, HCO₂H, ethanedioic acid, HO₂CCO₂H, and butanedioic acid, HO₂CCH₂CH₂CO₂H, are compared. Two tests were carried out on separate samples of each organic acid, as shown.

The following results were obtained. $\sqrt{-1}$ observed change X = no observed reaction

observed change		
HCO ₂ H HO ₂ CCO ₂ H HO ₂ CCH ₂ CH ₂ CO ₂ H observed change	x	x
но ₂ ссо ₂ н	x	>
HCO ₂ H	~	>
test reagents and conditions		
test	-	2

(i) Complete the table with the reagents and conditions and the observed change for a 3 positive test.

[2]

Assume these organic acids all have a similar acid strength.

Topic: Chem 33 Q# 371/ ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org

6 Fumaric acid is a naturally occurring dicarboxylic acid.

fumaric acid

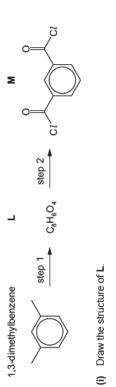
___CO₂H HO2C (a) Identify the products of the reaction between fumaric acid and an excess of hot, concentrated, acidified manganate(VII).

Topic: Chem 33 Q# 372/ ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org

www.SmashingScience.org

Page 359 of 703

Patrick Brannac


www.SmashingScience.org

<u>-</u>

Page **360** of **703**

(b) Compound M is made from 1,3-dimethylbenzene in a two-step synthesis.

[] Topic: Chem 33 Q# 373/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

6 (a) Compare and explain the relative acidities of 2-chloropropanoic acid, 3-chloropropanoic acid, and propanoic acid. Explain your answer.

:				[3]
least acidic				
Λ				
most acidic	explanation			[3]
	explane			

observed change			
HO ₂ CCO ₂ H	×	×	`
нсо ₂ н сн ₃ сосо ₂ н но ₂ ссо ₂ н	×	>	×
нсо ₂ н	>	×	`
reagent(s) and conditions			
test	-	7	en en

- Complete the table with the reagent(s) and conditions and the observed change for each test. Assume these organic acids all have a similar acid strength. [5]
 - (iii) [Fe(C₂O₄)₂Cl₂]⁺ contains ligands which are anions of ethanedioic acid, HO₂CCO₂H Topic: Chem 33 Q# 374/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

Complete the table to show any observations for the reactions of HO₂CCO₂H with the named reagents.

Where no change is observed, write 'none'.

observations with HO ₂ CCC		
reagent	warm acidified manganate(VII)	

observations with HO ₂ CCO ₂ H			
reagent	warm acidified manganate(VII)	2,4-dinitrophenylhydrazine	

observations with HO ₂ CCO ₂ H			
reagent	warm acidified manganate(VII)	2,4-dinitrophenylhydrazine	T

		[Total:
izine	int	

20]

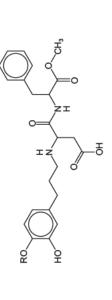
[2]

reagent	observations with HO ₂ CCO ₂ H
warm acidified manganate(VII)	
2,4-dinitrophenylhydrazine	
warm Tollens' reagent	

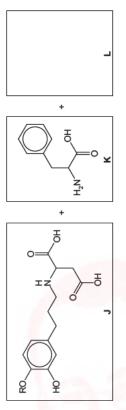
www.SmashingScience.org

Topic: Chem 33 Q# 376/ ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 The three substances shown all have some acidic properties.	$H = \begin{pmatrix} H & H & H & H \\ H & - & - & - & - & - & - & - & - & + & +$	(ii) Explain your answer to (i).	 [2] (c) Methanoic acid, HCO₂H, has a similar acid strength to propanoic acid. (b) Methanoic acid, HCO₂H, has a similar acid strength to propanoic acid. (c) Methanoic acid, HCO₂H, has a similar acid strength to propanoic acid. 		www.5mashingScience.org
mashingScience.org	Ξ	 [1] [1] If abscisic acid is treated with an excess of hot, concentrated, acidified KMnO₄, three different carbon-containing products are formed. (i) Draw the skeletal formula of the carbon-containing product with the largest molecular mass. 	[1] Identify the carbon-containing product with the smallest molecular mass. Explain how this product arises.	Identify the third carbon-containing product of this reaction by giving its displayed or structural formula. [1] [7]	Page 363 of 703
/2018/s/TZ 1/Paper 4/Q# 8/www.Srr lant hormone.	Abscisic acid is reacted with an excess of NaBH ₄ . Give the molecular formula of the organic product formed.	with an excess of hot, concentra ts are formed. rmula of the carbon-containing	ontaining product with the smalle	bon-containing product of this	Patrick Brannac
Topic: Chem 33 Q# 375/ ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 Abscisic acid, $C_{15}H_{20}O_{41}$ is a plant hormone.	 (b) Abscisic acid is reacted with an excess of NaBH₄. 	 (c) If abscisic acid is treated with an excess carbon-containing products are formed. (i) Draw the skeletal formula of the omass. 	(ii) Identify the carbon-co product arises.	(iii) Identify the third carl structural formula.	www.SmashingScience.org

(d) The ester phenyl propanoate, $C_2H_5CO_2C_6H_5$, can be made from phenol and propanoic acid in a **two-step** synthesis. The first step produces an acyl chloride.


For this two-step synthesis,

- •
- draw the structure of the product of the first step, state the reagents and conditions needed for each step of the synthesis.


	Topic: Chem 33 Q# 378/ ALVI Chemistry/2018/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org (d) (i) The ethanedioates of the Group 2 elements, MC ₂ O ₄ , decompose on heating to produce a mixture of two different gases and the solid oxide, MO, only. (ii) Describe two observations you would make during the reaction when ethanedioic acid, H ₂ C ₂ O ₄ , is warmed with acidified manganate(VII) ions.	opic: Chem 33 Q# 378/ ALv/ Chemi (d) (i) The ethanedioates of t mixture of two different H2C2O4, is warmed wit
² H CH ₂ OH H ₃ C	phenylmethanol	benzoic acid

7 The compound Advantame is a sweetener that tastes approximately 25000 times sweeter than Topic: Chem 33 Q# 379/ ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org

sucrose.

(b) The decomposition of *Advantame* produces three molecules, J, K and L. The RO- group in *Advantame* is unreactive. Advantame

Suggest possible reagents and conditions for this decomposition. (i) Ξ

Ξ Ξ

Name the type of reaction occurring. (ii) Draw the structure of L in the box above. (111) Page **366** of **703**

Patrick Brannac

www.SmashingScience.org

Topic: Chem 33 Q# 380/ ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 10/www.SmashingScience.org 10 (a) Ethanedioic acid, C ₂ O ₄ H ₂ , occurs in many vegetables. The amount that occurs in spinach can be estimated as follows.	(b) Ethanedioic acid can be converted into ethanedioyl chloride: $HO_2CCO_2H \rightarrow CIOCCOC1$
 40.0g of spinach leaves are crushed and mixed with distilled water, using a mortar and pestle. 	(i) State a suitable reagent for this reaction.
 The mixture is filtered, and the leaves are washed with a little more water. The combined filtrate and washings are made up to 100.0 cm³ with water. A 25.0 cm³ portion of the resulting solution is added to a conical flask, along with an excess of dilute sulfuric acid. The acidified solution is warmed, and then titrated with 0.0200 mol dm⁻³ KMnO₄. 	 [ii) For the reactions of ethanedioyl chloride below, suggest the structures of compounds J and K and draw them in the boxes.
The equation for the reaction between ethanedioic acid and acidified manganate(VII) ions is shown.	
$2MnO_4^- + 6H^+ + 5C_2O_4H_2 \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$	CH ₃ OH COC <i>i</i> H ₂ NCH ₂ CH ₂ NH ₂
In the titration, 15.20 cm ³ of KMnO ₄ was required to reach the end-point.	Ċoc <i>i</i>
Calculate the percentage by mass of ethanedioic acid in the spinach leaves.	
	Topic: Chem 33 Q# 381/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Both chloroalkanes and acyl chlorides react with water, but only acyl chlorides fume in moist air.
	(i) State which product causes the fumes in this reaction.
	(ii) Explain why the reactivities of chloroalkanes and acyl chlorides differ.

percentage of ethanedioic acid = ...

% [3]

www.SmashingScience.org

Patrick Brannac

Page **367** of **703**

LA LANHSV

www.SmashingScience.org

CENTRE

Topic: Chem 33 Q# 382/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) Organohalogen compounds can undergo hydrolysis.

 $R-Cl + H_2O \rightarrow R-OH + HCl$

State the relative rates of hydrolysis of the following compounds.

C₆H₅C1 CH3CH2COC1 CH3CH2CH2C1

Explain your answer

					33
					<u> </u>
				- 1	
				- 1	
			:		
				- 1	
				- 1	
					1
			-	- 1	
:	:		:		:
:	:	:	:	:	· · · ·
					:
	:	:	:		:
		-			
			-		
1				1	
					:
			1		
		-			
	1				
1					
	1				
				1	

(b) (i) Describe and explain the relative acidities of chloroethanoic acid and ethanoic acid. Topic: Chem 33 Q# 383/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

Describe and explain the relative acidities of phenol and ethanol.

(11)

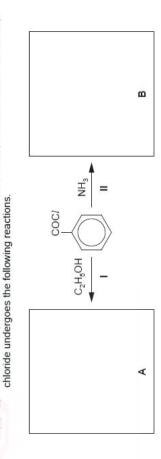
(a) A series of experiments is carried out in which the reagent shown at the top of the column Topic: Chem 33 Q# 384/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 2

Complete the following table by writing in each box the formula of any gas produced. of the table is mixed, in turn, with each of the reagents at the side. The first column has been completed as an illustration. Write x in the box if no gas is produced.

й С			
H ^{CO2} H			
¥			
H ₂ O	H ₂	×	×
	Na	KOH(aq)	Na ₂ CO ₃ (aq)

Topic: Chem 33 Q# 385/ ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org Acyl chlorides are useful intermediates in organic syntheses. 9

[2]


- State a suitable reagent for converting carboxylic acids into acyl chlorides. (E (a)
- Construct an equation for the reaction between ethanoic acid, CH₃CO₂H, and the reagent you have stated in (i). (11)

In the boxes provided draw the structures of the compounds formed when benzoyl (E)

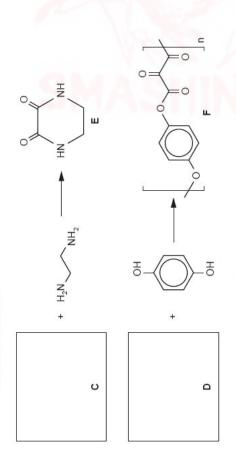
(q)

3

[2]

Patrick Brannac

www.SmashingScience.org



Page 369 of 703

Patrick Brannac

- compound A
- compound B
- (iii) What type of reaction is reaction II?
- [2] Suggest suitable acyl chlorides to use in the following reaction. Draw their structures in the boxes provided. (i) (0)

Compound E dissolves in, but does not react with, cold water.

(iv) What type of polymer is compound F?

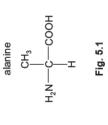
. [3] [Total: 12]

(c) A student studies the reaction of CH₃CHCtCOOH with aqueous NH₃ to determine the reaction Topic: Chem 34 Q# 386/ ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org mechanism.

The student finds that when CH₃CHCICOOH and NH₃ are added in a 1:1 stoichiometric ratio, the conjugate acid and base of the reactants are quickly formed.

In an excess of NH₃, CH₃CHC1COO⁻ undergoes a nucleophilic substitution reaction. reaction 1 CH₃CHCICOOH + NH₃ → CH₃CHCICOO⁻ + NH₄⁺

reaction 2 CH₃CHCICOO⁻ + NH₃ \rightarrow CH₃CH(NH₂)COO⁻ + H⁺ + CI⁻


(vi) When an excess of CH₃CHC1COO⁻ is used, further substitution reactions occur. One product has the formula $C_6H_9NO_{2}^{-1}$.

Suggest the structure of C₆H₉NO₄²⁻.

[]

[Total: 21] Topic: Chem 34 Q# 387/ ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 2-Chloropropanoic acid, CH₃CHC1COOH, is used in many chemical syntheses.

(b) When CH₃CHC1COOH reacts with aqueous NH₃, alanine forms.

Alanine is an amino acid. Its isoelectric point is 6.1.

State what is meant by isoelectric point.

Ξ

Ξ

Give the structural formula of alanine at pH 2. (iii)

Page **372** of **703**

Patrick Brannac

www.SmashingScience.org

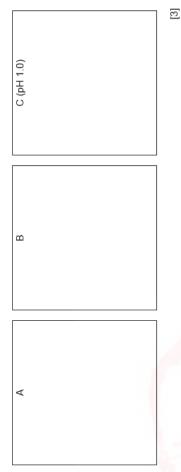
www.SmashingScience.org

Phenylamine, $C_6H_5NH_2$, and ethylamine, $C_2H_5NH_2$, can be distinguished by adding aqueous Topic: Chem 34 Q# 388/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org œ

bromine.

(a) State what is seen when aqueous bromine is added to phenylamine.

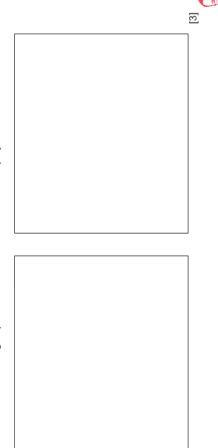
[2]	
	ine.
	'lam
	ethy
	d to
	dde
	IS a
	nine
	bror
	sno
	anbi
	en a
	dw r
	seel
	at is
	wh
	Igest
	(b) Suggest what is seen when aqueous bromine is added to ethylamine.
	(q)


Ξ

Draw the structure of the organic product formed when an excess of aqueous bromine is added to phenylamine. <u>ی</u>

[1] [1]	[Total: 5] Topic: Chem 34 Q# 389/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org 10 Valine (Val) and lysine (Lys) are amino acids. The structures of these amino acids can be found in the <i>Data Booklet</i> .	The isoelectric point of an amino acid is the pH at which it exists as a zwitterion. The isoelectric point of valine is 6.0. The isoelectric point of lysine is 9.7.	(a) Draw the structure of valine at pH 6.0.	

(b) A solution of lysine is produced with pH 9.7. Dilute sulfuric acid is added slowly until the pH of the solution is 1.0. The sulfuric acid reacts with lysine to produce different organic ions that are not present in significant concentrations at pH 9.7.


Draw the structures of three of the organic ions that form during the addition of sulfuric acid in the boxes. Draw the organic ion present at pH 1.0 in box C.

Draw the structure of the dipeptide Val-Lys. The peptide bond should be shown fully displayed. (c)

(b) A mixture of serine, HOCH₂CH(NH₂)CO₂H, and lysine, H₂N(CH₂)₄CH(NH₂)CO₂H, reacts to form Topic: Chem 34 Q# 390/ ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org several different products. Draw the structures of the two structural isomers with the molecular formula $C_6 H_{12} N_2 O_5$ that could be present in the product mixture. Ξ

The functional group formed in each case should be displayed.

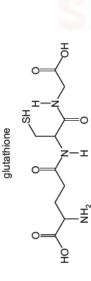
www.SmashingScience.org

Page 373 of 703

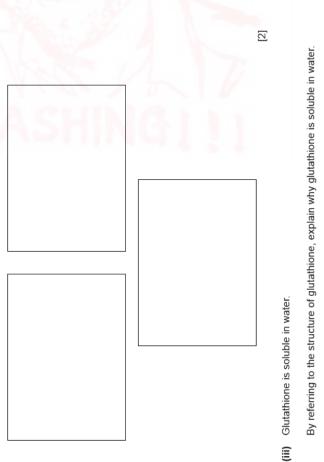
Patrick Brannac

Ξ

www.SmashingScience.org

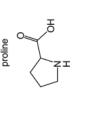

Patrick Brannac

Page 374 of 703



number of structural isomers formed	
molecular formula	C₀H₁₀N₃O₄

(c) Glutathione is a naturally occurring compound found in plants.



(ii) Draw the structures of the three products formed after complete acid hydrolysis of glutathione. Assume the thiol group, -SH, does not react.

[Total: 13] [J]

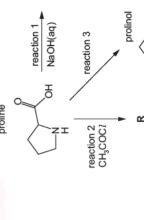
Topic: Chem 34 Q# 391/ ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org 7 Proline (Pro) is a naturally occurring amino acid.

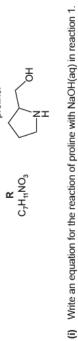
Ξ

(a) Proline is often found bonded to glycine (Gly) in a protein.

(i) Draw the dipeptide Pro-Gly.

The peptide bond must be shown fully displayed.




Ξ

[2]

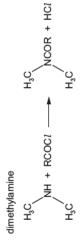
ø

Ξ

C₄H₇NHCO₂H +

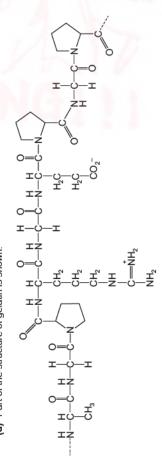
Page **376** of **703**

Patrick Brannac


www.SmashingScience.org

Patrick Brannac

Page **375** of **703**


Secondary amines react with acyl chlorides. For example, dimethylamine reacts with RCOCl according to the following equation.

Suggest the skeletal structure of R, C₇H₁₁NO₃, the product of reaction 2.

(iii) Suggest the reagent required for reaction 3.

(d) Part of the structure of gelatin is shown.

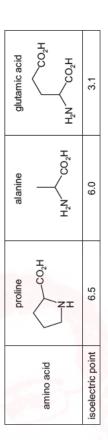
Identify the number of amino acid units in the structure shown.

Ξ

(e) (i) At pH 6.5, proline exists in aqueous solution as a zwitterion.

Draw the structure of the zwitterion of proline.

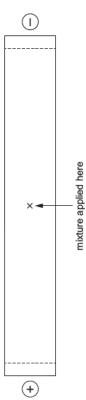
Explain how the zwitterion of proline forms.



(ii) The isoelectric point of an amino acid is the pH at which it exists as a zwitterion.

Three of the amino acids in gelatin are proline, alanine and glutamic acid. Their isoelectric points are shown.

E


[]

A mixture of these amino acids was analysed by electrophoresis using a buffer solution at pH 4.0.

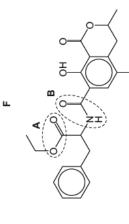
Draw and label three spots on the diagram of the electropherogram to indicate the likely position of each of these three species after electrophoresis.

Explain your answer.

www.SmashingScience.org

Page **377** of **703**

Patrick Brannac


Patrick Brannac Page 378 of 703

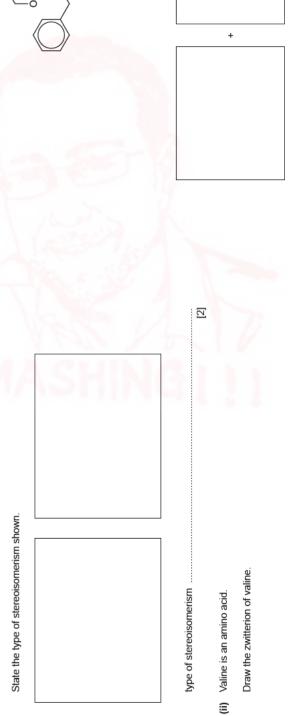
Topic: Chem 34 Q# 394/ ALvI Chemistry/2020/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) The molecular formulae of three nitrogen-containing compounds are given. 5 C ₆ H ₅ CONH ₂ 7 C ₆ H ₅ MH ₂ 1 C ₆ H ₅ MH ₂ 1 C ₆ H ₅ CH ₂ NH ₂ 1 Compound U can be prepared by two different methods as shown.	MH2 Br	reaction 1 u reaction 2	(i) Suggest reagents and conditions for reaction 1 and for reaction 2. reaction 1	reaction 2	(ii) State the type of reaction in reaction 1 and name the mechanism in reaction 2. type of reaction in reaction 1	mechanism of reaction 2 [2]	[Total: 7] Topic: Chem 34 Q# 395/ ALvI Chemistry/2020/m/T2 2/Paper 4/Q# 6/www.SmashingScience.org 6 Valinol can be synthesised by the following reactions. Reaction 1 uses valine as the starting		HO HO HO HO HO HO HO HO HO HO HO HO HO H	CI-C-C-H NaOH(aq) H NH ₂ H H Www.SmashingScience.org Page 380 of 703
	oN .sr	Clearly			[3]					E E
5	hingScience.org under suitable conditio	ree monomer residues.			ngScience.org nds are given.			least basic		Page 379 of 703
	 Chem 34 Q# 392/ ALvl Chemistry/2020/w/T2 1/Paper 4/Q# 10/www.SmashingScience.org (b) 2-aminopropanoic acid, CH₃CH(NH₂)CO₂H, can polymerise under suitable conditions other monomer is involved in this reaction. 	Draw a section of the polymer chain formed including three monomer residues. Clidentify one repeat unit on your diagram.			: Chem 34 Q# 393/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org (a) The molecular formulae of three nitrogen-containing compounds are given.		tive basicities of S , T and	^		Patrick Brannac
	Topic: Chem 34 Q# 392/ ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 10/www.5mashingScience.org (b) 2-aminopropanoic acid, $CH_3CH(NH_2)CO_2H$, can polymerise under suitable other monomer is involved in this reaction.	 Draw a section of the polymer chain for identify one repeat unit on your diagram. 			Topic: Chem 34 Q# 393/ ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) The molecular formulae of three nitrogen-containing compounds are given	S G ₆ H ₅ CONH ₂ T G ₆ H ₅ NH ₂ U C.H.CH.NH.	Describe and explain the n	most basic		www.SmashingScience.org

Draw the structure of this tripeptide. Show the peptide bonds fully displayed.

Topic: Chem 34 Q# 396/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org 4 Compound F has been found in small quantities in some cereals and dried fruit.

(b) F can be hydrolysed by heating with an excess of dilute hydrochloric acid, as shown.

[2]


Three products are formed: G and two others.

ш

õ

Draw three-dimensional diagrams to show the two stereoisomers of valine. In your diagrams, the $-CH(CH_{3})_2$ group can be represented by -R.

Ξ

www.SmashingScience.org

Page **381** of **703**

Patrick Brannac

www.SmashingScience.org

[3]

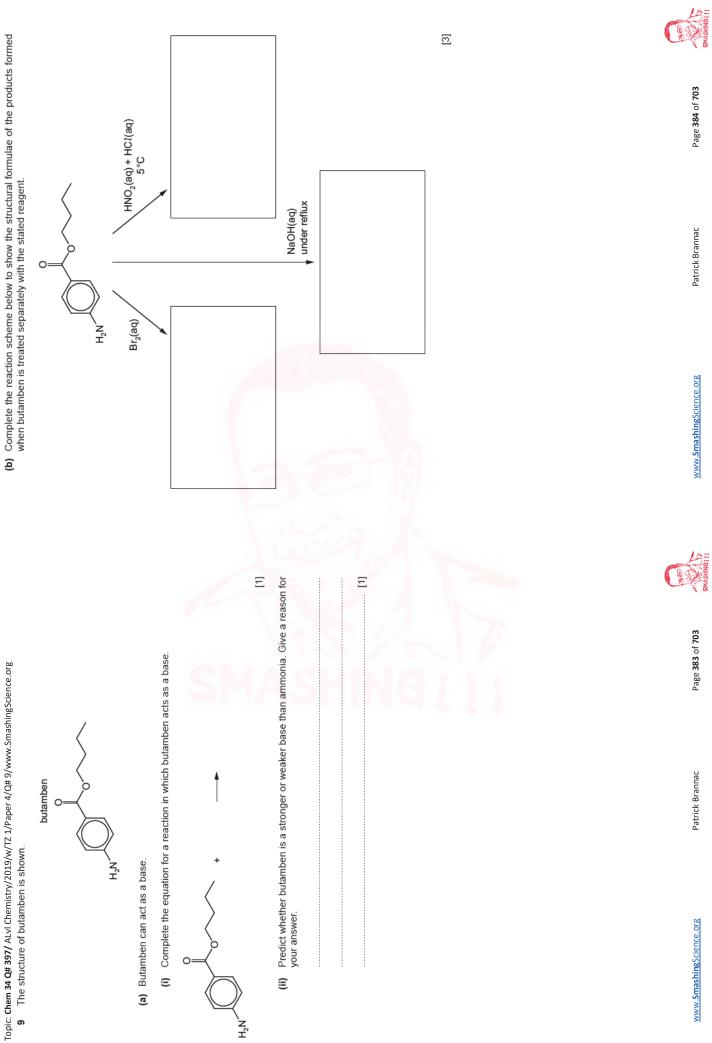
Draw the structures of the other products of the reaction in the boxes provided.

5

Ю F

요 +

G E


excess dilute HC1

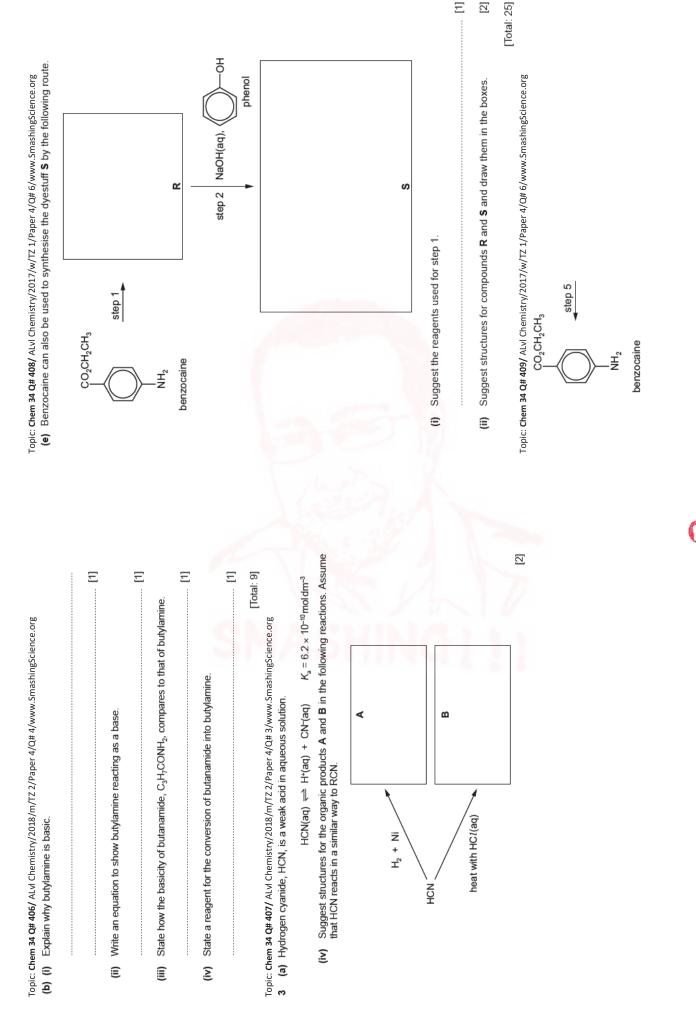
0

Ю

0

Page **382** of **703**

Topic: Chem 34 Q# 398/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org	8/www.SmashingScience.org	(c) Phenylethanone reacts with HCN in the presence of a small amount of NaCN.	
Proteins are natural polymers. When one particular mixture includes tripeptide E.	Proteins are natural polymers. When one particular protein is partially hydrolysed the product mixture includes tripeptide E.	(i) Name the mechanism of this reaction.	
tripeptide E		[1]	
	, NH,	(ii) Draw the mechanism of this reaction below. Include all relevant charges, dipoles, lone pairs and curly arrows. Your mechanism should show the catalytic role of CN ⁻ ions.	
≥ı >= >< >< >	,)	phenylethanone intermediate product	
Describe the conditions that could be used to amino acids.	Describe the conditions that could be used to hydrolyse E to produce a mixture of three amino acids. [1]	E C C C C C C C C C C C C C C C C C C C	
Draw the structures of the three amino acids produced by this hydrolysis reaction. The three amino acids should be shown in the correct form for the conditions yc chosen in (a)(i) .	ou ha		
		 [4] Topic: Chem 34 Q# 400/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org (a) Organochlorine compounds can undergo hydrolysis. 	
		$R-Ct + H_2O \rightarrow R-OH + HCt$ (b) Epibatidine is a naturally occurring organochlorine compound.	
Topic: Chem 34 Q# 399/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 Phenylethanone is an important chemical with many uses.	[2] 4/www.SmashingScience.org Jses.	H N C	
phenyletthanone	Or CH.	 (i) Epibatidine is a weak base. State what is meant by the term weak base. 	
		E	
www.SmashingScience.org	ac Page 385 of 703	www.SmashingScience.org Patrick Brannac Page 386 of 703	18-


		e isoelectric lysine, was te the likely			[5] [Total: 7]		C
		d exists as a zwitterion. The ent amino acids, valine and ctrophoresis paper to indica			r.SmashingScience.org	NH ₂	Page 388 of 703
		The isoelectric point is the pH at which an amino acid exists as a zwitterion. The isoelectric point of valine is 6.0 and of lysine is 9.8. A mixture of the dipeptide, val-lys, and its two constituent amino acids, valine and lysine, was analysed by electrophoresis using a buffer at pH 6.0. Draw and label three spots on the diagram of the electrophoresis paper to indicate the likely notifient of each of these three subries after electrophoresis. Evaluate the likely notifient of each of these three subries after electrophoresis.	×	mixture applied here	/2018/s/TZ 1/Paper 4/Q# 9/wwv bund in humans. OH	HOHO	Patrick Brannac
		(b) The isoelectric point is the pH at which point of valine is 6.0 and of lysine is 9.8. A mixture of the dipeptide, val-lys, and it analysed by electrophoresis using a buff Draw and label three spots on the diagr position of each of these three spots on the diagr	÷	explanation			www.SmashingScience.org
		[1] someric kJmol ⁻¹	[2]		. [1] : 13]		C
d in this reaction.		mashingScience.org acts to form a mixture of two isol $(O)_2 ^{2*} + 4H_2O \qquad \Delta H^{+}_{T} = -57 \text{ kJ}$	vith methylamine. Dund P as shown.	Р сН ₃ + H ₂ O	[Total: 1		Page 387 of 703
Complete the structure to suggest the product formed in this reaction.	H N C	[1] m 34 Q# 401/ ALvl Chemistry/2019/s/T21/Paper 4/Q# 4/www.SmashingScience.org Methylamine, CH ₃ NH ₂ , is a monodentate ligand. In the presence of aqueous methylamine, $[Cd(H_2O)_{6}]^{2*}$ reacts to form a mixture of two isomeric octahedral complexes. m 1 $[Cd(H_2O)_{6}]^{2*} + 4CH_{3}NH_{2} \rightleftharpoons [Cd(CH_{3}NH_{2})_{4}(H_{2}O)_{2}]^{2*} + 4H_{2}O$ $\Delta H_{7}^{+} = -57 \text{ kJ mol}^{-1}$ hylamine is a useful reagent in organic chemistry.	Write an equation for the reaction of ethanoyl chloride with methylamine. Methylamine also reacts with propanone to form compound P as shown.	H ³ C O	ion shown here.		Patrick Brannac
Complete the structur		 Topic: Chem 34 Q# 401/ ALvI Chemistry/2019/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org (c) Methylamine, CH₃NH₂, is a monodentate ligand. In the presence of aqueous methylamine, [Cd(H₂O)₆]²⁺ reacts to form a mixt octahedral complexes. equilibrium 1 [Cd(H₂O)₆]²⁺ + 4CH₃NH₂ → [Cd(CH₃NH₂)₄(H₂O)₂]²⁺ + 4H₂O (f) Methylamine is a useful reagent in organic chemistry. 	 (i) Write an equation for the (ii) Methylamine also reacts 		Deduce the <i>type of reaction</i> shown here		www.SmashingScience.org

Topic: **Chem 34 Q# 402/** ALvI Chemistry/2018/w/TZ 1/Paper 4/O# 6/www.SmashingScience.org **6 (a)** Use the *Data Booklet* to draw the structure of the dipeptide val-lys. The peptide bond should be shown displayed.

A molecule of epibatidine contains two nitrogen atoms, both of which can act as a base.

(ii) Epibatidine reacts with HC1(aq).

(c) HNO ₂ (aq) is reacted at 5°C with separate samples of noradrenaline and phenylamine. The reaction with phenylamine produces a stable diazonium ion. The reaction with noradrenaline produces an unstable diazonium ion.	(iii) Use bond energy values from the <i>Data Booklet</i> to calculate the enthalpy change, ΔH^{\bullet} , when one mole of amide bonds is formed in the reaction in (i).
(i) Suggest why the diazonium ion produced with phenylamine is stable.	
[1]	ΔH ^e =
(ii) When one noradrenaline molecule reacts with one HNO ₂ molecule, the products are one water molecule, one molecule of an unreactive gas, and one molecule of an organic compound made up of carbon, hydrogen and oxygen only.	(c) Amide bonds can also be formed by reacting acyl chlorides with amines. The enthalpy change for this process, ΔH° , is -6.00 kJ mol ⁻¹ .
Complete the chemical equation for this reaction.	Calculate the minimum entropy change, ΔS^{\bullet} , for this reaction to be spontaneous (feasible) at 298K.
$HO \xrightarrow{HO} + HNO_2 \rightarrow HOO_2 \rightarrow H$	ΔS ^a =JK ¹ m0 ⁻¹ [2] Tonis: Chem 34.0# 405/ Δ1/4 Chemistry/2018/m/T7 2/Danes 4/0# 7/www.SmaskingScience ord
	The repeat unit of the polyamide Kevlar is shown.
[2] Topic: Chem 34 Q# 404/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org (b) An amide bond forms when a carboxylic acid reacts with an amine.	
(i) Complete the equation by writing the products in the box.	(d) The monomers of Kevlar, benzene-1,4-dioic acid and 1,4-diaminobenzene, can be synthesised as follows.
R-CO ₂ H + H ₂ N-R' → +	H ₃ C-CH ₃ O ₂ N-CH ₂
	reaction 1 reaction 2
 [1] Use your answer to (i) to work out the bonds that are broken and the bonds that are formed during the reaction between a carboxylic acid and an amine. 	HO ₂ C CO ₂ H H ₂ N NH ₂ benzene-1.4-dioic acid 1.4-diaminobenzene
bonds that are broken	needed for:
bonds that are formed	
www.SmashingScience.org Patrick Brannac Page 389 of 703	www.5mashingScience.org Patrick Brannac Page 390 of 703

Ξ [2] TI I BNIHSYW

Page **392** of **703**

Patrick Brannac

www.SmashingScience.org

Page **391** of **703**

Patrick Brannac

(c) Suggest how the basicity of t Explain your answer.	Suggest how the basicity of benzocaine would compare to that of ethylamine. Explain your answer.	(iv) Suggest a possible structure of the amine RNH ₂ , which forms the amine salt, RNH ₃ C <i>t</i> .	RNH ₃ CL
	2		
 Topic: Chem 34 Q# 410/ ALvl Chemistry/2017/s/T2 1 2 (a) One atom of each of the four elemen Two examples are molecules of cyan bonded in the order they are written. (e) When heated with HCt(aq), organic isc RNH₃Ct, and CO₂. 	/Paper 4/Q# 2/www.SmashingScience.org tts H, C, N and O can bond together in different way ic acid, HOCN, and isocyanic acid, HNCO. The atom ocyanates, RNCO, are hydrolysed to the amine sa		[1]
RNCO	RNCO + H_2O + $HCI \rightarrow RNH_3CI$ + CO_2	Tooic: Chem 34 O# 411/ Alv! Chemistrv/2017/m/TZ 2/Paper 4/O# 5/www.SmashineScience.org	[Total: 23]
A 1.00g sample of an organic isocya was absorbed in an excess of aque BaCO ₃ precipitated weighed 1.66g. Ba(OH) ₂ (aq) + ((i) Calculate the number of moles	A 1.00g sample of an organic isocyanate, RNCO, was treated in this way, and the CO ₂ produced was absorbed in an excess of aqueous Ba(OH) ₂ according to the equation shown. The solid BaCO ₃ precipitated weighed 1.66g. Ba(OH) ₂ (aq) + CO ₂ (g) \rightarrow BaCO ₃ (s) + H ₂ O(I) (i) Calculate the number of moles of BaCO ₃ produced.	 5 (a) Compound H can be synthesised from benzene 5 (b) Write an equation to show how compound H, C₁₀H₁₃NH₂, behaves as a base. 	
	5		[1]
(ii) Hence calculate the <i>M</i> _r o	moles of BaCO ₃ =	(c) Compare the relative basicities of ammonia, phenylamine and compound H. Explain your answer.	your
			[2]
The R group in RNCO and RN (iii) Use your M _r value calcul	Mr of RNCO =	 [Total: 9] Topic: Chem 34 Q# 412/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 Copper is a transition element and has atomic number 29. (c) Copper also forms the complex ions [Cu(NH₃)₂(H₂O)₄]²⁺ and [Cu(<i>en</i>)(H₂O)₄]²⁺ where <i>en</i> is the bidentate ligand ethane-1,2-diamine, H₂NCH₂CH₂NH₂. 	[Total: 9] S 4 ^{]2+} where <i>en</i> is the
		$[Cu(H_2O)_{6}]^{24} + 2NH_3 \rightleftharpoons [Cu(NH_3)_2(H_2O)_4]^{24} + 2H_2O$	equilibrium 1
		[Cu(H ₂ O) ₈] ²⁺ + en ≓ [Cu(en)(H ₂ O) ₄] ²⁺ + 2H ₂ O	equilibrium 2
molecular formula of RNCO	0		
www.SmashingScience.org	Patrick Brannac Page 393 of 703	www.SmashingScience.org Patrick Brannac Page 394 of 703	6 703 Sevening 11

(e) Ethane-1,2-diamine is a useful reagent in organic chemistry.

(ii) Calculate the relative molecular mass, M_n of Ala-Ser-Gly.

Explain how the amino groups in ethane-1,2-diamine allow the molecule to act as a Brønsted-Lowry base. Ξ

[2] excess of an the reaction of ethane-1,2-diamine with Write an equation for hydrochloric acid. **(**

-(i) Under certain conditions, ethane-1,2-diamine reacts with ethanedioic acid, HO₂CCO₂H, to form the polymer Z. £

Draw the structure of this polymer, Z, showing two repeat units.

- Ξ E [2] (ii) Name the type of reaction occurring during this polymerisation. Polymer Z is an example of a biodegradable polymer. Name a polymer that is non-biodegradable. (111)
- 7 (a) (i) Use the Data Booklet to draw the structure of the tripeptide Ala-Ser-Gly showing its peptide [Total: 20] Topic: Chem 34 Q# 413/ ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org
 - bonds in full.
- C

Т

(ii) Identify the components labelled F-I in the above diagram.

(b) Electrophoresis can be used to separate mixtures of amino acids and peptides. A mixture of the tripeptide Ala-Ser-Gly and its three constituent amino acids was subjected to

Ξ

Mr = .

electrophoresis in a buffer at pH 11.

(i) Draw the structure of serine at pH 11.

At the end of the experiment the following results were seen.

Page **396** of **703**

11 TENNIHSYM

Patrick Brannac

www.SmashingScience.org

Page 395 of 703

Patrick Brannac

www.SmashingScience.org

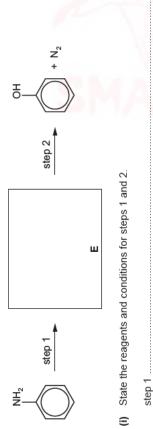
Ala-Ser-Gly

[2]

applied here

mixture

ш


Ξ

(c) (i) State the reagents and conditions needed for converting the tripeptide into its three constituent amino acids.	6 Nitrobenzene, $C_6H_5NO_2$, can be reduced to phenylamine, $C_6H_5NH_2$, in acid solution in a two step process.	ne, $C_{6}H_{5}NH_{2}$, in acid solution in a two step
[1]	(a) (i) Balance the half-equation for this reaction to work out how many moles of electrons are needed to reduce one mole of nitrobenzene.	work out how many moles of electrons are
(ii) Name the <i>type of reaction</i> in (i).	$C_6H_5NO_2~+~e^-~+~H^+~\rightarrow~C_6H_5NH_2$	C ₆ H ₆ NH ₂ +H ₂ O
[1] [Total: 13]	(ii) The reducing agent normally used is granulated tin and concentrated hydrochloric acid. In the first step, the reduction of nitrobenzene to phenylammonium chloride can be represented by the equation shown.	int normally used is granulated tin and concentrated hydrochloric acid. the reduction of nitrobenzene to phenylammonium chloride can be e equation shown.
Topic: Chem 34 Q# 414/ ALVI Chemistry/2016/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org 6 Nitrobenzene, $C_{6}H_{5}NO_{2}$, can be reduced to phenylamine, $C_{6}H_{5}NH_{2}$, in acid solution in a two step process.	Use oxidation numbers or electrons transferred to balance this equation. You might find your answer to (i) useful.	ed to balance this equation. You might find
(a) (i) Balance the half-equation for this reaction to work out how many moles of electrons are needed to reduce one mole of nitrobenzene.	e was reduced	$C_{6}H_{5}NH_{3}CI +SnCI_{4} +H_{2}O$ [2] in this reaction, 4.2g of phenylammonium chloride,
$\begin{split} C_{\theta}H_{5}NO_{2} +E^{-} +H^{+} \rightarrow C_{\theta}H_{\delta}NH_{2} +H_{2}O [1] \\ \end{split}$	C ₆ H ₅ NH ₃ CI, was produced. Calculate the percentage yield.	
Use oxidation numbers or electrons transferred to balance this equation. You might find your answer to (i) useful.		
$\dots C_{\theta}H_{\delta}NO_{2} + \dots HCl + \dots Sn \rightarrow \dots C_{\theta}H_{\delta}NH_{3}Cl + \dots SnCl_{4} + \dots H_{2}O \qquad [2]$	percentage yield of phenylammonium chloride	nonium chloride =
(b) When 5.0g of nitrobenzene was reduced in this reaction, 4.2g of phenylammonium chloride, $C_sH_sNH_sCI$, was produced.	(c) Following the reaction in (b), an excess of NaOH(aq) was added to liberate phenylamine from phenylammonium chloride.	q) was added to liberate phenylamine from
Calculate the percentage yield.	 Calculate the mass of phenylamine, Ce_{H5}NH₂, produced when 4.20g of phenylammonium chloride reacts with an excess of NaOH(aq). 	produced when 4.20g of phenylammonium
 percentage yield of phenylammonium chloride =	mass of phenylamine =	mass of phenylamine =
		K partition =[2]
www.SmashingScience.org Patrick Brannac Page 397 of 703	www.SmashingScience.org	Page 398 of 703

(e) Phenol can be synthesised from phenylamine in two steps.

(ii) Draw the structure of the intermediate compound E in the box above.

step 2.

Ξ [2]

[Total: 13]

Topic: Chem **34** Q# **415**/ ALM Chemistry/2016/m/TZ 2/Paper 4/Q# 9/www.SmashingScience.org (C) A section of polypeptide was hydrolysed and the following amino acids identified.

amino acid	formula
Т	CH3CH(NH2)CO2H
n	C ₆ H ₅ CH ₂ CH(NH ₂)CO ₂ H
>	H ₂ N(CH ₂)₄CH(NH ₂)CO ₂ H

(i) Which of the amino acids T, U or V has the highest pH in aqueous solution? Explain why.

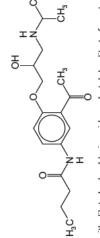
amino acid

Ē

State how many different dipeptides could be formed from a reaction mixture consisting of amino acids T and U. 1

Topic: Chem 34 Q# 416/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

8 Acebutolol is a drug that can be used to lower blood pressure. Patrick Brannac www.SmashingScience.org



		1	A	=
P	T	-	X	DNH
L	10	3		MASH

1

Ξ

www.SmashingScience.org

(c) On warming with dilute hydrochloric acid, acebutolol splits to form two molecules. (i) Draw a line through the bond broken by heating with dilute hydrochloric acid.

Ē

(ii) Draw the structure of the smaller molecule produced by this reaction.

Ξ

Topic: Chem 34 Q# 417/ ALvI Chemistry/2016/m/T2 2/Paper 4/Q# 7/www.SmashingScience.org (b) (i) Phenylamine reacts with aqueous bromine to give compound F.

Describe the appearance of compound F.

Phenylamine reacts with nitrous acid to form a diazonium salt. 1

Ē

State the conditions for this reaction.

[] (iii) The diazonium salt in (ii) reacts with an alkaline solution of phenol to produce a coloured compound, G.

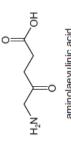
Draw the structure of G.

Page **400** of **703**

Patrick Brannac

[2]

			[1]						[2]						in the [2]	C C C C C C C C C C C C C C C C C C C
shing Science.org	rovided.		polymer chains.	ier to form a dipeptide.	ы		val			ashingScience.org : Iike HCl. nfluenza (flu) virus.					could be easily hydrolysed	Page 402 of 703
TZ 1/Paper 4/Q# 8/www.Sma Section B	Answer all the questions in the spaces provided	ation of amino acids.	action used to form these	valine can combine togeth	HO HO		valine, val	if the dipeptide ' <i>val-ser'</i> .		/TZ 1/Paper 4/0# 7/www.Sm ch, which contain strong acids it slows the spread of the ii			NH ²	oseltamivir	ent functional group, that	Patrick Brannac
Topic: Chem 34 Q# 419/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org Section B	Answer all the	8 Proteins are formed by the polymerisation of amino acids.	(a) (i) State the type of chemical reaction used to form these polymer chains.	(ii) The amino acids serine and valine can combine together to form a dipeptide.		0	serine, ser	Draw the skeletal structure of the dipeptide 'val-ser'.		Topic: Chem 34 Q# 420/ ALvl Chemistry/2014/w/T2 1/Paper 4/Q# 7/www.5mashingScience.org The human body includes organs like the stomach, which contain strong acids like HCl. 7 (a) Oseltamivir is an antiviral drug that slows the spread of the influenza (flu) virus.		_/	₹(Circle two bonds, each in a different functional group, that could be easily hydrolysed in the body.	www. Smashing Science.org
					/sed in [2]	/sis of					[3]				[2]	C
mashingScience.org shown below.			НО	ree organic products.	bonds that would be hydroly	after complete acid hydroly		ASH					ible in water.			Page 401 of 703
5/w/TZ 1/Paper 4/Q# 10/www.S etener that has the structure :	C) °		aspartame hydrolysed by acid to form th	On the diagram above, use arrows to indicate the two bonds that would be hydrolysed in the stomach.	Draw the structures of the three products formed after complete acid hydrolysi aspartame.							vartame, explain why it is solu			Patrick Brannac
Topic: Chem 34 Q# 418/ ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org 10 (a) Aspartame is an artificial sweetener that has the structure shown below.			o~o [°] H	aspartame In the stomach, aspartame is hydrolysed by acid to form three organic products.	(ii) On the diagram above, us the stomach.	(iii) Draw the structures of t aspartame.						(b) Aspartame is soluble in water.	By referring to the structure of aspartame, explain why it is soluble in water			www.SmashingScience.org



Answer all the questions in the spaces provided.

- (a) A mixture of amino acids can be separated by electrophoresis. During an electrophoresis experiment, 9
- different amino acids move in different directions,
 - different amino acids move at different speeds, some amino acids do not move at all.

Explain these observations.

Topic: Chem **34 Q# 422**/ ALvI Chemistry/2014/w/T2 1/Paper 4/Q# 5/www.SmashingScience.org **(b)** Aminolaevulinic acid is involved in the synthesis of haemoglobin and chlorophyll.

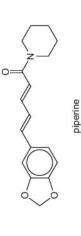
aminolaevulinic acid reacts readily with bromoethane.

(i) Show the mechanism of the first step of this reaction on the diagram. Include all necessary curly arrows, lone pairs and relevant dipoles.

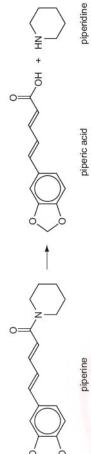
H ₂ —Br	Name the mechanism in (c)(i)	Identify the non-organic product f
H ₃ C-CF	(III)	(!!!)
H ₃ C-CH ₂ -Br	(II)	1111

ormed in this reaction.

www.SmashingScience.org


Page **403** of **703**

Patrick Brannac



[2]

Topic: Chem 34 Q# 423/ ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org 3 Piperine is the compound responsible for the hot taste of black pepper.

Piperine is an amide and can be broken down as follows:

(a) Suggest reagents and conditions for this reaction.

3

Topic: Chem 34 Q# 424/ ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (iii) The pH of a 0.150 mol dm⁻³ solution of piperidine is 11.9.

Ξ

How would you expect the basicity of piperidine to compare to that of ammonia? piperidine Explain your reasoning.

(iv)

Ξ

www.SmashingScience.org

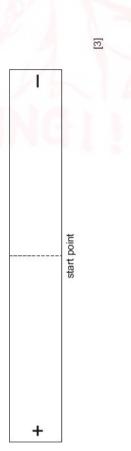
111DINIHSWIS

Topic: Chem 34 Q# 426/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org Section B	Answer all the questions in the spaces provided. 6 (a) Protein molecules are formed by the polymerisation of amino acids in the body. The structures of three amino acids are given.	(i) Use the provide and provides a hydrophobic side chain (ii) With the tripeptides can be made using one molecule of each of the amino acids shown? (ii) Draw the tripeptides can be made using one molecule of each of the amino acids shown? (ii) Draw the tripeptides can be made using one molecule of each of the amino acids shown? (iii) Draw the tripeptides can be made using one molecule of each of the amino acids shown? (ii) Draw the tripeptide ser-gly-val, showing the peptide bonds in displayed form. (ii) Within the tripeptide, which amino acid provides a hydrophobic side chain? (iii) Within the tripeptide, which amino acid provides a hydrophobic side chain? (ii) Oracle chain of the amino acid provides a hydrophobic side chain? (iii) Within the tripeptide, which amino acid provides a hydrophobic side chain? (ii) Oracle chain of the amino acid provides a hydrophobic side chain? (ii) Oracle chain of the amino acid provides a hydrophobic side chain? (iii) Use the tripeptide, which amino acid provides a hydrophobic side chain?	ww.SmashingScience.or
ptide	pluod	[2] given	(it it bulles was
shingScience.org te amino acids or pe	electrophoresis. You s	ds on the pH of the sol	Page 405 of 703
Topic: Chem 34 Q# 425/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 Electrophoresis is a technique which can be used to separate amino acids or peptide fromments present in a mixture.	(a) Draw a diagram to show the apparatus used to carry out electrophoresis. You should label each of the relevant parts of the apparatus.	 [4] [4] [4] [4] [4] [5] [6] [6]	Patrick Brannac
Topic: Chem 34 Q# 425/ ALvI Chemistry/ 7 Electrophoresis is a technique fracments present in a mixture	 (a) Draw a diagram to short Iabel each of the relevant 	 (b) How far an amino acid wi For a given potential diff amino acid travels in a fi 2. 	www.SmashingScience.org

Topic: Chem 34 Q# 428/ ALvI Chemistry/2012/s/T21/Paper 4/Q# 8/www.SmashingScience.org	(c) Polymerisation can take place by two different methods depending on the monomers involved. The two methods are addition and condensation.	dive two differences between the methods.
Topic: Chem 34 Q# 428/ ALvI Che	(c) Polymerisation can involved. The two m	aive two aillefences

1	10	
÷ 4	1	
	12	
11	1	
- C	4.5	
	10	
34	12	
- A - A		
- M		
- C		
1.1	1	
28	1.1	
- A		
- 10		
1.5		
- C	1.1	
3 B		
- C		
- A		
	÷	
25		
33	10	
1	1.1	
- P	1	
1	1	
- 12		
- e	1.1	
34	43	
3 C		
- C	1.0	
	1 A A	
10	1.1	
- 10	10	
÷.	÷	
- t		
1 to 1		
- C		
	100	
1		
	2	
	2	

[2]

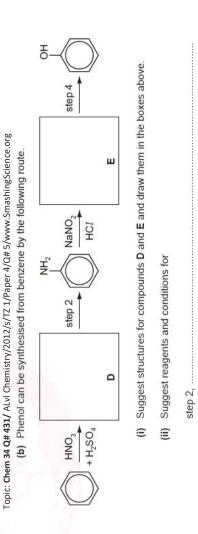

- Topic: Chem 34 Q# 429/ ALM Chemistry/2012/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 The analysis of a protein may be carried out by breaking it down into its amino acids. These can then be separated by a process called electrophoresis.
- (a) The structures of glycine, lysine and glutamic acid at pH 7 are shown.

glycine H₃N+CH₂CO₂-

lysine H₃N⁺CH(CH₂CH₂CH₂NH₃⁺)CO₂⁻

glutamic acid H₃N⁺CH(CH₂CH₂CO₂⁻)CO₂⁻

Draw and label three circles on the chart below to indicate the likely position of each of these amino acids after electrophoresis of a solution containing these amino acids in a buffer at pH 7.



Topic: Chem 34 Q# 430/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

Section B

Answer all the questions in the spaces provided.

- 6 In key reactions responsible for growth and repair in the human body, amino acids react together to form polymers known as proteins.
- (a) (i) What type of reaction is this polymerisation?
- (ii) From stocks of glycine and alanine, it is possible to make the dipeptide gly-ala. Using the same three-letter abbreviations for the amino acids, give the structures of all other possible dipeptides that can be made from these stocks of amino acids.

[3]

(44	SMASHINGIII
	03	

www.SmashingScience.org

Patrick Brannac

[4]

step 4.

Page **408** of **703**

ishingScience.org mine, C ₂ H ₅ NH ₂ , acts as a	Ammonia, ethylamine and phenylamine, C ₆ H ₅ NH ₂ , are three nitrogen-containing bases. Place these three compounds in order of basicity, with the most basic first.	least basic	this order.	[4] [4]	NH E aat occurs between E and	pH = 11 but a solution of E	
L/w/TZ 1/Paper 4/Q# 4/www.SmashingS a reaction in which ethylamine,	Ammonia, ethylamine and phenylamine, C ₆ H ₅ NH ₂ , are three nitrogen-co bases. Place these three compounds in order of basicity, with the most basic first.		Explain why you have placed the three compounds in this order.	s/TZ 1/Paper 4/Q# 6/www.Sma	+ H ₂ N NH ₂ HN NH C E	water. A solution of the diamine $H_2NCH_2CH_2NH_2$ in water has pH = 11 but a solution of E in water has pH = 7. Suggest why this is the case.	Patrick Brannac
Topic: Chem 34 Q# 433/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (i) Write the equation for a reaction in which ethylamine, $C_2H_5NH_2$ Browsted-Lowry base.	(ii) Ammonia, ethylamine an bases. Place these three compou	most basic	(iii) Explain why you have pla	Topic: Chem 34 Q# 434/ ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org			www.SmashingScience.org
Topic: Cher 4 (a)			Ĵ	Topic: Cher			5 MANAN
P	ω						C C C C C C C C C C C C C C C C C C C
: Chem 34 Q# 432/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org One of the key areas of investigation in understanding the structures of polypeptides and proteins is the sequence of amino acids that make up the polypeptide chains.	One of the methods used to determine the amino acids present in a polypeptide chain is electrophoresis. Sketch and label the apparatus used to carry out electrophoresis.			[4] [4] In electrophoresis, different amino acids move in different directions and at different speeds.	amino acid?	an amino acid?	[0] Page 409 of 703
2011/w/TZ 1/Paper 4/Q# 7/www. stigation in understanding the nino acids that make up the po	One of the methods used to determine the amino acids present in electrophoresis. Sketch and label the apparatus used to carry out electrophoresis.			ent amino acids move in diffe	What factors determine the <i>direction of travel</i> of an amino acid?	What factors determine the <i>speed of movement</i> of an amino acid?	Patrick Brannac
Topic: Chem 34 Q# 432/ ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 One of the key areas of investigation in understanding the structures of polyr proteins is the sequence of amino acids that make up the polypeptide chains.	 (a) One of the methods used electrophoresis. Sketch and label the appa 			(b) In electrophoresis, differe speeds.	(i) What factors determine	(ii) What factors determi	www.SmashingScience.org

Topic: C 日日 日日 日日	hem 34 Q# 435/ ALN thanolamine and thanolamine is a arting material in he following table	Topic: Chem 34 Q# 435/ ALM Chemistry/2010/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 Ethanolamine and phenylamine are two organic bases that are industrially important. Ethanolamine is a useful solvent with basic properties, whilst phenylamine is an important starting material in the manufacture of dyes and pharmaceuticals. The following table lists some of their properties, together with those of propylamine.	1/Paper 4, wo organ asic prop yes and yes and operties,	(0# 4/www.smashings nic bases that are berties, whilst pheny pharmaceuticals. together with those	cience.org industrially importa ylamine is an import of propylamine.	ant. ant	(e) Apart from their relative basicities, ethanolamine and phenylamine differ in many of their reactions. For each of these two compounds, describe one test that would give a positive result with the stated compound, but a negative result with the other.	r in many of their a positive result
	compound	formula	Mr	boiling point/°C	solubility in water		test	
	propylamine	CH ₃ CH ₂ CH ₂ NH ₂	59	48	fairly soluble		observation	
	ethanolamine	HOCH ₂ CH ₂ NH ₂	61	170	very soluble		phenylamine	
	phenylamine	MH2	93	184	sparingly soluble		test observation	
(a)		Suggest why the boiling point of ethanolamine is much higher than that of propylamine. Draw a diagram to illustrate your answer.	nanolami Iswer.	ne is much higher th	an that of propylami	ë i	[Topic: Chem 34 Q# 436/ ALvI Chemistry/2009/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org (e) 4-aminobenzoic acid, E, forms a zwitterion.	[4] [Total: 12] ence.org
							(i) What is meant by the term zwitterion?	
							(ii) Draw the structural formula of the zwitterion formed from 4-aminobenzoic acid	obenzoic acid.
4	. Describe and s	(A) Describe and evolution the relative basisities of monutamine and evolution the relative basis	seicitioe s	f bac animehanan f	V	[2]		
5								
								[2]
(c)		Write an equation showing ethanolamine acting as a Brønsted-Lowry base.	amine ac	ting as a Brønsted-L	7	[2]	[Tota Topic: Chem 35 Q# 437/ ALvI Chemistry/2022/m/Tz 1/Paper 4/Q# 5/www.SmashingScience.org (b) When CH ₃ CHC1COOH reacts with aqueous NH ₃ , alanine forms.	[Total: 16] ningScience.org
						2	alanine	
							_I	
							Fig. 5.1	
							Alanine is an amino acid. Its isoelectric point is 6.1.	
<u>M</u>	www. Smashing Science.org	0.6	Patrick Brannac	rannac	Page 411 of 703	TI IDNIIISTANS	<u>www.SmashingScience.org</u>	Page 412 of 703

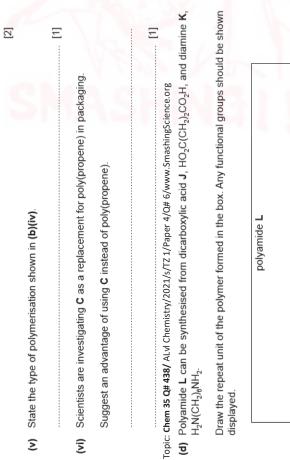
(iv) Polymer C forms from the reaction between alanine and 4-aminobutanoic acid, $H_2N(CH_{2)3}COOH$.

Draw a repeat unit of C. The functional group formed should be displayed.

Topic: Chem 35 Q# 439/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org 6 Fumaric acid is a naturally occurring dicarboxylic acid.

fumaric acid

HO2C CO2H


(b) Fumaric acid can form addition and condensation polymers.

(i) Draw the repeat unit of the addition polymer poly(fumaric acid).

E

(ii) Draw the repeat unit of the polyester formed when fumaric acid reacts with ethane-1,2-diol, (CH₂OH)₂.

The ester bond should be shown fully displayed

H₂N(CH₂)₆NH₂.

Ξ

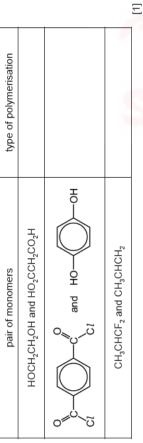
(iii) Explain why polyesters normally biodegrade more readily than polyalkenes.

[2]

Page **414** of **703**

Patrick Brannac

www.SmashingScience.org

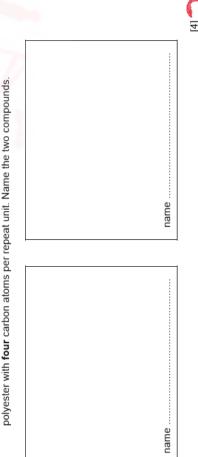

[Total: 18]

Page **413** of **703**

Patrick Brannac

10 (a) The table shows three pairs of monomers that are capable of polymerisation. Topic: Chem 35 Q# 440/ ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org

Complete the table by identifying each type of polymerisation.



- Topic: Chem 35 Q# 441/ ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 Proteins are natural polymers.
 - (c) Polyesters and polyamides are two important types of condensation polymer.
- Draw the structure of a compound that can polymerise to produce a polyamide, without the need for a second monomer. Ξ

Draw the structures of two different compounds that can polymerise together to produce a polyester with **four** carbon atoms per repeat unit. Name the two compounds. 1

E

Topic: Chem 35 Q# 442/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 (a) Organochlorine compounds can undergo hydrolysis.

$$R-CI + H_{0} \rightarrow R-OH + 1$$

HC1

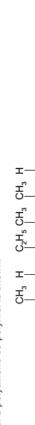
Polyamides, such as nylon-6, can be prepared from a monomer that contains both an amine and an acyl chloride functional group. ٥

nylon-6 monomer

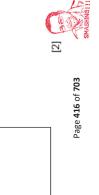
H₂N---(CH₂)₅--

(i) When the nylon-6 monomer is hydrolysed, bonds are broken and formed.

placing **one** tick (\checkmark) in each row to indicate the types of bonds broken and formed during the mechanism. By considering the two steps in the mechanism of the reaction, complete the table by


	σ bonds only	π bonds only	both σ and π bonds
bonds broken			
bonds formed			

(ii) Draw two repeat units of nylon-6. The amide bond should be shown fully displayed.

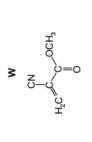

Ξ

Draw the structure of the two alkene monomers which produce this co-polymer.

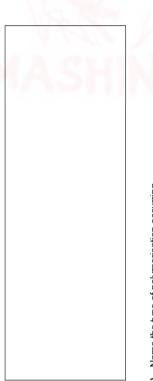
www.SmashingScience.org

Page 415 of 703

Patrick Brannac

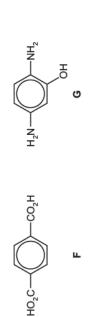

www.SmashingScience.org

(e) Explain why polyamides normally biodegrade more readily than polyalkenes.


(ii) Draw the repeat unit of polyhydroxyamide. The amide bond should be shown displayed.

Ξ Topic: Chem 35 Q# 443/ ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org (a) Methyl 2-cyanoprop-2-enoate, W, is the major component of Super Glue, a rapid-setting adhesive. 2

As the adhesive sets, the monomer W polymerises.


Draw a section of the polymer showing two repeat units.

- (ii) Name the type of polymerisation occurring.
- Suggest **two** types of intermolecular force that could occur between the *Super Glue* polymer and the objects glued together. For each type of intermolecular force, refer to the atoms/groups in the *Super Glue* polymer involved in the attraction. 1

G	7	
atoms/groups in the Super Glue polymer		
type of intermolecular force		

5 (a) Polyhydroxyamide is a fire-resistant polyamide which is formed from the two monomers, F and Topic: Chem 35 Q# 444/ ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org σ

Page 417 of 703

Patrick Brannac

www.SmashingScience.org

Ξ

Page 418 of 703

Patrick Brannac

www.SmashingScience.org

Explain why by referring to the structures of the polymers.

(d) (i) Polyalkenes biodegrade very slowly.

[2]

[2]

(b) When poly(ethene) is formed from ethene, many bonds are broken and formed.

[2]

Place one tick (\checkmark) in each row of the table to indicate the types of bonds broken and formed in this process.

	σ-bonds only	π -bonds only	both σ - and π -bonds
bonds broken			
bonds formed			

(c) Addition polymers can be classified into two types.

- homopolymer a polymer made up of the same monomer unit copolymer a polymer made up of two or more different monomer units

[2]

[1]

The reaction of propene, CH₃CH=CH₂, with phenylethene, C₆H₅CH=CH₂, gives a copolymer.

Draw a length of the chain of this copolymer that contains one molecule of each monomer.

environment.
the
.⊑
degrade
MI
polymers
Some
1

Describe two processes by which this occurs.

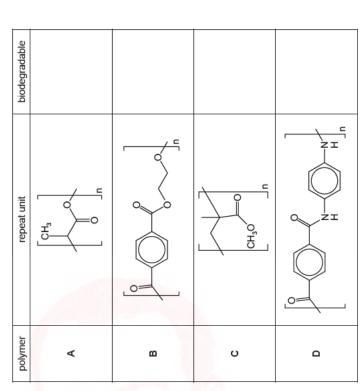
1 2 2

Topic: Chem 35 Q# 445/ ALVI Chemistry/2018/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org

[2]

- 7 (a) (i) Complete the equations to show the two types of polymerisation. Draw one repeat unit for each polymer. Include any other products.
- addition polymerisation

		1		
SMA	S	HING	• types of polymerisati	
			AS°, for each of the tw	
	condensation polymerisation		 [3] Suggest the sign of the entropy changes, ΔS^e, for each of the two types of polymerisation. ΔS^e for addition polymerisation 	AS ^e for condensation polymerisation
<i>n</i> CH ₂ =CHCH ₃ (g) →	condensatic	nHo₂ccH₂co₂H(s) + nHOcH₂CH₂OH(I)	 (ii) Suggest the sign of the Explain your answers. ΔS[*] for addition preserver addition	 AS^a for con


Topic: Chem **35** Q# 446/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 9/www.SmashingScience.org **9 (a) (i)** Name an example of a synthetic polyester and a synthetic polyamide.

	. —	
	5	
	: -	
:	:	
:	:	
:	:	
	:	
1		
1		
	:	
	:	
	:	
	:	
1		
1		
	:	
:	:	
	:	
:	:	
	:	
	:	
	:	
	:	
	;	
:	:	
:	;	
	:	
- 1		
	:	
1		
	:	
:	:	
	e	
ester	amide [1]	
ester	· 🖻	
ŝ	F	
e	σ ₀	
\geq	\geq	
0	0	
ā	ā	

(ii) Polyesters and polyamides are formed by condensation reactions. Name a molecule which is commonly eliminated in such reactions.

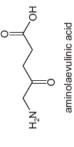
Ξ

(b) (i) The table shows the repeat units of a number of polymers. Place a tick (*√*) against the ones which are biodegradable.

(ii) Draw the structures of two monomers used to form polymer B.

[2]

Page **420** of **703**


Patrick Brannac

www.SmashingScience.org

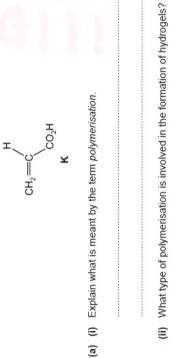
Patrick Brannac Page 419 of 703

[2]

r 4/Q# 5/www.SmashingScience.org hesis of haemoglobin and chlorop
/www.Smasl haemoglo
/www.Smasl haemoglo
4/Q# 5/www.Sm esis of haemog
4/Q# 5/ww esis of hae
4/0# esis (
e te
w/TZ 1/Pap I in the syr
/2014, volve
is in
Chen acid
/ ALvl Cl ulinic a
35 Q# 447/ A minolaevulir
35 Qđ mino
chem (b) A
lopic: (

(e) Aminolaevulinic acid can undergo polymerisation.

Draw the structure of the polymer showing two repeat units. The linkages between the monomer units should be shown fully displayed.


(c) (i) Draw the structure of at least two repeat units of the polymer formed by the above method from acrylic acid, K, when mixed with NaOH.

(ii)	(ii) The C–C–C bond angle in compound K changes when the polymer is formed. State and explain how the C–C–C bond angle differs between a molecule of K and
	the polymer.
	angle changes from to

explanation

[4]

Draw a detailed diagram of a portion of the polymer you have drawn in (c)(i) to explain how it can absorb a large volume of water. (i) (b)

Describe the changes in chemical bonding that occur during the polymerisation of K.

(III)

TITIBUIHSYW [3]

Page 421 of 703

Patrick Brannac

www.SmashingScience.org

Page **422** of **703**

Patrick Brannac

www.SmashingScience.org

A CONTRACTOR

[3]

Super-absorbent polymers have the ability to absorb 200-300 times their own mass of water. They are classified as hydrogels and they are widely used in personal disposable hygiene Topic: Chem 35 Q# 448/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

These polymers are commonly made by the polymerisation of compound K mixed with sodium hydroxide in the presence of an initiator.

products such as babies' nappies (diapers).

2

jc:	Topic: Chem 35 Q# 450/ ALvI Chemistry/2012/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org
8 In recent years there has been a lot of interest in polymers in the form of gels that absorb aqueous materials. One of the largest uses of these polymers is in disposable nappies (diapers). The gel which is used in this case is a polymer of propenoic acid.	8 The increasing awareness of the diminishing supply of crude oil has resulted in a number of initiatives to replace oil-based polymers with those derived from natural products. One such polymer, 'polylactide' or PLA, is produced from corn starch and has a range of applications.
propenoic acid	 (a) The raw material for the polymer, lactic acid (2-hydroxypropanoic acid), is formed by the fermentation of corn starch using enzymes from bacteria. (ii) The structure of lactic acid is shown.
(a) (i) Draw a section of the polymer of propenoic acid showing two repeat units.	HOCH
	What type of reaction takes place in this polymerisation?
(ii) By what type of chemical reaction is this polymer formed?	(d) Lactic acid can also be co-polymerised with glycolic acid.
(iii) By what type of bonding is water held on the polymer?	HO
[2]	glycolic acid
(b) For some disposable nappies (diapers), the monomer is a mixture of propenoic acid and sodium propenoate. The properties of the polymer are influenced by the proportion of sodium salt in the monomer mixture.	(i) Draw a section of the co-polymer showing one repeat unit.
(i) Suggest and explain how the difference in the structure of this polymer compared to one formed only from propenoic acid might affect the water absorbing properties of the polymer.	 [2] Topic: Chem 35 Q# 451/ ALvI Chemistry/2011/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org In today's world we make use of a wide range of different polymers. These polymers are
	often substitutes for traditional materials, but may have more useful properties.
 (ii) Suggest a property the polymer should have in order to be used in disposable products. [3] 	

www.SmashingScience.org

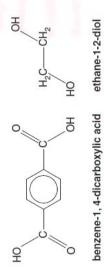
Page **423** of **703**

Patrick Brannac

CE VIEW

Page **424** of **703**

Patrick Brannac


(b) Throwing away articles made from polymers after use is a major environmental concern for two main reasons. Identify each of these reasons and suggest a strategy that has been adopted to try to overcome each of these.

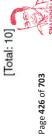
 (i)	strategy 2 :	strategy 1 :	reasons :
		strategy 2 :	

(ii) Draw the structure of one repeat unit of Terylene.

- (iii) What is the name given to polymers containing the same functional group as *Terylene?*
- [4]
- The monomers ethene and but-1-ene can also co-polymerise to form a polyalkene, but this does not produce a regular alternating structure like *Terylene*. Explain why this is the case, drawing diagrams if you wish. (p)

	1
£	
	ŝ
1	
1	
:	÷
	£
:	1
	1
	÷ .
	:
1	1
-	E
:	:
	£
	£
:	÷
£	8
	2
	8
:	1 ·
	1 · · · ·
:	:
	£
:	:
8	£
:	1
:	:
:	1
	÷
	1
	:
	1
:	£
1	£
	E
	1
	1

- The two monomers react by condensation polymerisation. What other molecule is formed in this reaction? Ð



www.SmashingScience.org

Patrick Brannac

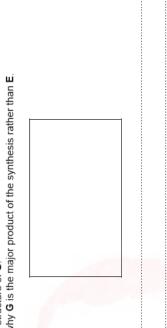
[2]

Fig. 4.1

(i) Complete Table 4.1 by providing relevant details of the reagents and conditions for steps 1 and 4, and the structure of product D.

Table 4.1

organic product	organic product		a	O2N O2N	F COOH
readent/e) and conditione			concentrated HNO ₃ and concentrated H ₂ SO ₄	hot alkaline KMnO ₄ then dilute H ₂ SO ₄	
organic reactant	UIDALIN LEAVAIL	\bigcirc	\diamond	٩	O ₂ N COOH
etan	arch	-	2	e	4


3

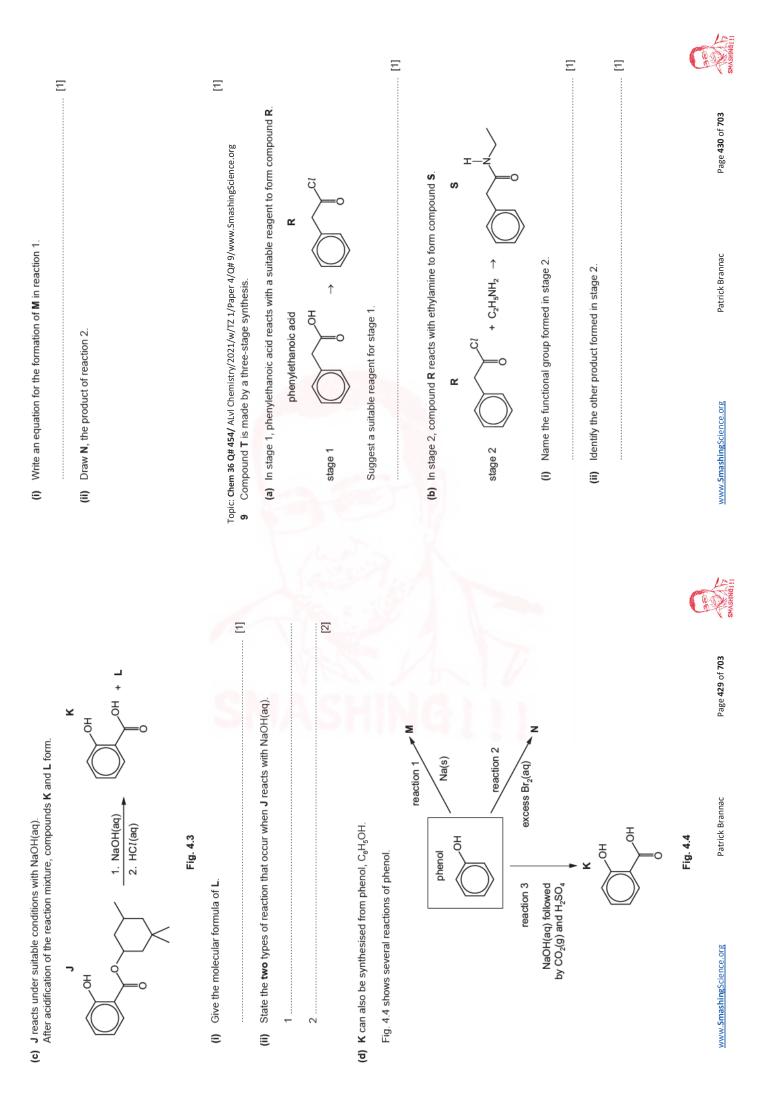
(ii) In a second multi-step synthesis, the student changes the order in which the reagents and The reaction scheme is shown in Fig. 4.2. G is the major product of this synthesis.

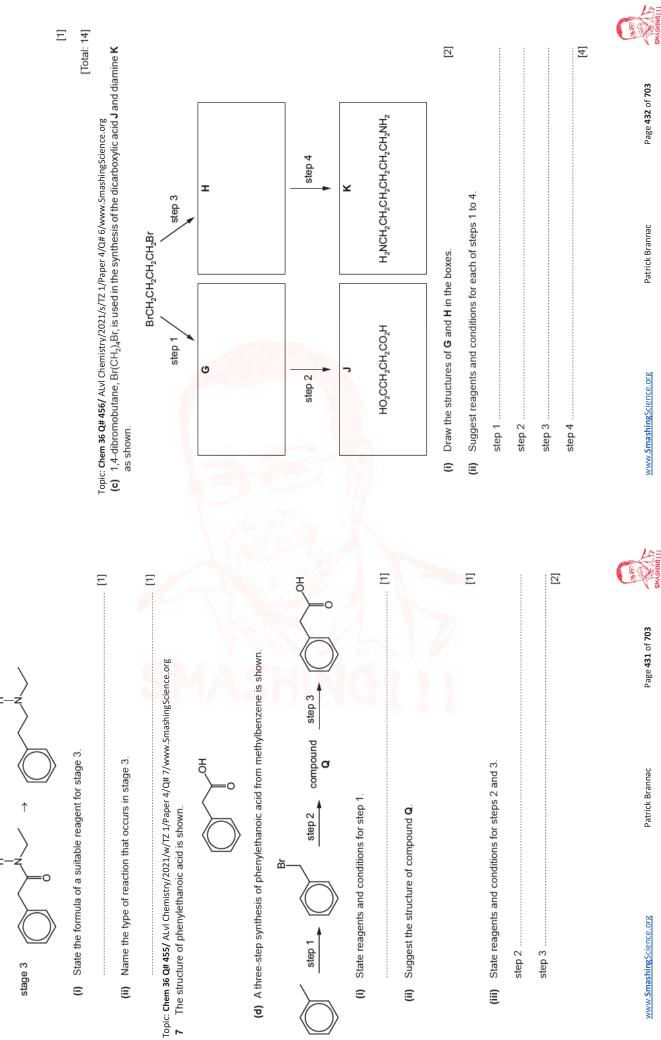
Fig. 4.2

Draw the structure of **G**. Explain why **G** is the major product of the synthesis rather than **E**.

[2]

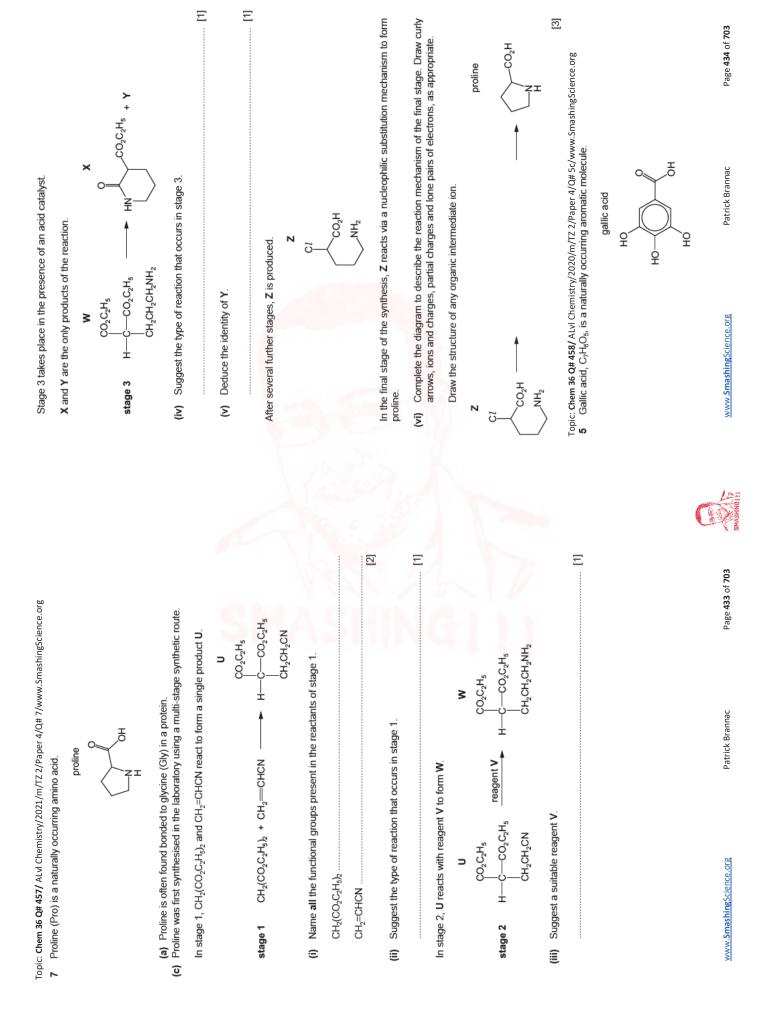
Page **428** of **703**

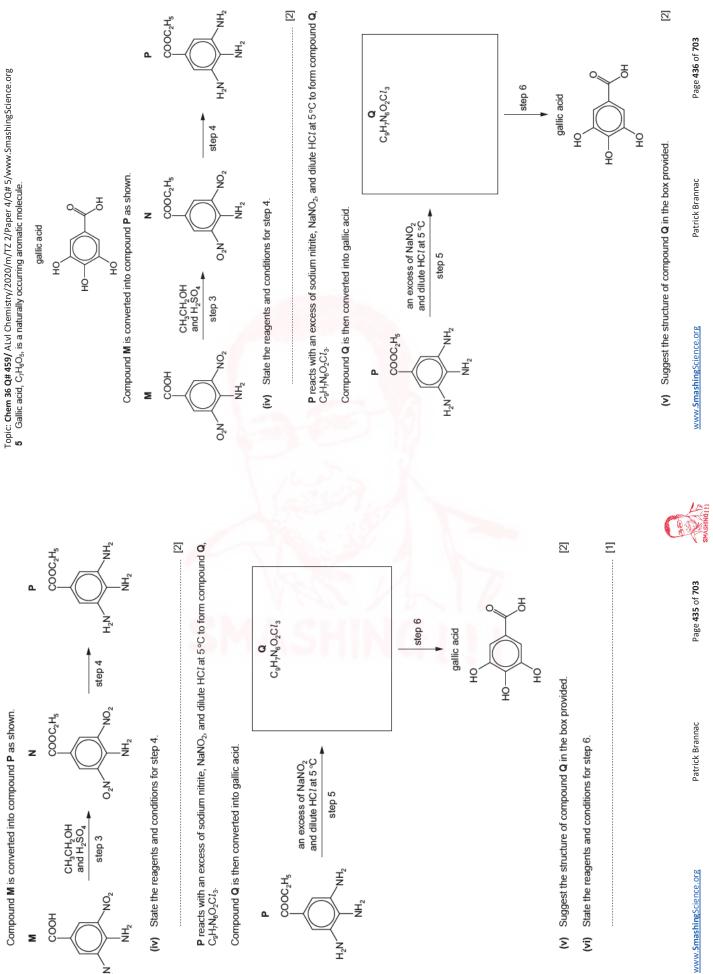

Patrick Brannac


www.SmashingScience.org

Page **427** of **703**

Patrick Brannac


(iv) Draw the structure of an organic by-product that forms in step 1.


(c) In stage 3, compound S reacts with a suitable reagent to form compound T.

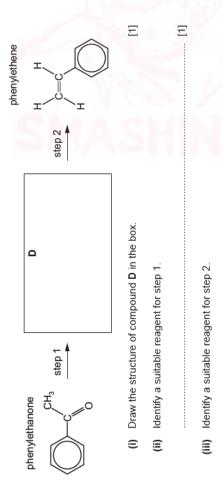
S

H

[]

, v S

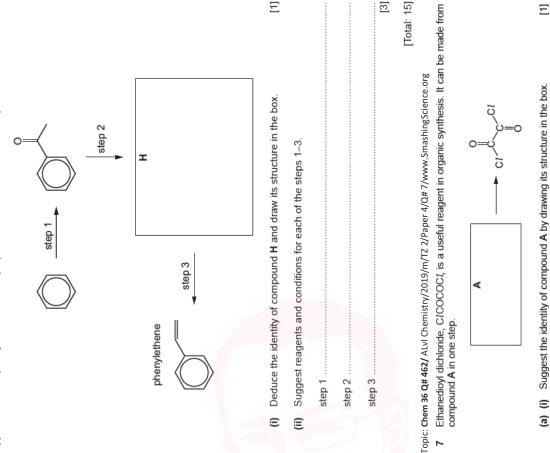
A HINHESWAS


Topic: **Chem 36 Q# 460/** ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org **4** Phenylethanone is an important chemical with many uses.

Ξ

phenylethanone

, СН


(d) Phenylethanone can be used as a starting material to make phenylethene in a two-step synthesis.

Topic: Chem 36 Q# 461/ ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org

Ξ

(f) The alkene phenylethene can be prepared from benzene in three steps.

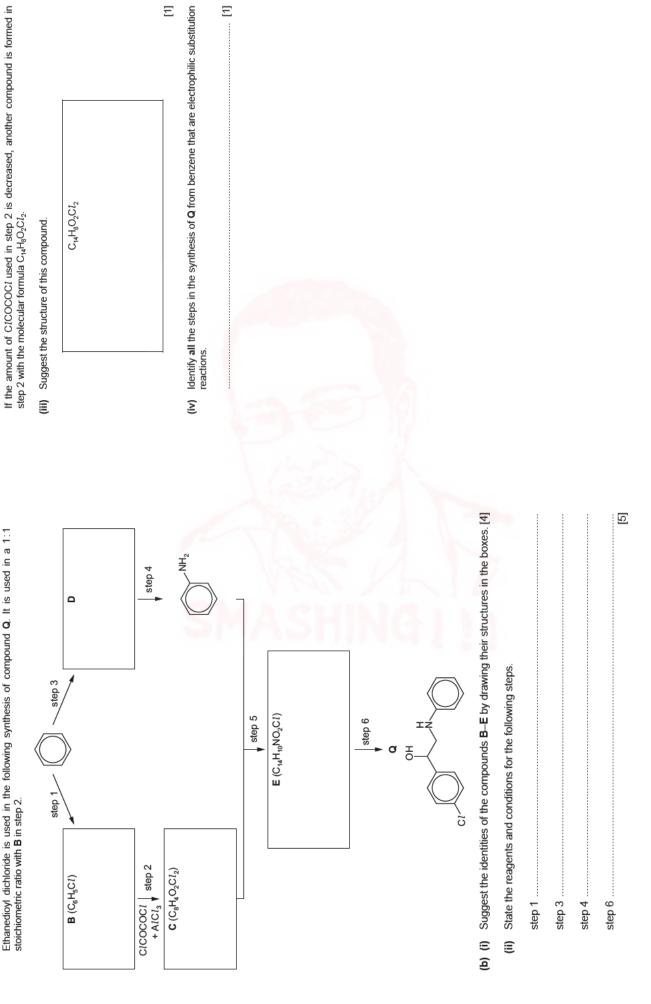
Ξ

3

Ξ

State the reagents and conditions needed to convert A into CICOCOCI.

1


Ē

Page **438** of **703**

Patrick Brannac

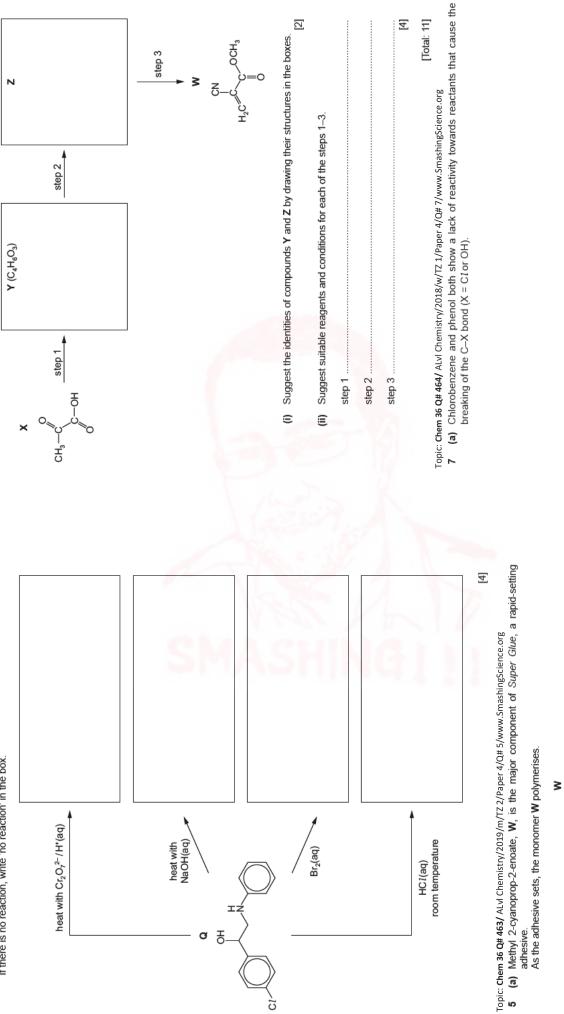
www.SmashingScience.org

Ξ

[]

Page **440** of **703**

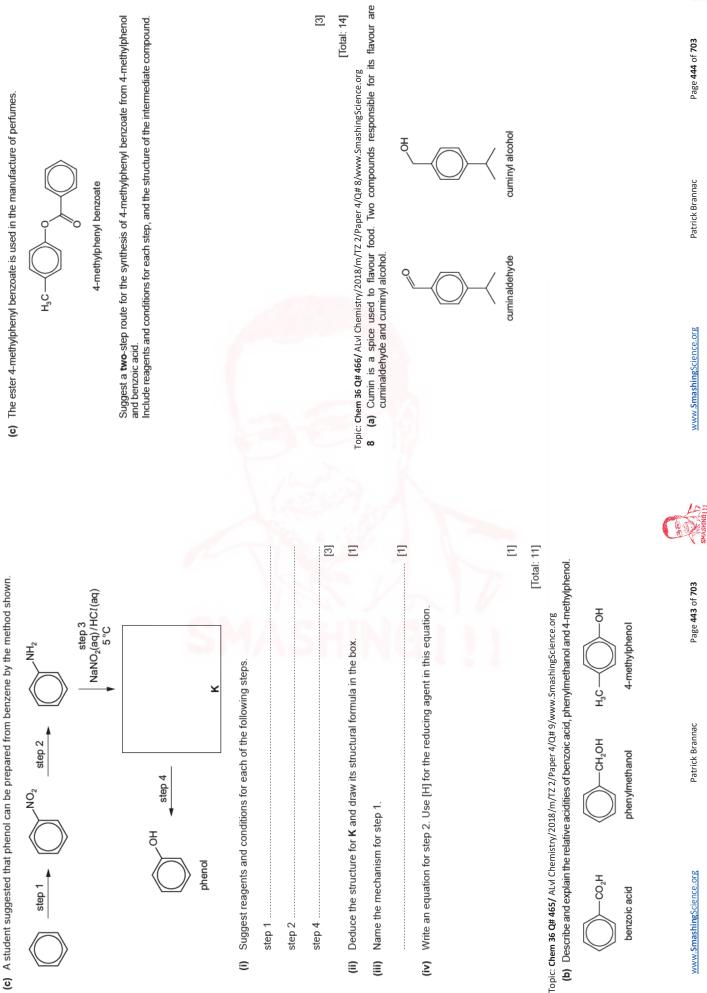
Patrick Brannac


www.SmashingScience.org

Page **439** of **703**

Patrick Brannac

(b) W can be synthesised in three steps, starting from 2-oxopropanoic acid, X.


Page 441 of 703

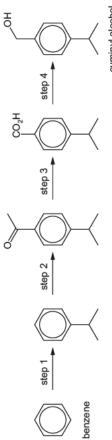
Patrick Brannac

т" С

www.SmashingScience.org

Page 442 of 703

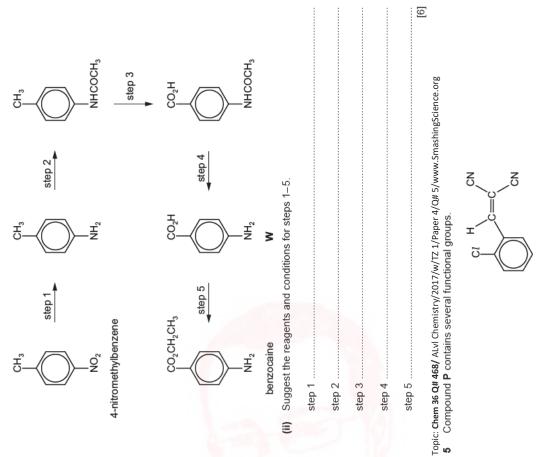
Page **444** of **703**


Patrick Brannac

www.SmashingScience.org

Page 443 of 703

www.SmashingScience.org



	step 2	step 3	step 4[4]	Name the mechanism of step 2 and state the type of reaction in step 4.	m of step 2	action in step 4 [2]
step 1	step 2	step 3	step 4	(ii) Name the mechanis	mechanism of step 2	type of reaction in step 4
				i)		

Topic: Chem 36 Q# 467/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

[Total: 9]

(b) Benzocaine is used as a local anaesthetic. It can be synthesised from 4-nitromethylbenzene by the route shown.

۵.

Page **445** of **703**

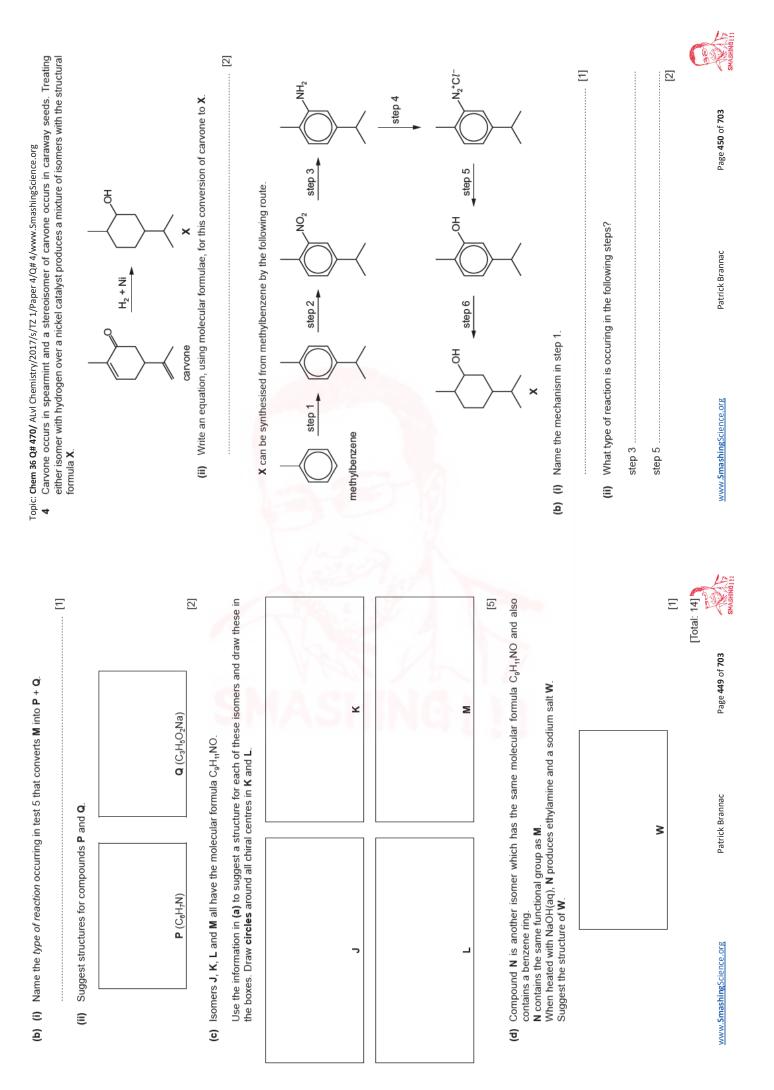
(c) Complete the following table to show the structures of the products formed and the *type of organic reaction* when **P** reacts with the four reagents.

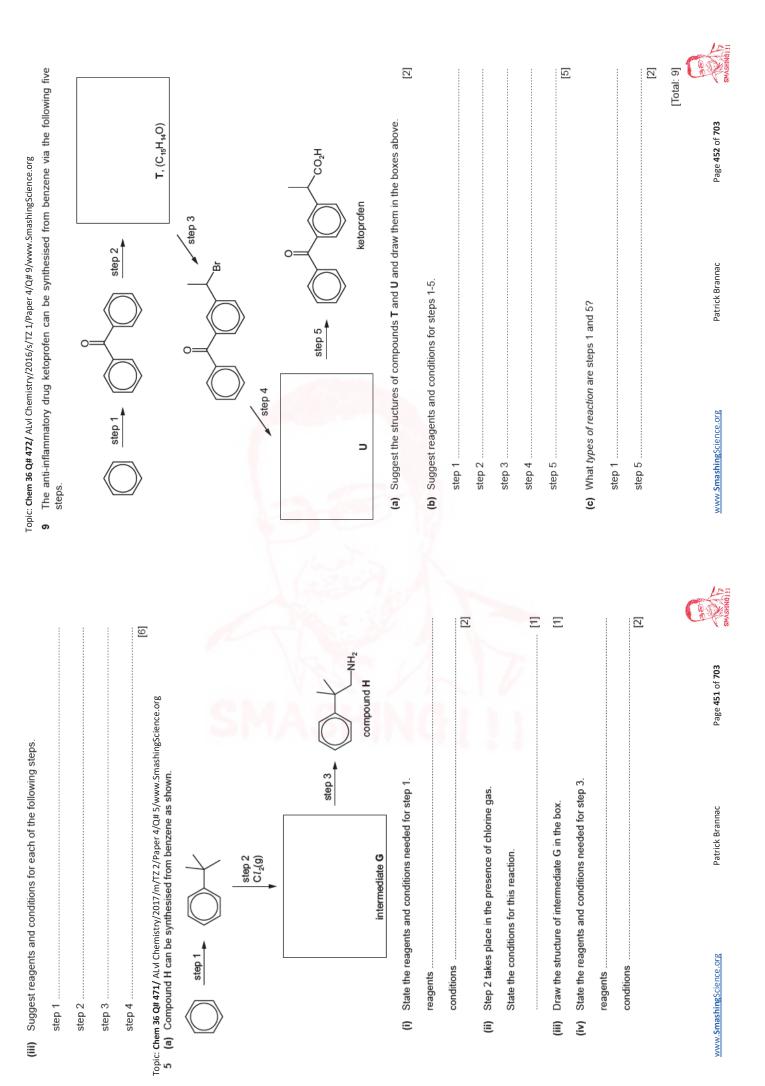
			S. 5 . 5	
type of organic reaction		SMA		
structure(s) of product(s)				
reagent	excess Br ₂ (aq)	excess hot, concentrated, acidified MnO ₄ -(aq)	excess hot HC <i>l</i> (aq)	excess H ₂ /Pt catalyst

[Total: 12]

8

 Compounds J, K, L and M are isomers of each other with the molecular formula C₉H₁₁NO. All four isomers contain a benzene ring.
 Two of the isomers contain a chiral centre.
 The results of six tests carried out on J, K, L and M are shown in the table. Topic: Chem 36 Q# 469/ ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

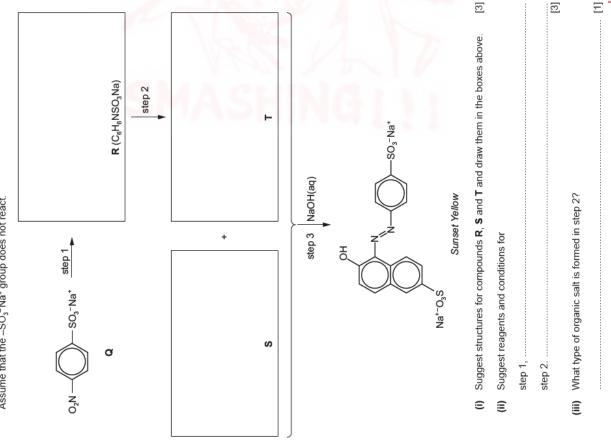

1 add cold 2 add 2,4- 3 add NaC 4 warm will 5 solution	ICSI				
		ſ	К	L	W
	add cold HCI(aq)	soluble	soluble	soluble	insoluble
	add 2,4-DNPH reagent	orange ppt.	orange ppt.	orange ppt.	no reaction
4 warm solut	add NaOH(aq) + $I_2(aq)$	pale yellow ppt. no reaction	no reaction	pale yellow ppt. no reaction	no reaction
	warm with Fehling's solution	no reaction	red ppt.	no reaction	no reaction
5 heat	heat with NaOH(aq)	no reaction	no reaction	no reaction	P(C ₆ H ₇ N) and Q(C ₃ H ₅ O ₂ Na) produced
6 diazotiz addition phenol	diazotization and addition of alkaline phenol	no dye produced	orange dye produced	no dye produced	no dye produced


(a) Use the experimental results in the table above to determine the group(s), in addition to the benzene ring, present in each of the four isomers J, K, L and M.

Complete the table below, identifying the group(s) present in each isomer.

	Μ	
compound	L	
group(s) in compound	Х	
	r	

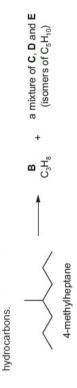
[2]



Topic: Chem 36 Q# 474/ ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org (b) One of the simple molecular allotropes of carbon is buckminsterfullerene, C ₆₀ .		buckminsterfullerene	the carbon atoms in C ₈₀ ?	 C₆₀ reacts with an excess of hydrogen to form a single product, C₆₀H_x 	ggest a suitable value for <i>x</i> .	 Methylbenzene can undergo different reactions to form the products shown below. 	CH ₃ reaction 2	methylbenzene itions for these two reactions.		[2]		Draw the structure of the product obtained if reaction 1 is carried out using an excess of chlorine.	E	Detrick Brannac Dage AEA of 703
Topic: Chem 36 Q# 474/ ALvl Chemistry/2016 (b) One of the simple molecular allo			(i) What is the hybridisation of the carbon atoms in $C_{60}?$	(ii) C _{ee} reacts with an excess of	Using your answer to (i), suggest a suitable value for x.	(c) Methvlbenzene can undergo diffe	CH ₂ C1	(i) Give the reagents and conditions for these two reactions.	reaction 1	reaction 2		(iii) Draw the structure of the pro chlorine.		www.SmachingGriance.org
8/www.SmashingScience.org :ssure.	H H GH3 CH3 CH3 CH3 S with the following reagents.	observation	3		1)		pound N reacts with sodium.			E	ichromate(VI) solution but does react		[1] [Total: 12]	or Dage 153 of 703
Topic: Chem 36 Q# 473/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org 8 Acebutolol is a drug that can be used to lower blood pressure.	H_3C H_3C H_3C H_3C H_3C H_3C H_3C H_3C H_3 CH_3 CH_3 CH_3 CH_3 H_3C H	reagent obser	alkaline iodine solution	universal indicator solution	2,4-dinitrophenylhydrazine	Tollens' reagent	 (e) Butanoic acid can be reduced to form compound N. Compound N reacts with sodium. (i) Suggest a suitable reducing agent for this reaction. 	Draw the skeletal formula of the isomer of N that exists as a pair of optical isomers.			Another isomer of N does not react with acidified dichromate(VI) solution but does react with sodium.	Draw the structure of this isomer.		www.CmachineCriance are

Topic: Chem 36 Q# 475/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

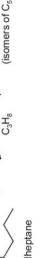
following route. In step 3 of this synthesis, a phenol-like compound, **S**, reacts with intermediate **T** made from amine **R**. Assume that the $-SO_3^-Na^+$ group does not react. (a) Sunset Yellow is a yellow colouring agent used in food and drinks, which can be made by the 2


(b) Compound W has the following structure.

- (i) How many σ and π bonds are present in a molecule of W?
- The products of the reactions of **W** with cold HC*t* and with CH₃CH₂Br are soluble in water but **not** in organic solvents. 1

Complete the table for these reactions of W.

type of reaction		
structure of product (molecular formula given)	(C ₄ H ₆ N ₂ OCI)	(C ₆ H ₁₃ N ₂ BrO)
reagent	HC1	CH ₃ CH ₂ Br



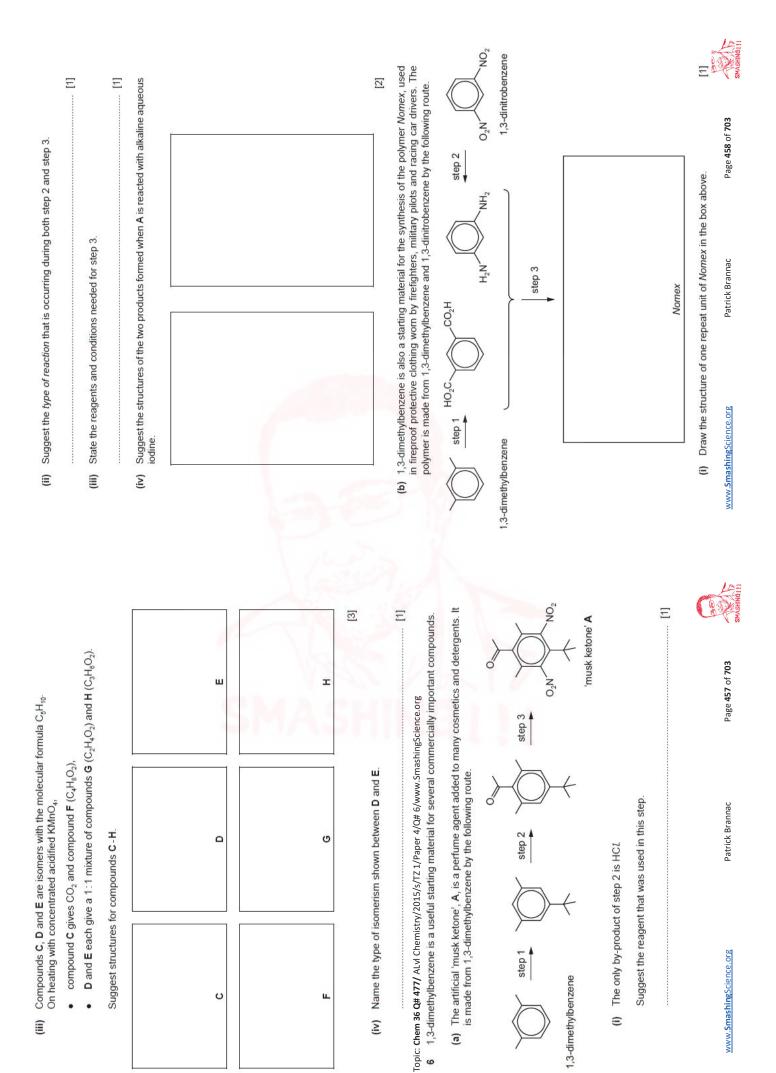
7 (a) Long chain alkanes such as 4-methylheptane can be 'cracked' to produce shorter chain

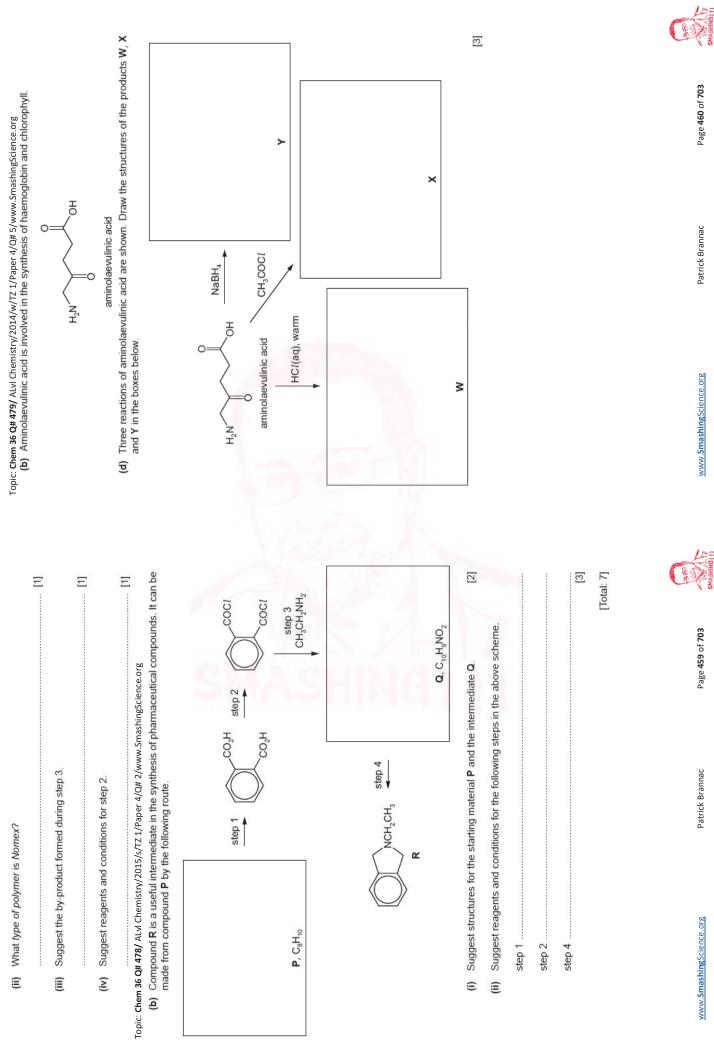
Topic: Chem 36 Q# 476/ ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

3

[Total: 12]

Page **456** of **703**


Patrick Brannac

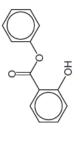

www.SmashingScience.org

111 BANHASY

Page **455** of **703**

Patrick Brannac

www.SmashingScience.org


Page 460 of 703

Patrick Brannac

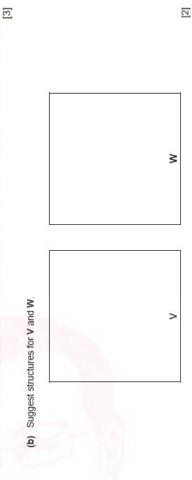
Page **459** of **703**

Topic: Chem 36 Q# 480/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	(c) Phenyl 2-hydroxybenzoate is an antiseptic.

phenyl 2-hydroxybenzoate

Complete the following table about the reactions of phenyl 2-hydroxybenzoate with the three reagents.

type of reaction	MASI	ING	
structure of product(s)			
reagent	Na	excess Br ₂ (aq)	excess hot NaOH(aq)


5 The two compounds V and W are isomers with the molecular formula C₄H₈O, and show the following Topic: Chem 36 Q# 481/ ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

- properties and reactions.
- Both compounds react with sodium metal, and both decolourise bromine water. Compound V forms a yellow precipitate with alkaline aqueous iodine, whereas compound •
- W does not. When reacted with cold KMnO₄(aq), both V and W produce the same neutral compound X, $C_4H_{10}O_3$. Both V and W exist as pairs of stereoisomers.

(a) Suggest which functional groups are responsible for the reactions with

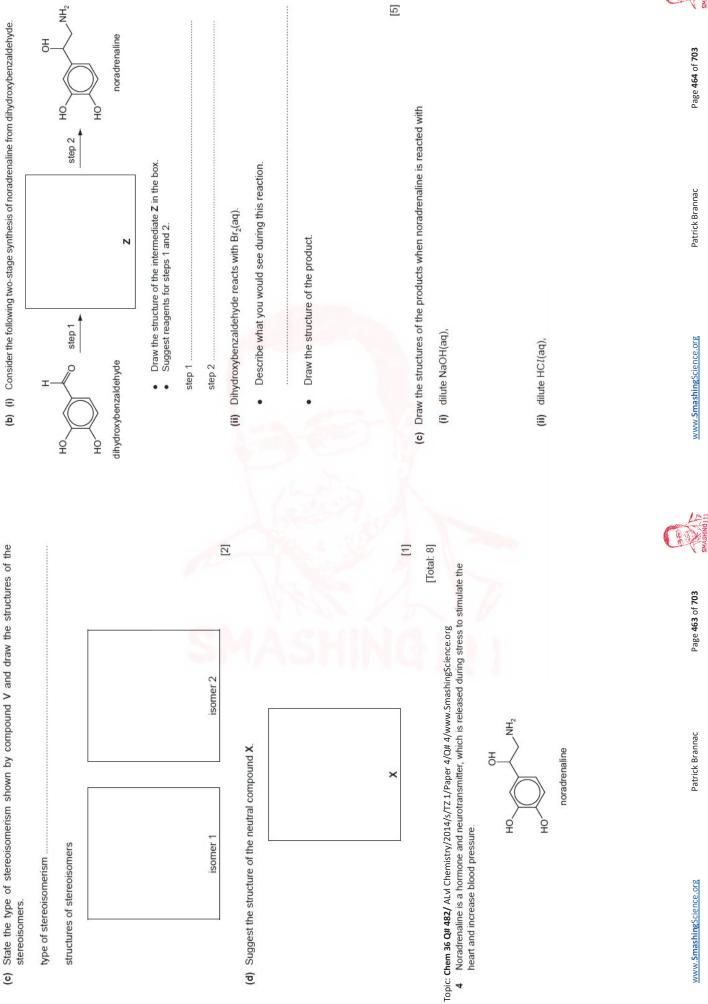
(i) sodium,

(iii) alkaline aqueous iodine. (ii) bromine water,

Page **462** of **703**

Patrick Brannac

www.SmashingScience.org



[9]

[Total: 13]

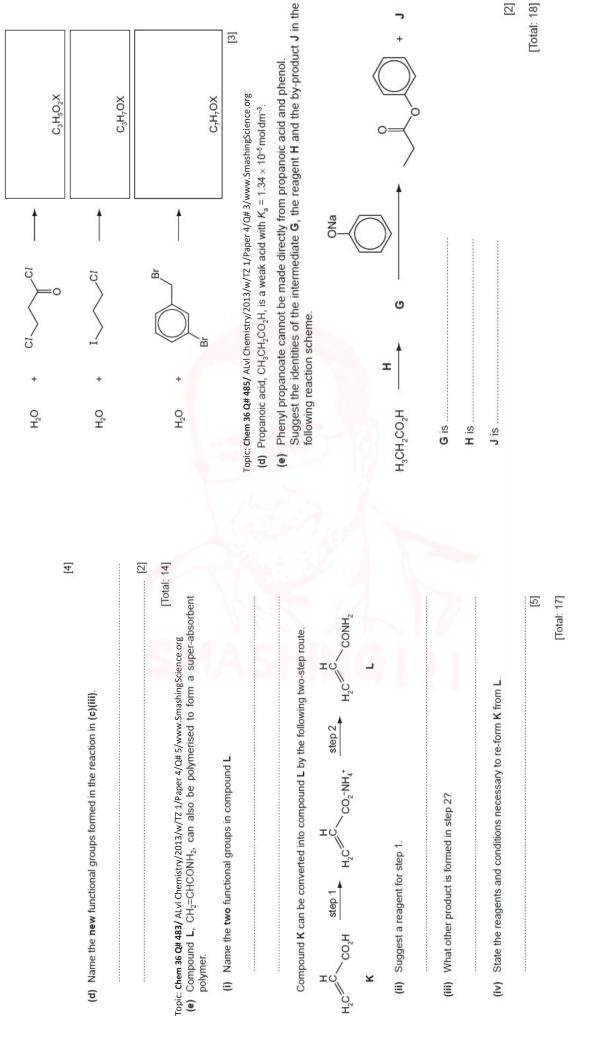
Page **461** of **703**

Patrick Brannac

(b) (i) Consider the following two-stage synthesis of noradrenaline from dihydroxybenzaldehyde.

Page **463** of **703**

www.SmashingScience.org


Patrick Brannac

Page **464** of **703**

(iii) an excess of ethanoyl chloride, CH₃COCI.

Topic: Chem 36 Q# 484/ ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org (d) Predict the products of the following reactions and draw their structures in the boxes below. The molecular formula of each product is given, where X = Cl, Br or I.

[3]

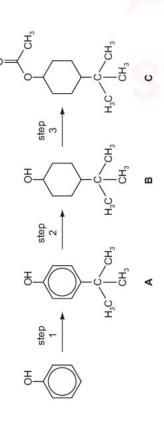
TI I DANIHASYMS

[2]

[Total: 18]

Page **466** of **703**

Patrick Brannac


www.SmashingScience.org

A SHAREN

Page **465** of **703**

Patrick Brannac

(b) Compound C is responsible for the pleasant aroma of apples. It can be prepared from Topic: Chem 36 Q# 486/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org phenol by the following 3-step synthesis.

- The only by-product of step 1 is HCL Suggest the reagent that was used to react with phenol to produce compound A. (i)
- What type of reaction is occurring in step 2? (11)
- What reagents and conditions are required for step 3? ([]])
- State the reagent and conditions needed to convert C back to B, the reverse of step 3. (iv)
- [2]

For each reagent draw the structure of the organic product formed with A, and with Either compound A or compound B, or both, react with the following reagents. B. If no reaction occurs, write 'no reaction' in the relevant box. (i) (0)

nditions product with A product with B	3r_(aq)		over O3	d K ₂ Cr ₂ O ₇
reagent and conditions	an excess of Br ₂ (aq)	heat with HBr	pass vapour over heated AI_2O_3	heat with acidified $K_2 Cr_2 O_7$

State below the observations you would make with each compound.

observation with B

observation with A

reagent

(ii) Choose one of the above reactions to enable you to distinguish between A and B.

[2]	[Total: 17]

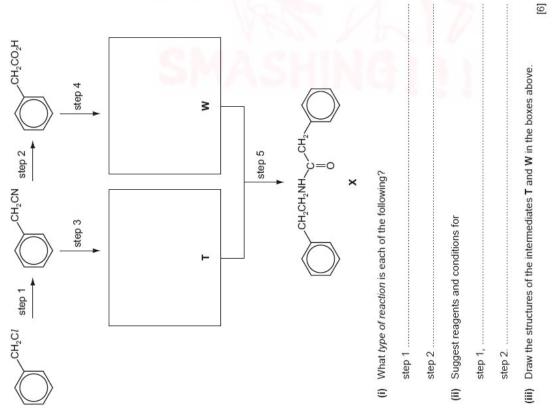
Topic: Chem 36 Q# 487/ ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

to synthesise ammonia from nitrogen in the Haber process.

4

Page **467** of **703**

Patrick Brannac


www.SmashingScience.org

Page **468** of **703**

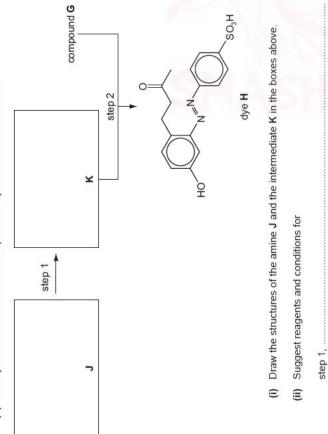
Patrick Brannac

Topic: Chem 36 Q# 488/ ALVI Chemistry/2012/w/TZ 1/Paper 4/Q# 5/www.5mashingScience.org 5 Compound G is a naturally occurring aromatic compound that is present in raspberries.

(b) Complete the following table with information about the reactions of the three stated reagents with compound G.

reagent	observation	structure of organic product	type of reaction
sodium metal			
aqueous bromine			
aqueous alkaline iodine			

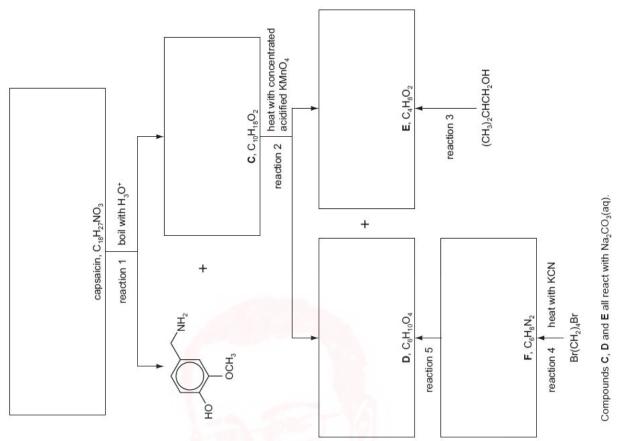
[8]


Page **469** of **703**

Patrick Brannac

www.SmashingScience.org

step 2.


[2]

A STATISTICS [Total: 18] [3] compound L

0

Topic: Chem 36 Q# 489/ ALvI Chemistry/2012/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

The compound responsible for the hot taste of chilli peppers is capsaicin. Its molecular structure can be deduced by the following reaction scheme. 4

Page **472** of **703**

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

Page **471** of **703**


Answer the following questions.				Topic: Chem 36 Q# 490/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	chem 36 Q# 490/ ALvI Chemistry/2012/s/T2 1/Paper 4/Q# 5/www.SmashingScience.org [A] The following chart shows some reactions of commoning E which is a neutral commoning	cience.org o is a neutral compound	
(a) Suggest reagents and conditions for reaction 3.	ons for reaction 3.			G forms a salt with dilute H_2S	G forms a salt with dilute H ₂ SO4, whereas H forms a salt with NaOH(aq)	aOH(aq).	2
		[1]		Both G and H can be obtained 1 and reaction 2 below).	Both ${f G}$ and ${f H}$ can be obtained from compound ${f J}$ by separate one-step reactions (reaction 1 and reaction 2 below).	-step reactions (reactio	_
(b) What type of reaction is reaction 4?	ion 4?	[1]		All four compounds F, G, H a	All four compounds ${\sf F}, {\sf G}, {\sf H}$ and ${\sf J}$ form a yellow precipitate with alkaline aqueous iodine	alkaline aqueous iodine	
(c) Suggest reagents and conditions for reaction 5.	ons for reaction 5.						
(d) Name the functional group in	[1] [4] Name the functional group in C that has reacted with hot concentrated aciditied KMnO.	[1] [1] Intrated acidified KMnO.			F , C ₆ H ₁₆ NO ₃		
		[1]			heat with dilute acid		
(e) Suggest the name of the func	Suggest the name of the functional group in capsaicin that has reacted in reaction 1.	reacted in reaction 1.					
		E					
(f) Work out structures for compo in the boxes opposite.	Work out structures for compounds C – F and capsaicin, and draw their structural formulae in the boxes opposite.	their structural formulae [5]		G , C ₄ H ₁₁ NO	н, С ₄ н ₆ O ₃	H ₆ O ₃	
		[10tal: 1U]		reaction 1	reaction 2	n 2	
					•		
					J, C₄H₅NO		
				(i) Suggest structures for F,	Suggest structures for ${\bf F}, {\bf G}, {\bf H}$ and ${\bf J},$ and draw them in the boxes above.	boxes above.	
				(ii) Suggest reactants and conditions for	onditions for		
				reaction 1,			,
				reaction 2.		[9]	. [
						[Total: 14]	1
www.SmashingScience.org	Patrick Brannac	Page 473 of 703	ii IBMINSYNS	www.5mashingScience.org	Patrick Brannac	Page 474 of 703	I I IDNIHSYMS

E	(c) The following chart shows so	(c) The following chart shows some reactions of compound F which is a neutral compound	is a neutral compound.	
5 (a) Methoxybenzene reacts with Br ₂ (aq) in a similar manner to phenol.	G forms a salt with dilute H_2^{4}	G forms a salt with dilute $\mathrm{H_2SO_4}$ whereas H forms a salt with NaOH(aq)	iOH(aq).	
OCH ₃	Both G and H can be obtaine 1 and reaction 2 below).	Both G and H can be obtained from compound J by separate one-step reactions (reaction 1 and reaction 2 below).	step reactions (reaction	
\sim	All four compounds F, G, H a	All four compounds F, G, H and J form a yellow precipitate with alkaline aqueous iodine.	alkaline aqueous iodine.	
methoxybenzene				
(i) Draw the structural formula of the product of the reaction between methoxybenzene and an excess of bromine.				
		F, C ₈ H ₁₅ NO ₃		
		heat with dilute acid		
(ii) Suggest a chemical reaction you could use to distinguish between methoxybenzene and phenol. State the reagent, describe the observations you would make, and give an equation for the reaction.				
reagent				
observation	G, C4H11NO	H, C4H ₆ O ₃	H ₆ O ₃	
equation	reaction 1	reaction 2	2	
[4]				
(b) Phenol can be synthesised from benzene by the following route.				
HNO. Sten 2 NaNO. Sten 4 Sten 4		J, C4H5NO		
HCI	(i) Suggest structures for F	Suggest structures for ${\bf F}, {\bf G}, {\bf H}$ and ${\bf J},$ and draw them in the boxes above.	boxes above.	
	(ii) Suggest reactants and conditions for	conditions for		
	reaction 1,			
(II) Suggest reagents and conditions for	reaction 2.		[9]	
			[Total: 14]	
Step 4				C
www.SmashingScience.org Patrick Brannac Page 475 of 703 Swashing11	www.SmashingScience.org	Patrick Brannac	Page 476 of 703	LI LENIHSVWS

60
5
e.
S
č
e.
5
ŝ
Ē
-=
ast
g
F
ŝ
≥
Ś
ş
<
m,
,
Ø
7
~
ē
d
a
4
-
2
F
S
5
2012
0
5
~
Ę.
nis [.]
ē
5
\Lv
2
5
492,
4
蛓
σ
Q
m
em 3
mei
Chem
mei
Chem
Chem

Indigo is the dye used in blue jeans. Although originally extracted from plants of the type *indigofera*, it is now almost entirely made artificially. 3

Indigo is insoluble in water but this disadvantage can be overcome by converting it into the water-soluble colourless leuco-indigo. If cloth soaked in a solution of leuco-indigo is left to dry in the air, the leuco-indigo is converted into the insoluble blue indigo, which is precipitated out onto the fibres of the cloth.

(c) Suggest **two** chemical tests that could be used to distinguish between indigo and leuco-indigo. Write your answers in the following table. leuco-indigo indigo

		an 19
observation with leuco-indigo	SH	ÍN
observation with indigo		
reagents and conditions		
test	~	2

- (d) When indigo is heated with hydrogen and a nickel catalyst, compound A, C₁₆H₂₈N₂O₂, is formed.
- Suggest a structure for A.

Calculate the volume of hydrogen, measured at room temperature and pressure, that would have been absorbed if 2.50g of indigo had undergone this reaction. (II)

.dm³ 3] volume = ...

(e) Suggest the structure of the product formed when indigo reacts with an excess of Br₂(aq)

[2]

[3]

[Total: 16]

Page **478** of **703**

Patrick Brannac

www.SmashingScience.org

Page 477 of 703

Patrick Brannac

Topic: Chem 36 Q# 493/ ALVI Chemistry/2011/w/TZ 1/Paper 4/O# 5/www.SmashingScience.org 5 Compound C has the molecular formula C.H.: O. Treating C with hot concentes

Compound C has the molecular formula $C_7H_{44}O$. Treating C with hot concentrated acidified KMnO₄(aq) produces two compounds, D, C_4H_8O , and E, $C_3H_4O_3$. The results of four tests carried out on these three compounds are shown in the following table.

compound C compound D decolourises no reaction fizzes no reaction q) no reaction atazine no reaction	turner of the t		result of test with	
decolourises no reaction fizzes no reaction no reaction yellow precipitate no reaction orange	ILERI LERIGEIII	compound C	compound D	compound E
fizzes no reaction no reaction yellow precipitate no reaction orange	${\sf Br}_2({\sf aq})$	decolourises	no reaction	no reaction
no reaction yellow precipitate or orange no reaction orange	Na(s)	fizzes	no reaction	fizzes
no reaction precipitate	I ₂ (aq) + OH ⁻ (aq)	no reaction	yellow precipitate	yellow precipitate
	2,4-dinitrophenylhydrazine	no reaction	orange precipitate	orange precipitate

- (a) State the functional groups which the above four reagents test for.
- $Br_2(aq)$ Ξ

Na(s) (II)

- $I_2(aq) + OH^{-}(aq)$
- 2,4-dinitrophenylhydrazine (iv)

[4]

- (b) Based upon the results of the above tests, suggest structures for compounds D and E.
- E, C₃H₄O₃ D, C₄H₈O

[2]

(c) Compound C exists as two stereoisomers.

Draw the structural formula of each of the two isomers, and state the type of stereoisomerism involved.

[Total: 9]

Page **480** of **703**

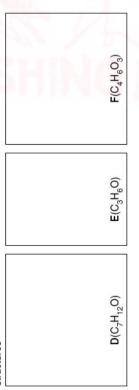
Patrick Brannac

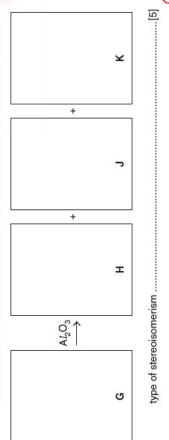
www.SmashingScience.org

Page **479** of **703**

Patrick Brannac

Topic: Chem 36 Q# 494/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org


(b) The iodoform test can be used, along with other reactions, to work out the structures of Use the information in the table below to deduce the structures of the compounds in the following scheme, and draw these structures in the boxes provided. unknown compounds.


Results of tests (indicates a positive result; X indicates a negative result)

	results of	LESUIS OF LESIS WILL EACH COMPONIN	
lesi	D	ш	ш
iodoform	×	`	>
Fehling's solution	`	x	x
2,4-dinitrophenyl- hydrazine reagent	`	`	1
Na ₂ CO ₃ (aq)	×	×	1

structures

Treatment of compound F with NaBH₄ gives compound G, $C_4H_8O_3$. Heating G with A1₂O₃ gives a mixture of three isomeric unsaturated carboxylic acids H, J and K, $C_4H_8O_2$, two Suggest structures for G, H, J, and K, and name the type of stereoisomerism shown. of which are stereoisomers of each other. (c)

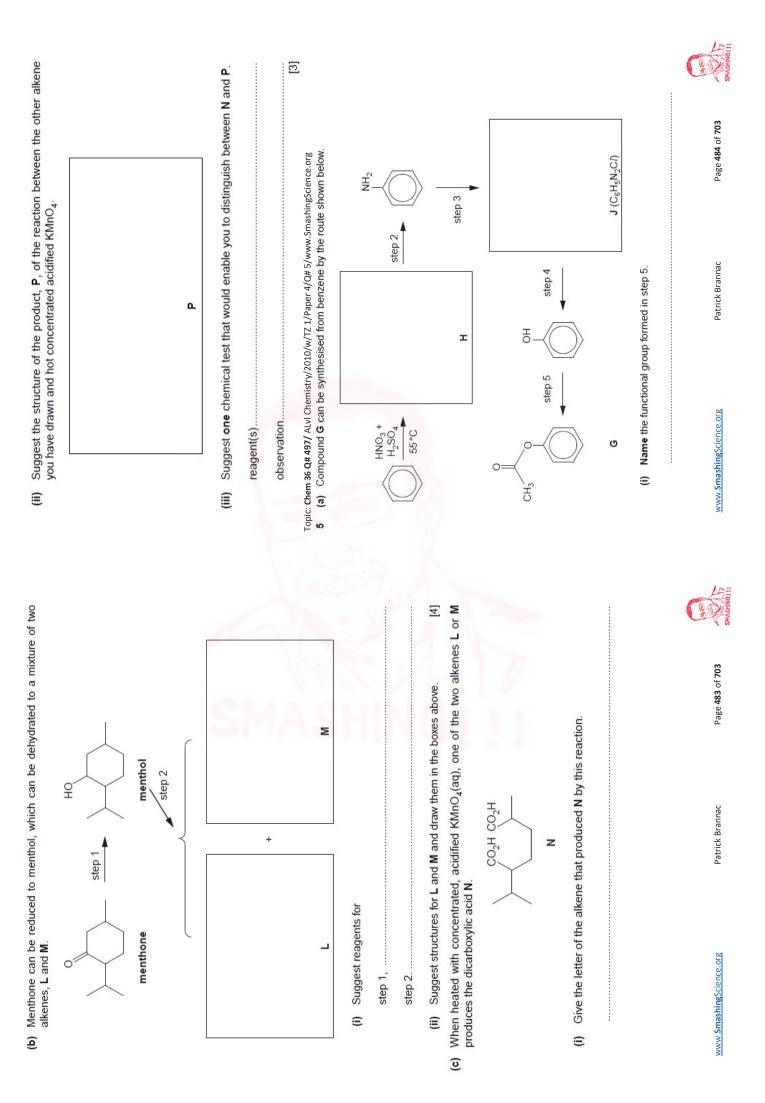
(a) There are several ways of introducing chlorine atoms into organic molecules. State the reagents and conditions necessary to carry out the following transformations. Topic: Chem 36 Q# 495/ ALvI Chemistry/2011/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org S

reagents + conditions								[9]
transformation	c ₂ H ₄ — C ₂ H ₅ C1	C₂H₅OH −−−► C₂H₅Ct	c₂H ₆ −−− c₂H₅cı	C ₂ H₄	CH ₃ CO ₂ H	CH3 CH3 CI	CH ₃ - CH ₂ CI	

Topic: Chem 36 Q# 496/ ALvI Chemistry/2010/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 Menthone, C₁₀H₁₈O, is a cyclic ketone that occurs in oil of peppermint.

3

menthone

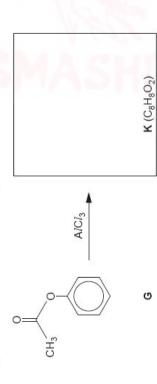

Page **482** of **703**

Patrick Brannac

www.SmashingScience.org

Page 481 of 703

Patrick Brannac

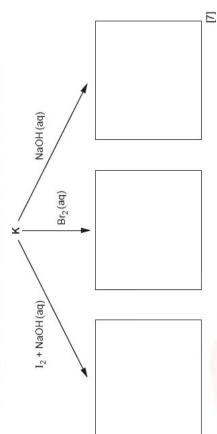


- Draw the structures of the intermediates H and J in the boxes above. (11)
- Suggest reagents and conditions for the following. (III)

step 2	step 3	step 4	
02	03	p 4	sten 5
step	stel	step	ster

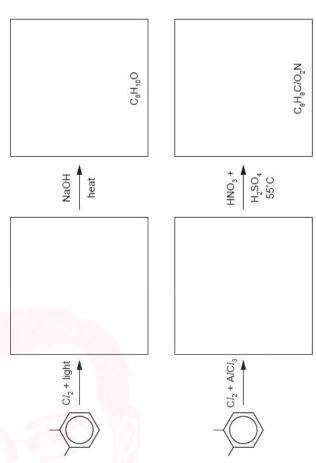
In a reaction discovered just over 100 years ago by the German chemist Karl Fries, compound **G** is converted into compound **K** when it is heated with AICI₃. Compound K is a structural isomer of G. (q)

[]



Compound K is a 1,4-disubstituted benzene derivative. It is insoluble in water, but dissolves in NaOH(aq). It gives a white precipitate with $Br_{2}(aq)$, and a yellow precipitate with alkaline aqueous iodine.

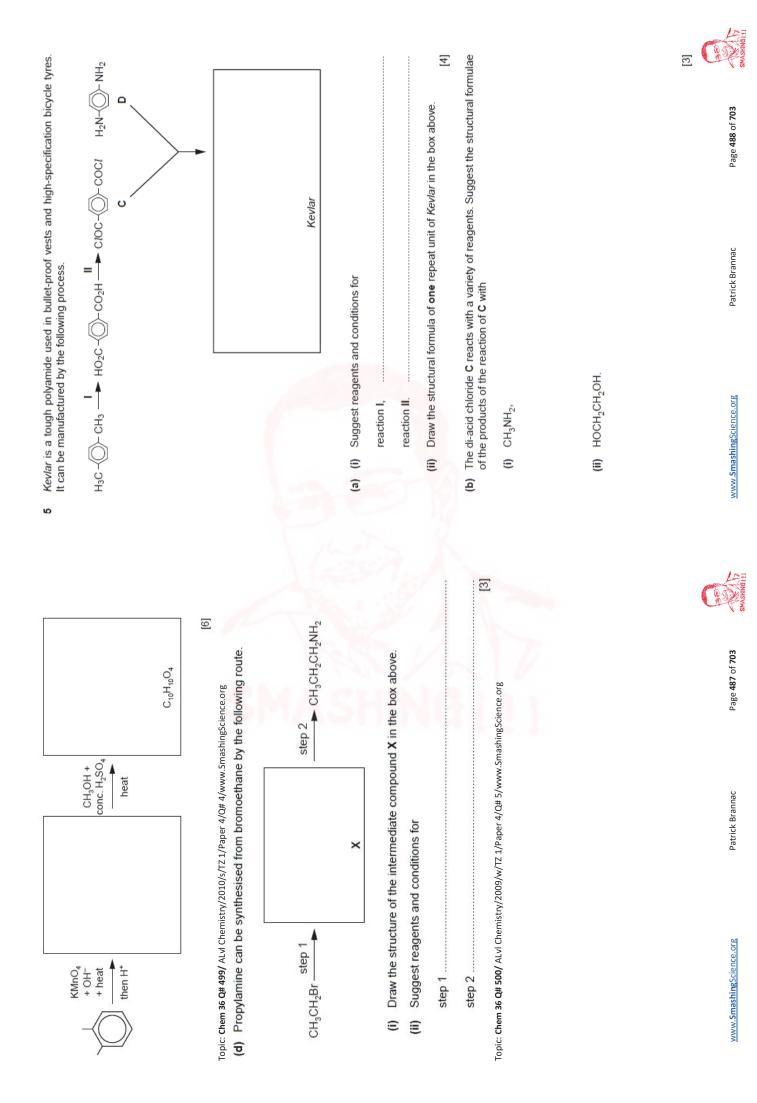
(i) What is meant by the term structural isomerism?

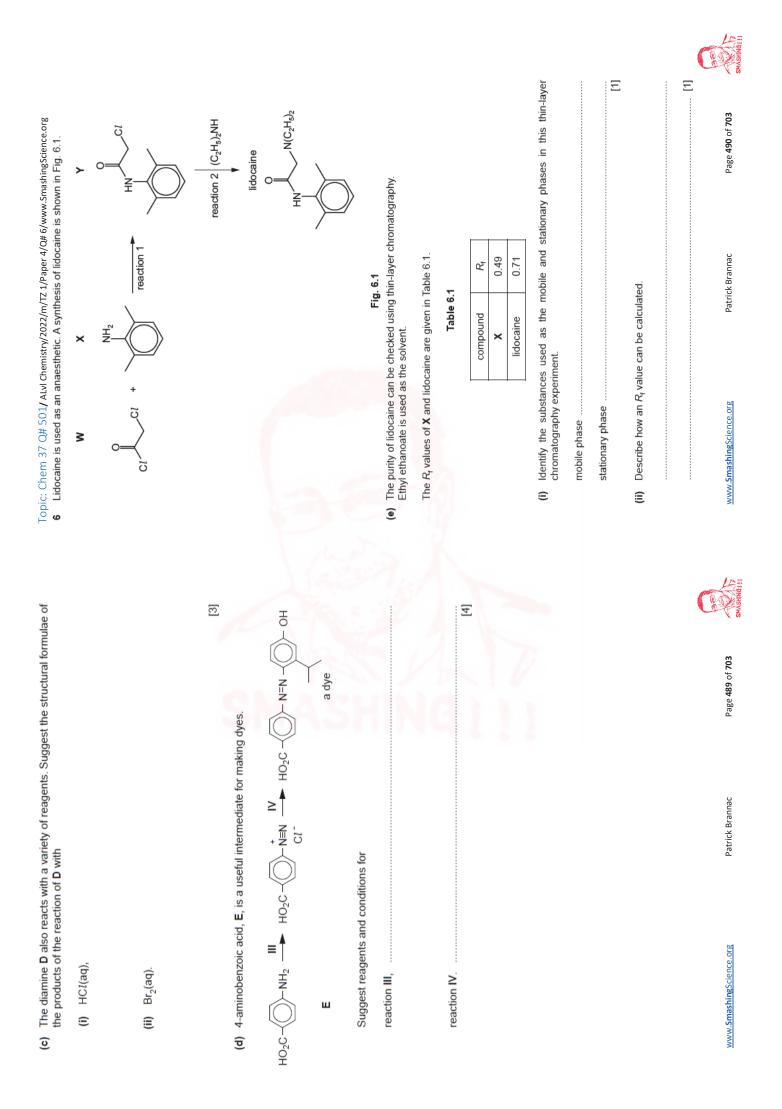

Use the information given above to name two functional groups in compound K. (1)

(iii) Suggest the structural formula of K, and draw it in the box above.

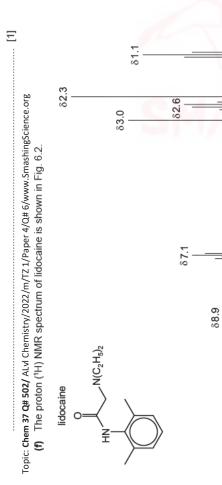
Topic: Chem 36 Q# 498/ ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

Predict the products of the following reactions and draw their structures in the boxes provided. Note that the molecular formula of the final product is given in each case. ~




Patrick Brannac

Patrick Brannac





(iii) Suggest why the R_i value for **X** is less than that for lidocaine.

C

Fig. 6.2 Table 6.2

environment of proton	example	chemical shift range δ/ppm
alkane		0.9–1.7
alkyl next to C=O	с Н ₃ -с=0, -с Н ₂ -с=0, >с Н -с=0	2.2-3.0
alkyl next to aromatic ring	CH ₃ −Ar, −CH ₂ −Ar, >CH−Ar	2.3-3.0
alkyl next to electronegative atom	CH ₃ -0, -CH ₂ -0, -CH ₂ -C1	3.2-4.0
attached to alkene	=CHR	4.5-6.0
attached to aromatic ring	H–Ar	0.0-0.9
aldehyde	HCOR	9.3-10.5
alcohol	ROH	0.5-6.0
phenol	Ar-OH	4.5-7.0
carboxylic acid	RCOOH	9.0-13.0
alkyl amine	R-NH-	1.0-5.0
aryl amine	Ar–NH ₂	3.0-6.0
amide	RCONHR	5.0-12.0

(i) Name the splitting patterns at \$2.6 and \$1.1.

51.1 \$2.6.

Ξ

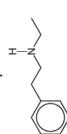
(ii) The relative peak area of the peaks at \$3.0 and \$2.3 is 1:3 respectively.

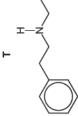
Identify the protons in the ¹H NMR spectrum of lidocaine that are responsible for the peaks at the following chemical shift values.

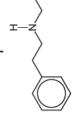
l	1	[2]
0		
		[2]
1.1		~
57.1	3.0	52.3 [2]
~	~	~

(iii) Predict the number of peaks in the carbon-13 (¹³C) NMR spectrum of lidocaine.

[Total: 14]


Ξ


Important values, constants and standards

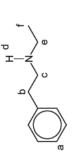

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	e = -1.60 × 10 ⁻¹⁹ C
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} (4.18 \text{ J g}^{-1} \text{ K}^{-1})$

Topic: Chem 37 Q# 503/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org

9 Compound T is made by a three-stage synthesis.

Page **492** of **703**

Patrick Brannac


www.SmashingScience.org

TI I DNIHSYM

Page **491** of **703**

Patrick Brannac

(e) The proton (¹H) NMR spectrum of compound T shows hydrogen atoms in different environments. Six of these environments are shown on the structure using letters a, b, c, d, e and f.

Use the letters a, b, c, d, e and f to answer the questions that follow. The questions relate to the proton ('H) NMR spectrum of ${\bf T}$

Proton d does not cause splitting of the peaks for protons c or e under the conditions used. Each answer may be one, or more than one, of the letters a, b, c, d, e and f.

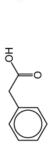
(i) Identify the proton or protons with a chemical shift (\delta) in the range 6.0 to 9.0.

[1]

E

(ii) Identify the proton or protons whose peak will disappear if D₂O is added.

(iii) Identify the proton or protons whose peak is a triplet.


(iv) Identify the proton or protons with the lowest chemical shift (\delta).

[1]

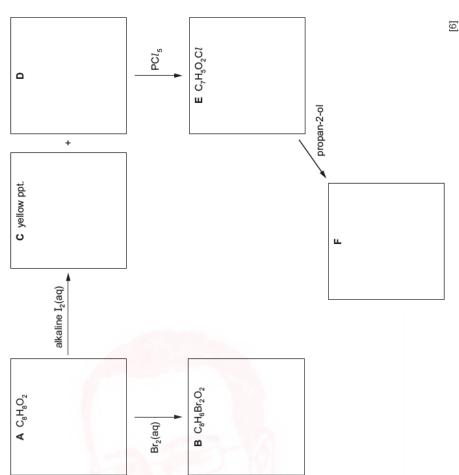
[Total: 12]

Ξ

Topic: Chem 37 Q# 504/ ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 The structure of phenylethanoic acid is shown.

(a) Give the number of different peaks in the carbon-13 (¹³C) NMR spectrum of phenylethanoic acid.

number of peaks =[1]


Topic: **Chem 37 Q# 505/** ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 9/www.5mashingScience.org **9** The carbon-13 (¹³C) NMR spectrum of compound **A**, C₈H₈O₂, contains six peaks. Compound A reacts with an excess of bromine water to give compound B, $C_8 H_6 B r_2 O_2$.

Compound A reacts with alkaline aqueous iodine to form a yellow precipitate C and compound D.

Compound **D** reacts with PCI_5 to form compound **E**, $C_7H_5O_2CI$.

Compound E reacts with propan-2-ol to form compound F.

Draw the structures of compounds A, B, C, D, E and F in the boxes.

Page **494** of **703**

Patrick Brannac

www.SmashingScience.org

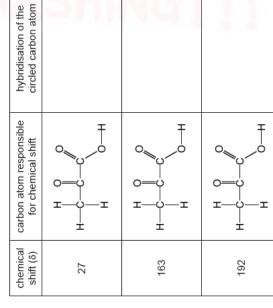
www.SmashingScience.org

Patrick Brannac

Page **493** of **703**

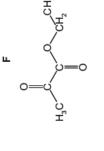
Topic: Chem 37 Q# 506/ ALvi Ch. (ii) Each compound, HC(CDCI ₃ . Proton (¹ H) N	Topic: Chem 37 Q# 506/ ALM Chemistry/2021/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org (ii) Each compound, HCO ₂ H, HO ₂ CCO ₂ H and HO ₂ CCH ₂ CH ₂ CO ₂ H, is dissolved se CDCI ₃ . Proton (¹ H) NMR and carbon-13 (¹³ C) NMR spectra are then obtained.	them 37 Q# 506/ ALM Chemistry/2021/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org Each compound, HCO_2H , HO_2CCO_2H and $HO_2CCH_5CH_5CO_2H$, is dissolved seperately in $CDCI_3$. Proton (¹ H) NMR and carbon-13 (¹³ C) NMR spectra are then obtained.	(b) Explain why TMS is added to give the small peak at chemical shift
Complete the table.			(c) Compound E is hydrolysed by hot NaOH(aq), giving two organic products only. One of these
compound	number of peaks in proton NMR	number of peaks in carbon-13 NMR	
HCO ₂ H			ואמווה נוב ועובעטומ פוטטף ווי בטוויףטטווע ב נומו וא וואטיטאפט של ווטר אסטי ומקן.
HO ₂ CCO ₂ H			
HO ₂ CCH ₂ CH ₂ CO ₂ H	H		(d) (i) Describe and explain the splitting patterns of the peaks at $\delta = 1.4$ and $\delta = 4.3$.
		[2]	splitting pattern at 5 = 1.4
(iii) The proton NMR spec	The proton NMR spectrum of HCO_2H in D_2O is obtained.	itained.	reason to splitting partern at $0 = 1.4$
Describe and explain the difference of HCO ₂ H in (b)(ii)	the difference observed betw n (b)(ii) .	Describe and explain the difference observed between this spectrum and the proton NMR spectrum of HCO_2H in (b)(ii).	reason for splitting pattern at $\delta = 4.3$
			(ii) Each molecule of compound E contains five protons which give rise to the peaks between $\delta = 7.0$ and $\delta = 8.5$.
		[]	Identify the functional group in compound E which contains these protons.
Topic: Chem 37 Q# 507/ ALvl Chemis 9 The proton NMR spectrum of compound E is $C_{B}H_{10}O_{2}$.	Topic: Chem 37 Q# 507/ ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 The proton NMR spectrum of compound E in the solvent $CDCl_3$ is shown. The of compound E is $C_9H_{10}O_2$.	: Chem 37 Q# 507/ ALVI Chemistry/2020/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org The proton NMR spectrum of compound E in the solvent CDC1 ₃ is shown. The molecular formula of compound E is $C_{9}H_{10}O_{2}$.	la (iii) Give the structural formula of compound E.
		6	
		,	
	-] م	2	[]
			(e) The mass spectrum of compound E includes fragment ions with <i>mle</i> values of 29 and 77.
			Give the formulae of these fragment ions.
<u>*</u>			fragment ion with $m/e = 29$
=	c o / o e o mdd/g	4 0 7 - 0	fragment ion with $m/e = 77$
(a) Explain why CDC <i>L</i>	Explain why CDC I_4 is used as a solvent instead of CHC I_3 .	1 of CHC1.	
- -	2		[Total: 9] Tonic: Chem 37 O# 508/ A1vl Chemistrv/2020/w/T7 1/Paner 4/O# 8/www SmashineScience ore
www.SmashingScience.org	Patrick Brannac	inac Page 495 of 703	www.SmashingScience.org Patrick Brannac Page 496 of 703

(iv) Deduce the number of peaks in the carbon-13 NMR spectrum of cyclohexylmethanol. cyclohexylmethanol

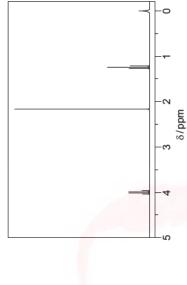

[Total: 10]

: []

Topic: Chem 37 Q# 509/ ALvi Chemistry/2020/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org


(d) A sample of pyruvic acid, CH₃COCO₂H, is analysed by carbon-13 NMR spectroscopy. Three peaks are observed.

- Complete the table by:
 circling the carbon atom responsible for the chemical shift
 stating the hybridisation of the circled carbon atom.



[2]

(e) An ester of pyruvic acid, \mathbf{F} , is dissolved in CDC I_3 and analysed by proton NMR spectroscopy.

Use the proton NMR spectrum of F to complete the table.

_	gn	enlitting nattern	number of ¹ H atoms
shift (δ)	for the peak	aplitude particulu	responsible for the peak
1.3			
2.2			
4.0			

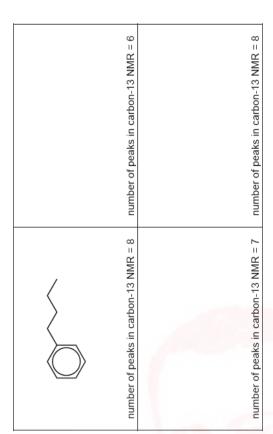
3

Patrick Brannac

On the diagram of alanine, circle the protons that show peaks in both NMR spectra. Explain your answer.

- bromobenzene. This is a substitution reaction. No addition reaction takes place
- (i) There are four different carbocations with the same formula, $C_4H_a^+$. One structure is given in the table. <u>ی</u>

Suggest the structural formulae of the three other carbocations.

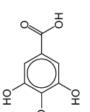

structure 4	1
structure 3	
structure 2	
structure 1	CH₃CH₂CH₂CH2⁺

3

Benzene reacts with each of these carbocations in separate Friedel-Crafts alkylation reactions. **(**

In each reaction an organic compound with formula $C_{i0}H_{14}$ is formed. The number of peaks observed in the carbon-13 NMR spectrum of each compound is given.

Suggest the structures for the three other compounds.


Topic: Chem 37 Q# 511/ ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org 5 Gallic acid, C₇H₆O₅, is a naturally occurring aromatic molecule.

4

(d) (i) State the number of peaks that would be observed in the ¹³C NMR spectrum of gallic acid.

Ξ

Page 500 of 703

Patrick Brannac

www.SmashingScience.org

Page 499 of 703

www.SmashingScience.org

I T	
	I
(iv) St. [2] (iv) St. [7]	State the number of peaks in the C-13 NMR spectrum of phenylethene.
(v)	11 Suggest C-13 chemical shift ranges expected for the different types of carbon environment in phenylethanone.
	[2]
 (a) Butamben can act as a base. Topic: Che proton NMR spectrum of butamben in CDCI₃ contains one or more peaks that show a triplet splitting pattern. (b) State the number of peaks in the spectrum that show a triplet solitting pattern. 	[Total: 18] Topic: Chem 37 Q# 514/ ALvi Chemistry/2019/s/TZ 1/Paper 4/O# 8/www.SmashingScience.org (b) State the use of TMS and CDC1 ₃ in NMR spectroscopy.
	 CDCl₃ [1] The proton NMR spectrum of compound X, C₅H₁₀O₂, is shown.
	n —
[1] [1] Describe and explain how the proton NMR spectrum of butamben in D_2O would differ from the proton NMR spectrum of butamben in $CDCI_3$. [1]	5 4 3 2 1 $08/ppmBy considering both the relative peak areas and their \delta values, use the Data Booklet to$
www.SmashingScience.org Patrick Brannac Page 501 of 703	 deduce the part of the molecule that produces the peak at 52.2, www.SmashingScience.org Page 502 of 703

deduce the part of the molecule that produces the peaks at \$1.2 and \$3.5,

deduce the part of the molecule that produces the peak at 84.0. •

(ii) When reacted with aqueous alkaline iodine, X produces a yellow precipitate.

3

Use this information and your answers to (c)(i) to suggest a structure for X.

(d) Compound W is an ester with the molecular formula $C_5H_{10}O_2$. The proton NMR spectrum of W contains only two peaks.

Ξ

The relative areas of these two peaks are in the ratio 9:1.

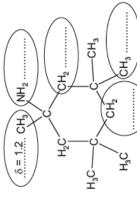
Suggest a structure for this ester, W.

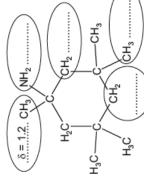
E Topic: Chem 37 Q# 515/ ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org

The names of many drugs used in medicine often include parts of the names of the functional groups their molecules contain. 9

(c) Neramexane is another drug.

(i) Suggest the number of peaks in the carbon-13 NMR spectrum of neramexane.


Ξ


The proton (¹H) NMR spectrum of neramexane in $CDCI_3$ shows five peaks with the following chemical shifts (5).

et,					
splitting pattern (singlet, doublet, triplet, quartet or multiplet)	singlet				broad singlet
number of protons responsible		3	2	4	
8/ppm	0.9	1.2	1.4	1.7	2.2

(ii) Complete the table.

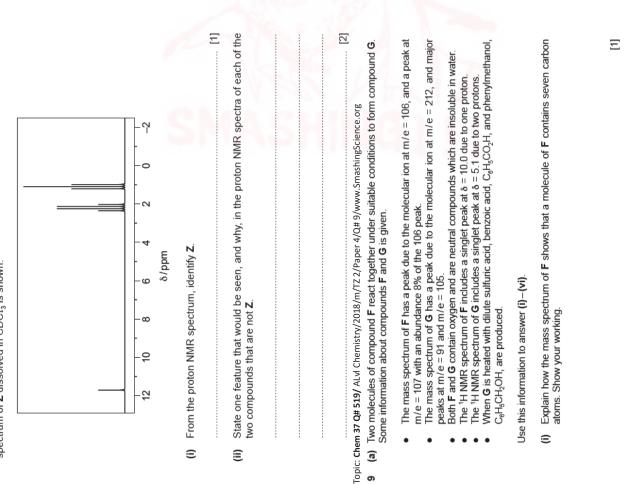
(iii) Use the Data Booklet and the table in (c)(ii) to complete the assignment of the correct 4 S values to each of the circled hydrogen atoms on the structure of neramexane.

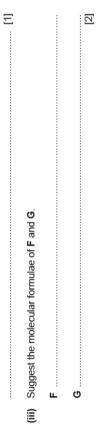
[2]

Page 504 of 703

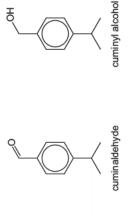
Patrick Brannac

www.SmashingScience.org


Page 503 of 703


www.SmashingScience.org

peak \mathbf{X} , \mathbf{Y} and \mathbf{Z} . Explain your answer by reference to the intermolecular forces of the compounds.	organic compound				[2] A student calculates the areas underneath the three peaks in the chromatogram.	peak X Y Z area/mm ² 19 32 47	eak is proportional to the	Calculate the percentage by mass in the original mixture of the compound responsible for peak Z .	% of mixture responsible for peak Z =		propanoic acid propan-1-ol phenol		
peak X, Y a compounds.	peak org	×	~	Z	(ii) A student ca		The area un	Calculate the peak Z.	Topic: Chem 37 Q# 518/ 7 The three subst	т—о́—т т	pro		
with D ₂ O.		[1]	[lotal: 15] Topic: Chem 37 Q# 516/ ALvI Chemistry/2018/w/T2 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) Polyhydroxyamide is a fire-resistant polyamide which is formed from the two monomers, F and G.	HO2C-CO2H H2N-CO1H2	HO U	(i) Predict the number of peaks that will be seen in the carbon-13 NMR spectra of F and G.	number of peaks		1 (a) An aldehyde, an alkane and a carboxylic acid, all of similar volatility, are mixed together. The mixture is then analysed in a gas chromatograph. The gas chromatograph. The gas chromatogram produced is shown.	absorption	0 5 10 15 20 time/mins	The separation of the compounds depends on their relative solubilities in the stationary phase. The stationary phase is a liquid alcohol.	



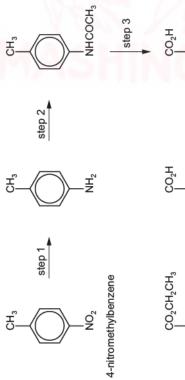
[2]

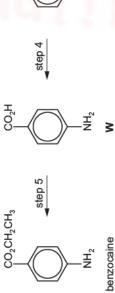
State the type of reaction that G undergoes when heated with dilute sulfuric acid (i) Ē Topic: Chem 37 Q# 520/ ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

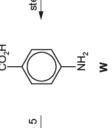
8 (a) Cumin is a spice used to flavour food. Two compounds responsible for its flavour are cuminaldehyde and cuminyl alcohol.

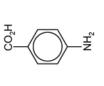
Deduce the number of peaks that would be present in the ¹³C NMR spectrum of cuminyl alcohol. Ξ

Ξ number of peaks


Page 507 of 703




absorption range in the infra-red spectrum/cm ⁻¹	cuminyl alcohol	
absorption range in the	cuminaldehyde	
	bond responsible for the difference	

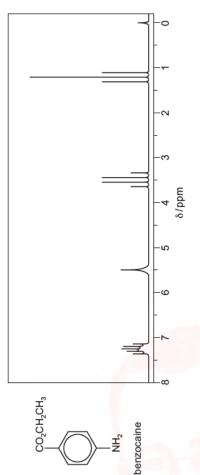

(b) Benzocaine is used as a local anaesthetic. It can be synthesised from 4-nitromethylbenzene Topic: Chem 37 Q# 521/ ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org by the route shown.

[2]

ste	
<u> </u>	Ň

NHCOCH3

Page 509 of 703


Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

- (d) A sample of benzocaine, shown below, was analysed by proton NMR and carbon-13 NMR spectroscopy.
- (i) Predict the number of peaks that would be seen in the carbon-13 NMR spectrum.
- E Benzocaine was dissolved in $CDCI_3$ and the proton NMR spectrum of this solution was 1

recorded.

Suggest why CDCI3 and not CHCI3 is used as the solvent when obtaining a proton NMR spectrum. Use the *Data Booklet* and the spectrum in (d)(ii) to complete the table for the proton NMR spectrum of benzocaine. The actual chemical shifts, δ_i for the four absorptions have been added. (111)

Ξ

splitting pattern				multiplet
number of ¹ H atoms responsible for the peak				
group responsible for the peak				
ð/ppm	1.2	3.5	5.5	7.1-7.4

(iv) Explain

multiplet	
	the splitting pattern for the absorption at §1.2 ppm.
	e splitting pattern for
4	t ₽

[4]

Patrick Brannac

Page **510** of **703**

TI DNIHSWW E

The proton NMR spectrum of benzocaine dissolved in D ₂ O was recorded.		
	he proton NMR spectrum of benzocaine dissolved in $D_2^{(1)}$	

Σ

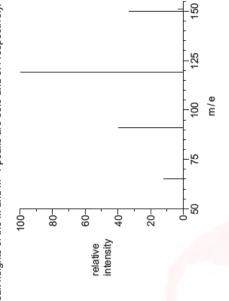
Suggest how this spectrum would differ from the spectrum in (d)(ii). Explain your answer. Topic: Chem 37 Q# 522/ ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

6 The reaction between 1-chloro-1-phenylethane and hydroxide ions to produce 1-phenylethanol is:

 $\begin{array}{rcl} C_{6}H_{5}CHC\mathit{1}CH_{3}\ +\ OH^{-}\rightarrow\ C_{6}H_{5}CH(OH)CH_{3}\ +\ C\mathit{1}^{-}\\ 1\mbox{-chloro-1-phenylethane} & 1\mbox{-phenylethanol} \end{array}$

The rate of this reaction can be studied by measuring the amount of hydroxide ions that remain in solution at a given time. The reaction can effectively be stopped if the solution is diluted with an ice-cold solvent.

(d) The proton NMR spectrum of a sample of 1-phenylethanol shows four peaks: a multiplet for the $C_6 H_5$ protons and three other peaks as shown in the table. When the sample is shaken with $D_2 O$ and the proton NMR spectrum recorded, **fewer** peaks are seen.


Complete the table for the proton NMR spectrum of 1-phenylethanol, C₆H₅CH(OH)CH₃. Use of the *Data Booklet* might be helpful.

å/ppm	number of ¹ H atoms responsible for the peak	group responsible for the peak	splitting pattern	result on shaking with D ₂ O
1.4				NV.
2.7				Ŧ
4.0				
7.2-7.4	5	C ₆ H ₅	multiplet	peak remains

[4]

Topic: **Chem 37 Q# 523/** ALvl Chemistry/2017/m/T2 2/Paper 4/Q# 9/www.SmashingScience.org **9** This question is about compound T, C_xH_yO₂.

(a) Part of the mass spectrum of T is shown. The peak heights of the M and M+1 peaks are 33.9 and 3.4 respectively.

(i) Calculate x, the number of carbon atoms present in T.

[2]

Ξ

Ξ

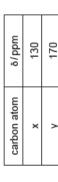
(ii) Deduce the molecular formula of T.
 (iii) The mass spectrum has a peak at m/e = 119.

Identify the fragment lost from T to produce this peak.

Page **512** of **703**

Patrick Brannac

www.SmashingScience.org



Page **511** of **703**

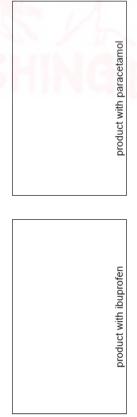
www.SmashingScience.org

(ii) The peak at δ = 2.4 ppm is due to a proton attached to a saturated carbon atom.	State the two possible types of proton. 1.	2. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	What does this tell you about the functional groups present in T? [1]	(d) Use the information to draw two possible structures of T which are functional group isomers of each other.					[Total: 10] Topic: Chem 37 Q# 524/ ALVI Chemistry/2017/m/T2 2/Paper 4/Q# 7/www.SmashingScience.org (e) Use the <i>Data Booklet</i> to help you answer this question.	The carbon-13 NMR spectrum of K was recorded.	HO		×	(i) State how many different carbon environments are present in K.	
				1000 500	. Mb	[J]		N		2 1 0				[1]	C
hown.			;	2000 1500 wavenumber/cm ⁻¹	ldentify the type of bond responsible for each of the peaks V and <mark>W.</mark> Use the <i>Data Booklet</i> to help you.		in CDC <i>t</i> ₃ is shown.	ЗН		0, ppm	Complete the table for the proton NMR spectrum of T. Use the <i>Data Booklet</i> to help you.	type of proton			
(b) The infra-red spectrum of T is shown.				4000 3000	ldentify the type of bond responsil Use the <i>Data Booklet</i> to help you.	M	(c) The proton NMR spectrum of T in $\text{CDC}l_3$ is shown.		4H	10 9 8 7	Complete the table for the proton Use the <i>Data Booklet</i> to help you.	å/ppm	3.9	7.2–7.9	

On the structure of K, circle and label two carbon atoms which could correspond to x and y.

[Total: 12]

Ξ


Topic: Chem 37 Q# 525/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 Ibuprofen and paracetamol are pain-relief drugs.

ibuprofen

paracetamol

(c) Draw the structures of the organic products when ibuprofen and paracetamol react separately with LiAIH₄.

(d) A student carried out some reactions with solutions of ibuprofen and paracetamol using reagents D and E and the following results were obtained. (✓ means a reaction took place.)

2

paracetamol	x	1
ibuprofen	~	x
reagent	D	Е

Suggest a possible identity for each reagent D and E.

D

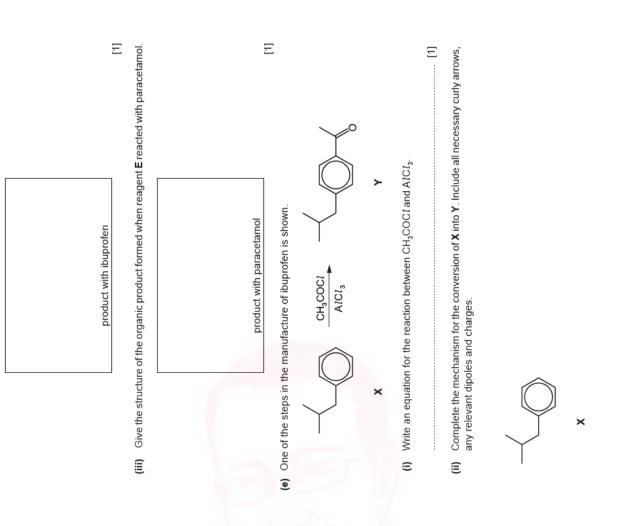
ш

[2]

www.SmashingScience.org

Patrick Brannac

Page 515 of 703



(ii) Give the structure of the organic product formed when reagent D reacted with ibuprofen.

Page **516** of **703**

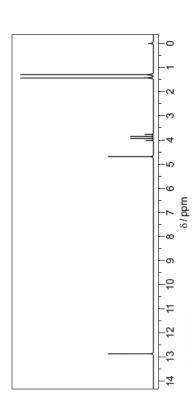
1	E
.!	
	anism
	mecna
11-11-	Ine
N I N	Name

Compound F contains the elements carbon, hydrogen and oxygen only. All carbon-carbon bonds in F are single bonds. The structure of F was analysed by mass spectrometry and infra-red and Topic: Chem 37 Q# 526/ ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org NMR spectroscopy. 2

Ξ

- (a) The mass spectrum shows that the m/e value for the M peak is 90.
- The ratio of the heights of the M and M+1 peaks is 22.1:0.7.
- (i) Use the ratio of the heights of the M and M+1 peaks to calculate the number of carbon atoms in a molecule of F.
- number of carbon atoms =

[2]


- (ii) Suggest the molecular formula of F.
- Ξ 0 Т 0 molecular formula =
- (b) The infra-red spectrum of F was obtained.

Use the Data Booklet and your knowledge of infra-red spectroscopy to identify the type of bond and the functional group responsible for these three absorptions.

functional group		0	
type of bond			
appearance of the peak	broad and strong	very broad and strong	strong
absorption / cm ⁻¹	3350	2680	1725

2

(c) F was dissolved in deuterated trichloromethane, CDCl₃, and the proton NMR spectrum of this solution obtained.

(i) Use the Data Booklet and your answer to (a)(ii) to complete Table 1 for the proton NMR spectrum of F.

The actual chemical shifts for the four absorptions in F have been added for you.

Table 1

type of proton relative peak area				
ð/ppm	1.4	3.9	4.7	12.0

- Describe and explain the splitting pattern for the absorption at $\delta = 1.4$. (ii)
- F was dissolved in D₂O and the proton NMR spectrum of this new solution obtained. Two of the absorptions in Table 1 were not present in this spectrum.

Ξ

[4]

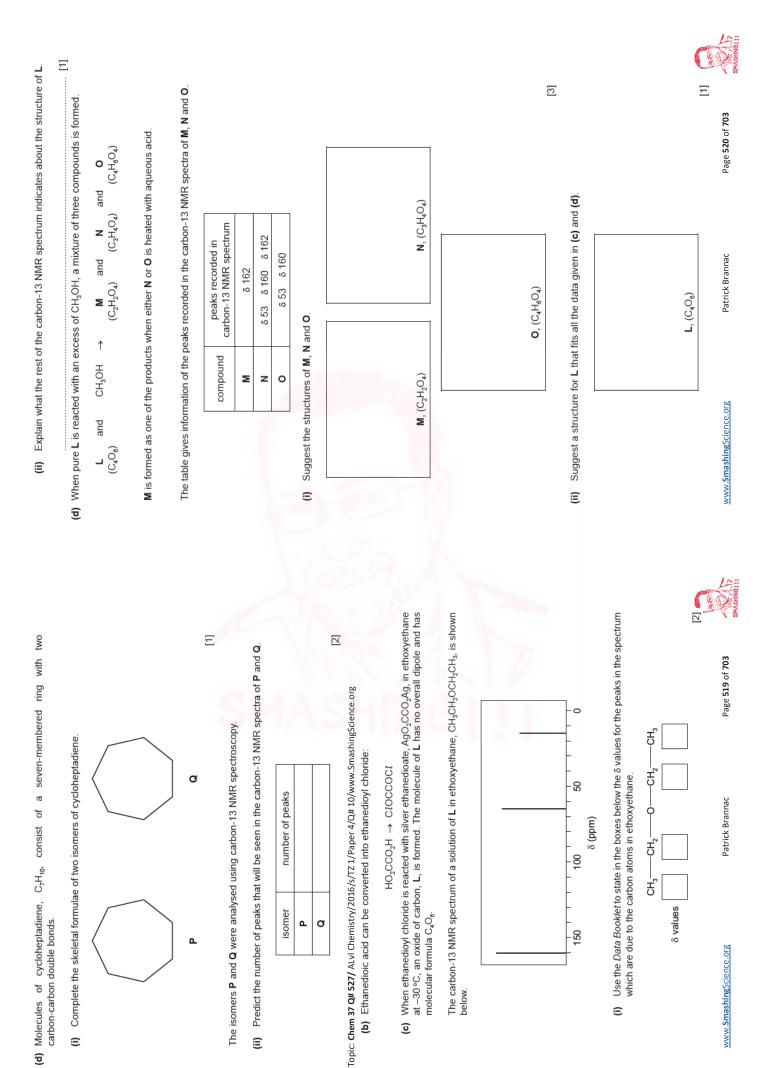
Which absorptions were not present?

(iv) Suggest the structure of F.

and

Ξ

Ξ


Page 518 of 703

Patrick Brannac

www.SmashingScience.org

Page **517** of **703**

Patrick Brannac

(ii) State and explain the splitting patterns of the absorptions E and F .	Е		L	
Topic: Chem 37 Q# 528/ ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org (c) Compound H is a primary amine which has three peaks in its carbon-13 NMR spectrum.	I	$H_3 C - CH_2 - CH_2 - CH_3 - CH_3$	NH2	compound H

(i) An isomer of H is another primary amine J which also has three peaks in its carbon-13 NMR spectrum.

T is a saturated alcohol. It was analysed by mass spectroscopy and NMR spectroscopy. In the mass spectrum, the molecular ion peak, M, was at an m/e value of 74 and the ratio of the heights of the M and M+1 peaks was 20.4:0.9.

Topic: Chem 37 Q# 530/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org

8

[2]

Use the ratio of the heights of the M and M+1 peaks to calculate the number of carbon atoms in a molecule of T.

(a) (i)

What is the molecular formula of T?

(11)

Use this information to suggest the structure of J.

[]

Another isomer of H is the tertiary arnine K. It has three peaks in its proton NMR spectrum. One of the peaks is a doublet. ≣

[3]

molecular formula =

(b) The NMR spectrum of T given below shows four absorptions. The absorption at 1.8 ppm is a multiplet and that at 2.5 ppm is a singlet.

Circle the protons responsible for the doublet.

Ξ

- Topic: Chem 37 Q# 529/ ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org (d) The NMR spectrum of cysteine, H₂NCH(CH₂SH)CO₂H, shows five absorptions.
- After shaking a solution of cysteine with a few drops of D_2O , the NMR spectrum shows only two absorptions, E and F, shown below.

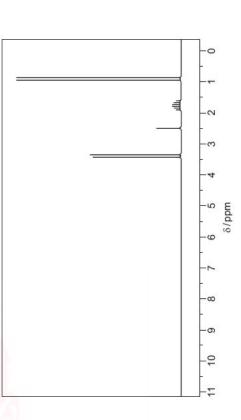
Identify the two types of protons responsible for the absorptions E and F.

ш

ш

Ξ

www.SmashingScience.org


A HINING

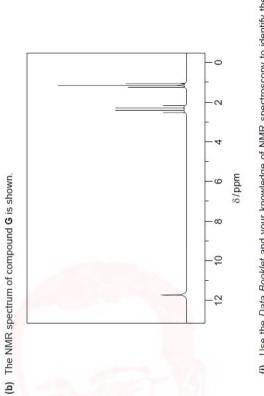
Page 521 of 703

Patrick Brannac

www.SmashingScience.org

-

(ii) Describe and explain which type of proton is responsible for each of the absorptions.

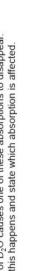

(iii) The State	The absorption at 1.8 ppm is a multiplet and that at 2.5 is a singlet. State and explain the splitting patterns of the other absorptions, at 0.9 and 3.4 ppm.
(iv) Deso	Describe and explain how the NMR spectrum of T dissolved in D ₂ O would differ from the one shown.
	5
	[Total: 12]
c: Chem	Topic: Chem 37 Q# 531/ ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org (b) (i) A mixture of amino acids can also be separated by thin-layer chromatography. Identify the mobile and the stationary phases in this type of chromatography.
	mobile phase
	stationary phase
(II)) What is the process by which thin-layer chromatography can separate a mixture?

Topic: Chem 37 Q# 532/ ALvl Chemistry/2014/s/Tz 1/Paper 4/Q# 7/www.SmashingScience.org 7 The combination of mass spectroscopy and NMR spectroscopy provides a powerful method of

- analysis for organic compounds.
- (a) The mass spectrum of a compound G contains M and M+1 peaks in the ratio of their heights of 74:2.5.

Use these data to calculate the number of carbon atoms present in G. Show your working.

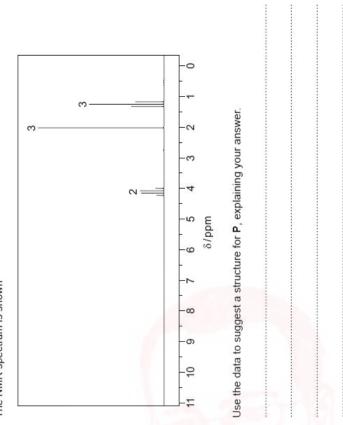
[2]



(i) Use the Data Booklet and your knowledge of NMR spectroscopy to identify the type of proton responsible for each of the three absorptions.

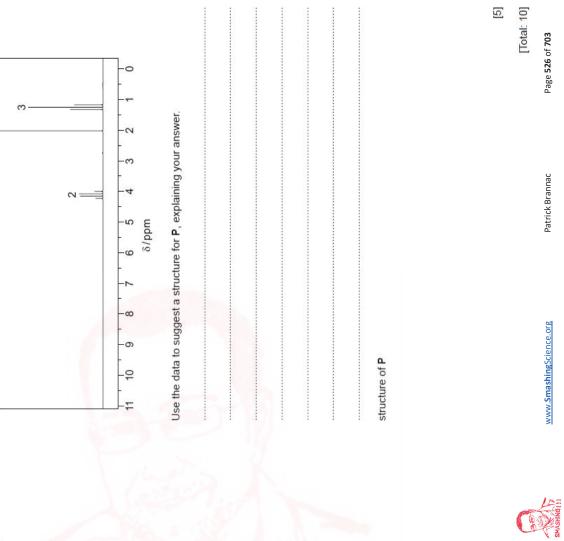
5/ppm 1.1 2.2
11.8

The addition of D_2O causes one of these absorptions to disappear. Explain why this happens and state which absorption is affected. (II)


Page 523 of 703

Patrick Brannac

(iii) Draw the structural formula of G.


(c) A sample of a liquid, P, was found at the scene of the crime and was analysed using mass spectrometry and NMR spectroscopy. Topic: Chem 37 Q# 534/ ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

The mass spectrum has M and M+1 peaks in the ratio of 5.1:0.22 with the M peak at m/e = 88. The NMR spectrum is shown

									C	
			[3] [744]		on a number of branches of onitoring and archaeology. Instead analyse mixtures. Ised to separate each of the y which would separate each			[5]	[Total: 10]	
۵/ ppm				113/s/T71/Daner 4/0#7/www.Sma	ern methods of analysis have had far-reaching effects on a number of branches of nethods of analysis have had far-reaching effects on a number of branches of nce including medicine, forensic science, environmental monitoring and archaeology. Various forms of chromatography can be used to separate and analyse mixtures. HPLC (high performance liquid chromatography) can be used to separate each of the following mixtures. State another method of chromatography which would separate each mixture.	vater		urine		
peak	-	2		Tonic: Chem 37 O# 5337 Ai vi Chemistrv/2013 /s/T7 1/Paner 4/0# 7/www. SmachingScience org	Modern methods of analysis have had far-reaching effects on a number of branches of science including medicine, forensic science, environmental monitoring and archaeology. (c) Various forms of chromatography can be used to separate and analyse mixtures. HPLC (high performance liquid chromatography) can be used to separate each of the following mixtures. State another method of chromatography which would separate each mixture.	insecticides in a sample of water	dyes present in a foodstuff	drug residue in an athlete's urine		

A CHINING

[9]

(c) Several structural isomers of G exist.

(i) Draw the structural formula of an isomer of G with only two absorptions in its NMR spectrum.

Page **527** of **703**

TI I BNIHSWS

roduced by the alcohol, giv n M : M+1 peak ratio of 17 the question to suggest the ne box provided Z only shows one peak.	 (1) State which spectrum, 1 or 2, was produced by the alcohol, giving a reason for your answer. spectrum reason in The mass spectrum of Y showed an M. M+1 peak ratio of 17.60.6. in Lue this and other information in the question to suggest the identifies of both Y and 2. in Draw a displayed formula for Y in the box provided Y is Y is Y is Explain why the NMR spectrum of Z only shows one peak. (T) 	Topic: Chem 37 Q# 537/ ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 A range of modern analytical techniques has made the identification of molecules, and atoms in compounds, much more rapid than traditional laboratory analysis.	(a) One instrumental technique is NMR spectroscopy, which uses the fact that under certain conditions protons can exist in two different energy states. Explain how these different energy states arise.	[2]	(b) When methanol, CH ₃ OH, is examined using NMR spectroscopy, it absorbs at two different frequencies. Explain why, and predict the relative areas of the two peaks.	(c) The NMR spectrum below is that of one of three possible isomers of molecular formula $C_3H_6O_2$.	<u>∎</u>	10 9 8 7 6 5 4 3 2 1 0 ▲ — chemical shift, δ / ppm		
	which spectrum, 1 or 2, was pro- rum	ason for your		ies of both Y					[7]	

TITONIHSEWS

The compound could be propanoic acid, methyl ethanoate or ethyl methanoate.

In the boxes provided, draw the structures of the three compounds.

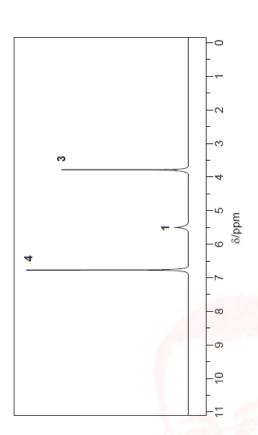
ethyl methano
methyl ethanoate
propanoic acid

anoate cury in (ii) Explain which compound produced the spectrum shown, indicating which protons are responsible for each of the peaks A and B.

	The NMR spectrum of another of the compounds has a peak at \$11.0. State which compound this would be, and identify the proton(s) responsible for this neak
V	s has a peak at δ11.0. Ŋ the proton(s) responsible fo
	or thi

. :	
- 1	
- 7	
-	
- 1	
:	
- 1	
- 2	
0	
2	
du	
Ē	
m	
omp	
:omp	
comp	
comp	
comp	

Topic: Chem 37 Q# 538/ ALvI Chemistry/2009/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org proton(s)


[4]

- This question is about the modern techniques of analysis which may be used to determine molecular structures. 2
- (c) NMR spectroscopy, in contrast to X-ray crystallography, is frequently used to examine protons in organic molecules.
- What feature of protons enables their detection by NMR spectroscopy?

[1]

The NMR spectrum below was obtained from a compound $\boldsymbol{X},$ $C_xH_yO_z.$ In the mass spectrum of the compound, the M : M+1 ratio was found to be 25:2. (iii)

Determine the values of x, y and z in the formula of X and deduce a possible structure for the compound, explaining how you arrive at your conclusion.

	:	:	:	1	
	:	:	:		:
				1	
	:	:		1	:
	:	:	:		:
	:	:			:
		:			:
:	:	:	:		:
	:	:	:	1	
				1	
	:	:	:		
	:	:	:		:
:	:	:	:		
	:	:	:		:
:	:	:	:	1	:
	:	:			
	:	:	:		:
	:	:	:	1	:
				1	
	:	:			
	:	:	:		:
	:	:	:	1	:
				1	
	:	:	:		:
	:	:			
				1	
	:	:	:		:
	:	:	:		:
				1	
:	:	:	:		:
	:	:	:		
	:	:	:		:
				1	
:	:	:	:		:
					:
	:	:	:	1	
				;	
				:	:
	:	:	:		
				1	
	:			:	

Possible structure of X

Patrick Brannac

[5]

Ð
E
Ð
4
с С
논
ਯ
5
~

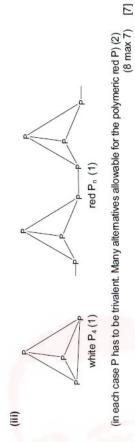
)					
Q# 1/ Topic:	Topic: Chem 1 ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	:015/w/TZ 1/Paper 4	./Q# 1/www.5	SmashingScience.org		
1 (a) Ca Ca	3s ² 3p ⁶ 4s ² and 3s ² 3p ⁶				-	
Q# 2/ Topic: Ch	Q# 2/ Topic: Chem 1 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	s/TZ 1/Paper 4/Q# 1/	www.Smashi	ingScience.org		Т
1 (a)	oxygen: $(1s^2) 2s^22p^4$ fluorine: $(1s^2) 2s^22p^5$				-	
Q# 3/ Topic: (Chem 2 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	021/m/TZ 2/Paper 4	1/Q# 2/www:	SmashingScience.org		T
2(a)(ii) 20 × [0.	$20 \times [0.9(+2) + 0.1(+3)] - 2x = 0$	∴ x = 21		-		
Q# 4/ Topic: Ch	Q# 4/ Topic: Chem 2 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	n/TZ 2/Paper 4/Q# 2	<u> //www.Smash</u>	ningScience.org		
2(b)(iii) 3SiF4	$3SiF_4 + 2H_2O \rightarrow 2H_2SiF_6 + SiO_2$				1	
Q# 5/ Topic: Ch	Q# 5/ Topic: Chem 2 ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	s/TZ 1/Paper 4/Q# 1/	/www.Smashi	ingScience.org		
1(a) 4Na(s	$4\text{Na(s)} + \text{O}_2(g) \rightarrow 2\text{Na}_2\text{O(s)}$					
balan	balanced with all formulae correct				1	
state	state symbols				1	
Q# 6/ Topic: Ch	Q# 6/ Topic: Chem 2 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	s/TZ 1/Paper 4/Q# 1/	/www.Smashi	ingScience.org		
1(b) giant ionic	ionic				-	
strong	strong bond / attraction between				-	
positi	positive and negative ions / anions and cations / Na* and O ²⁻ / oppositely charged ions	ations / Na* and O ²⁻ / oppos	itely charged ions	0		
Q# 7/ Topic: Ch	Q# 7/ Topic: Chem 2 ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	n/TZ 2/Paper 4/Q# 1	L/www.Smash	ningScience.org		
1 (a)	Increasing				2	
	energy	2p îî	←	† † †	1	
		2s 1↓	⋧	\$	Ľ	
				1	-	
		1s ↑↓	₹	1	-	
		carbon atom	C ⁺ ion	C ⁻ ion		
Q# 8/ Topic: Ch	chemistry,	<pre>w/TZ 1/Paper 4/Q# 6</pre>	i/www.Smash	ningScience.org	T	
6 (a) 4BF	$4BF_3 + 3NaBH_4 \rightarrow 2B_2H_6 + 3NaBF_4$				-	
Q# 9/ Topic: Ch (c) n(H ₂)	Q# 9/ Topic: Chem 2 ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (c) n(H ₂) = 8/24 = 0.33 mol	s/TZ 1/Paper 4/Q# 3,	/www.Smashi	ingScience.org	[1]	
from	from equation, this is produced from 0.22 mol of Al ecf ($ imes$ 2/3)	from 0.22 mol of Al	ecf (× 2/3)		[F]	
A _r (AI)	$A_t(Al) = 27$ thus mass of Al = $27 \times 0.22 = 5.9 - 6$ g hence 5.9–6.0% ecf (× 27)	' × 0.22 = 5.9 – 6 g l	nence 5.9-6.	0% ecf (× 27)	[1] [3]	
					[Total: 14]	
Q# 10/ Topic: C	emistry/2010	/w/TZ 1/Paper 4/Q#	4/www.Smas	shingScience.org		
(b) mole mole	moles of oxygen = 9.3/16 = moles of lead = 90.7/207	= 0.581 mol 7 = 0.438 mol <u>(both 3 s.f.)</u> (1)	th 3 s.f.) (1)			
so fc	so formula is Pb_3O_4 (1)				[2]	
					C	a second

Q# 11/ Topic: Chem 2 ALvl Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

(c) (i) any two from: brown fumes or vapour evolved / gas relights glowing splint / black solid formed (2)

(ii) $2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$ (1)

[Total: 11 max 10]


[3]

(2) Q# 12/ Topic: Chem 2 ALvl Chemistry/2010/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org Q# 13/ Topic: Chem 2 ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) (i) $2 \operatorname{Ca}_3(PO_4)_2 + 6 \operatorname{SiO}_2 + 10 \operatorname{C} \longrightarrow 1 \operatorname{P}_4 + 6 \operatorname{CaSiO}_3 + 10 \operatorname{CO}$

(ii)

ype of bonding	covalent	covalent
type of	COV	COV
type of structure	simple / molecular	giant / polymeric
allotrope	white	peu

(4)

Q# 14/ Topic: Chem 2 ALvl Chemistry/2009/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

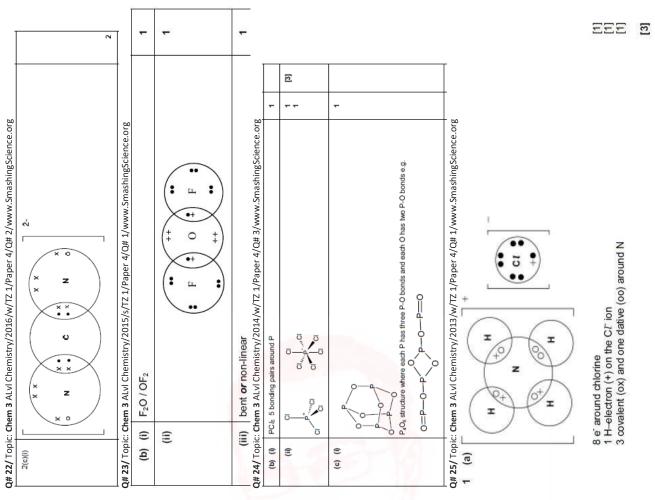
[Total: 11]

= 0.703 = 2.10 (d) (i) Ca = 28.2/40.1 C = 25.2/12 H = 1.4/1 O = 45.1/16

(1 mark for initial step of calc'n) = 1.4 = 2.82

[2]	[]]	[Total: 10]
(1)	(must be structural)	
formula is CaC ₃ H ₂ O ₄	malonic acid must be $C_2H_4O_4$, i.e. $CH_3(CO_2H)_2$	
	(II)	

Patrick Brannac


www.SmashingScience.org

Page **533** of **703**

Patrick Brannac

2			3		_	1	C	2	Ţ	1	1	6	1	1		1+1	1	-	-		*	-	1	+	City B
	M1: eight electrons around N atom [N=O, N-O, N-CI with N-O as dative]	# 17/ Topic: Chem 3 ALVI Chemistry/2019/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	M1 bond angle 104-105"	M2 explanation two ione pairs and two bonding pairs	#1 18/ Topic: Chem 3 ALVI Chemistry/2018/m/TZ 2/Paper 4/O# 3/www.SmashingScience.org			C: sp and N: sp angle 180*	# 19/ Topic: Chem 3 ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	N +2 to +3 (and oxidised)	Br ₂ /Br 0 to -1 (and reduced)		3 bonding pairs around N (in a structure involving NOBr)	rest of molecule correct	t# 20/ Topic: Chem 3 ALvl Chemistry/2017/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org	$H \begin{pmatrix} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	16 electrons on each diagram	HNC = 115-125° AND NCO = 180°	cyanic acid, because it's a stronger / higher bond enthalpy / triple / C≡N / more electrons involved bond	# 21/ Topic: Chem 3 ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org		bond angle = 109.5	SiO2	SiO ₂ is giant covalent/molecular but SiCL4 is simple molecular/covalent	www.SmashineScience.org Patrick Brannac Page 535 of 703
2(a)		# 17/To	2(d)		# 18/To	3(a)(ii)		3(a)(iii)	# 19/ To	1(a)		1(b)			# 20/ To	2(a)(i)		2(a)(ii)	2(a)(iii)	# 21/To	1(a)(iii)		1(a)(iv)		

Page **536** of **703**

Patrick Brannac

www.SmashingScience.org

	[2]		[2]	[1] [8]	[1]	[2]	[1]	:	[2]	2		2	-] -	-		-	-		-		-	-		-	C S S S S S S S S S S S S S S S S S S S
Q# 35/ Topic: Chem 5 ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (iii) H-H = 436 CLC1= 244 H-C1 = 431	$\Delta H = 436 + 244 - 2(431) = -182 \text{ kJ mol}^{-1}$	H-H = 436 Br-Br= 193 H-Br = 366	$\Delta H = 436 + 193 - 2(366) = -103 \text{ kJ mol}^{-1}$	(iv) H-Br bond is weaker than the H-C/ bond – allow converse.	(b) (i) light	(ii) bonds broken = C-H & I-I = $410 + 151 = 561$ bonds made = C-I & H-I = $240 + 299 = 539$ ΔH = $551 - 539 = +22$ kJ mol ¹	(iii) The overall reaction is endothermic or no strong bonds/only weak bonds are formed or high E _{act}	Q# 36/ Topic: Chem 5 ALvl Chemistry/2010/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org (b) bond energies: S-S = 264 kJ mol ⁻¹ CI-CI = 244 kJ mol ⁻¹ S-CI = 250 kJ mol ⁻¹	$\Delta H = 8 \times 264 + 8 \times 244 - 16 \times 250 = +64 \text{ kJ mol}^{-1} (2)$	Q# 37/ Topic: Chem 6 ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1(a)(0) oxidising agent [1] H_A-2+20+2+3+-37-34-0-1, [1]	Q# 38/ Topic: Chem 6 ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	1(c)(i) M1: moles of thiosulfate = 0.02230 × 0.150 = 3.345 × 10 ⁻³ M2: fCue*1 = 2 × 1/5 × 3.345 × 10 ⁻³ + 0.0250 = 0.134 (mol dm ⁻²) ecf	1(c)(ii) starch	Q# 39/ Topic: Chem 6 ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	$S(b)(iii)$ step 2 and Cf is reduced / oxid no. decreases / oxid no. +1 \rightarrow -1 or	step 2 and 1 is oxidised / oxid no. increases / oxid no. $-1 \rightarrow +1$ Q# 40/ Topic: Chem 6 ALvi Chemistry/2017/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org	1(a) N +2 to +3 (and oxidised)	Br ₂ /Br 0 to -1 (and reduced)	Q# $41/$ Topic: Chem 7 ALvI Chemistry/2019/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org	4(e) $CH_3 NH_2 + H_2 O \Rightarrow CH_3 NH_3^* + OH^-$	Q# 42/ Topic: Chem 7 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	6(b)(i) ketamine is acting as a base	B(b)(ii) carbonyl group	Topic	(b) Ca(OH)₂ + 2HNO₃ → Ca(NO₃)ἑ + 2H₂O or CaO + 2HNO₂ → Ca(NO₃)ἑ + H₂O	<u> </u>
[1]	[1]	[1]			[1]	[1]	(1)	(1) [3] [Total: 8]	EE	[1]	IN	ΞΞ	[1]	orf [1]		Ξ		[2]	5	[7]	[1]	Ξ.	= =			IT I DIMINISTANS
Q# 26/ Topic: Chem 3 ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (i) volatilities decrease down the group	due to greater van der Waals (VDW) forces (intermolecular is not sufficient)	due to larger no of electrons	Q# 2// Topic: Chem 3 ALVI Chemistry/2012/5/12.1/Paper 4/Q# 2/www.SmashingScience.org 2. (a) (i)		Q# 28/ Topic: Chem 3 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.5mashingScience.org	 (a) N=N triple bond is (very) strong or the N₂ molecule has no polarity Q# 29/ Topic: Chem 3 ALvI Chemistry/2010/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org (A) (i) 	$C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$		1 (a) CO ₂ is a gas (at room temperature); SiO ₂ is a high melting solid CO ₂ : simple / discrete molecular / covalent	SiO ₂ : giant covalent or macromolecular / giant molecular	Q# 31/ Topic: Chem 5 ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	 (a) (up energy drange) when 1 more or bornes is broken in the gas phase Q# 32/ Topic: Chem 5 ALvl Chemistry/2013/w/T2 1/Paper 4/Q# 4/www.SmashingScience.org 	(iii) $\Delta H = E(G-H) - E(H-GI) = 410 - 431 = -21 \text{ kJ mol}^{1}$	$(iv) AH = F(C-H) - F(H-I) = 410 - 299 = +111 k I mor^{1}$	itiva or radiliras anarov	Q# 33/ Topic: Chem 5 ALvl Chemistry/2012/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org	(c) bonds broken are Si-Si and $CFCI = 222 + 244 = 466$ kJ mo Γ^1	00103 10111190 are z × 31-0/1 = z × 333 = 7 10 KJ 11101 ΔH = <u>-252</u> kJ mol ⁷¹		0# 34/ Tonic: Chem 5 Al v Chemistrv/2012/s/T71/Paner 4/0# 2/www SmashingScience org			(iv) -180 = 2 E(NO) - 994 - 496 F(NO) = +655 k,1 mol ⁻¹			<u>www.SmashingScience.org</u> Patrick Brannac Page 537 of 703

		-	7		[1]	[1]	ΞΞ	[4]	ΞΞ	[3]	[Total: 12]	ΞE	Ξ	[1]	[H]	E	EE		[1]		[1]	in (ii) [1]		[Total: 10]	1	[2]	SMASHING
nce.org				nce.org				ce.org				0		č	1							ecf from structure in (ii) [1]		Ē			Page 540 of 703
Q# 49/ Topic: Chem 9 ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) Na Mg At Si P S Ct At	0 1 2 3 2 1 0 while solid/ppt or misty/while /steamy furmes pH 0–3 <	es pH 03		Q# 50/ Topic: Chem 9 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	te/steamy tumes	\rightarrow SiO ₂ + 4HC <i>I</i>	te/steamy fumes → H ₃ PO₄ + 5HC <i>l</i>	Q# 51/ Topic: Chem 9 ALvl Chemistry/2012/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org	Na ₂ O(s) + H ₂ O(aql) \longrightarrow 2NaOH(aq) MgO(s) + H ₂ O(aql) \longrightarrow Mg(OH) ₂ (s) or Mg(OH) ₂ (aq)	uu o-10.5 [Mg(OH)2] respectively	0# 5/1 Troid: Chem 9 At vI Chemistro/2011/6/TZ 1/Paner 4/0# 3/www. SmashingScience org	(+)1; (+)2; (+)4; (+)4 (+)1; (+)2; (+)4 (+)1; (+)2; (+)4 (+)1; (+)2; (+)4 (+)4 (+)2; (+)4 (+)4 (+)4 (+)2; (+)4 (+)4 (+)4 (+)2; (+)4 (+)4 (+)4 (+)2; (+)2; (+)4 (+)4 (+)2; (+)2; (+)4 (+)2; (+)4 (+)2; (+)4 (+)2; (+)4 (+)2; (+)2; (+)4 (+)2; (+)2; (+)4 (+)2; (+)2; (+)4 (+)2; (+)2; (+)4 (+)2; (+)2; (+)2 (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2; (+)2 (+)2; (+)2) (+)2; (+)2 (+)2; (+)2 (+)2; (+)2) (+)2; (+)2) (+)2; (+)2; (+)2) (+)2; (+)		(\rightarrow narout arrow or role tango \rightarrow nros tand hydrolysis: PCl ₆ + H ₂ O \rightarrow POCl ₆ + 2HCl)	Cl = 69.6/35.5 = 1.96	Thus E.F = PCt ₂ M ₄ (PCt ₂) = 102, so 2 × PCt ₂ = 204 ≈ 200, so M.F. = P₂Ct₄	ō	(ignore lone pairs on Cl)	G		(HO) ₂ P-P(OH)2 or H(HO)P(=O)-P(=O)(OH)H Allow HO-P-OH or HO-P=O	T		Q# 53/ Topic: Chem 9 ALVI Chemistry/2010/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) $PCI_6 + 4H_2O \rightarrow H_3PO_4 + 5HCI (1)$	\rightarrow SiO ₂ + 4HCl (or giving H ₂ SiO ₃ , Si(OH) ₄ etc.) (1)	Patrick Brannac
Q# 49/ Topic: Chem 9 ALvl Chemistry/2 2 (a) (b) AI Si	1 0 1 2 (b) (i) SiCL, while solid/ppt or misty/	(II) SICL		Q# 50/ Topic: Chem 9 ALvl Chemistry/	1 (a) SiCl4: white solid or white/steamy fumes	$SiCl_4 + 2H_2O \longrightarrow SiC$	PCI ₆ : fizzes or white/steamy fumes PCI ₆ + $4H_2O \longrightarrow H_3PO_4 + 5HCI$	Q# 51/ Topic: Chem 9 ALvl Chemistry/	(d) Na ₂ O(s) + H ₂ O(aq/l) - MgO(s) + H ₂ O(aq/l) -	PH 12.3-14 [NAUH] AI	O# 57/Tonic: Chem 9 Al vl Chemistry/	3 (a) (+)1; (+)2; (+)3; (+)4 ON corresponds to the		(b) PCIs fizzes or white/misty furnes or heat evolved	(allow partial hydrolysis: PCl ₆ + H₂O	(c) (i) $P = 30.4/31 = 0.98$	Thus E.F = PCI_2 $M_i(PCI_2) = 102$, so 2	(ii)		G	(iii) O.N. = (+)2	(iv) (HO) ₂ P-P(OH) ₂ or H(HO)P Allow HO-P-OH or HO-P=O			Q# 53/ Topic: Chem 9 ALvl Chemistry/2010/w/T2 1 1 (a) $PCI_6 + 4H_2O \rightarrow H_3PO_4 + 5HCI (1)$	$SiCl_4 + 2H_2O \rightarrow SiO_2 +$	www.SmashingScience.org
[2]	[1]	ITotal: 161		E	[1]	[1]	[1]	[4]	[1]	[1]	III	3	12	EE	[1]	[4]		[1]	hange [1]	[2]	[1]	ncentrations	[1]		-	G	LI I BNINSYMS
ngScience.org	n (c)(i))									ngScience.org						of all species do not c		ngScience.org	same time, but the co		mashingScience.org			Page 539 of 703
Q# 44/ Topic: Chem 7 ALVI Chemistry/2014/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (c) (i) $\Delta H^{P} = +2 \times 33.2 - 157.3 + 302.9 = (+) 212 kJmol-1 ecf$	$\Delta H^{\sigma} = -168.6 + 2 \times 157.3 = (+)146$ kJ mol ⁻¹ allow ecf from (c)(i) high T/temperature since ΔH is positive/endothermic		Q# 45/ Topic: Chem 7 ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org	9			04 are insoluble		anure	washing powder/detergents/fertilisers/animal manure	growth/production of algae/weeds/plants or entronhication		Q# 46/ Topic: Chem 7 ALvl Chemistry/2013/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org	\rightarrow CH ₃ OH ₂ ⁺ + Z	→ NH ₂ + BH → CH ₃ O + BH		:	a reaction that can go in either direction	rate of forward = rate of backward reaction or forward/back reactions occurring but concentrations of all species do not change		Q# 47/ Topic: Chem 7 ALvl Chemistry/2011/s/T21/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) One that can go in either cline-clion	both forward & reverse reactions are going on at the same time, but the concentrations	of all species do not change (owtte) or rate of forward = rate of backward reaction	0# 48/ I opic: Chem 9 ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org			Patrick Brannac
Q# 44/ Topic: Chem 7 ALvl Chemistry/ (c) (i) $\Delta H^{\circ} = +2 \times 33.2 - 157$	(ii) $\Delta H^{\sigma} = -168.6 + 2 \times 1$ high T/temperature si		Q# 45/ Topic: Chem 7 ALvl Chemistry/	8 (a) (i) (nitrates are) soluble	(ii) $Ba^{(2+)}$ and $Pb^{(2+)}$	SO4 ⁽²⁻⁾	BaCO ₃ /PbCO ₃ /CaSO ₄ are insoluble		(b) (i) fertilisers/animal manure	(ii) washing powder/de	(iii) growth/production o		Q# 46/ Topic: Chem 7 ALvl Chemistry,	CH ₃ OH + HZ	(ii) NH ₃ + B ⁻ → CH ₃ OH + B ⁻ →			(b) (i) a reaction that can	 (ii) rate of forward = ra or forward/back rea 		Q# 47/ Topic: Chem 7 ALvl Chemistry/ 2 (a) (i) One that can do in	(ii) both forward & rev	of all species do not change (owtte) or rate of forward = rate of backwar	Q# 48/ lopic: Chem 9 ALvi Chen	1(a)(a) SIC4 + 4H2O → Si(OH¼ + 4HC/		<u>www.Smashing</u> Science.org

[2]

Q# 54/ Top 1 (a)	Q# 54/ Topic: Chem 9 ALvI Chemistry/2010/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) P: burns with white / yellow flame or copious white smoke / fumes prov	hem 9 ALvI Chemistry/2010/s/TZ 1/Paper 4/O# 1/www.5mashingScience.org burns with white / yellow flame or copious white smoke / fumes produced	luced (1)	-
	4P (or P_4) + 5 $O_2 \longrightarrow P_4O_{10}$		(1)	0
	S: burns with blue flame / choking / pungent gas produced	/ pungent gas produced	(1)	•
Q# 55/ Top (c)	S + O ₂ → SO ₂ Q# 55/ Topic: Chem 9 ALvl Chemistry/2009/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org (c) (i) amphoteric	aper 4/Q# 1/www.SmashingScience.or	(1)	[4] [1]
	(ii) 2NaOH + PbO \longrightarrow Na ₂ PbO ₂ (or NaOH + PbO + H ₂ O \longrightarrow	D ₂ + H ₂ O → NaPb(OH) ₃ etc.)		[1]
Q# 56/ T 2(b)(i)	2# 56/ Topic: Chem 10 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2b/0	v/TZ 1/Paper 4/Q# 2/www.SmashingScie	nce.org	2 -
Q# 57/ Top 6(a)(i)	0# 57/ Topic: Chem 10 ALvl Chemistry/2019/w/TZ 1/Paper 4/O# 6/www.SmashingScience.org 68(0) Mg(0) - Mgr(0) + e ⁻	/Paper 4/Q# 6/www.SmashingScience.o	<u> </u>	-
6(a)(ii)	$Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq) + H_2(g)$			-
6(a)(iii)	more reactive and easier to ionise down the group OR more reactive and ionisation energies decrease down the group	m the aroup		-
6(b)(i)	brown gas and white solid		8	+
6(b)(ii)	2Ca(NO ₃) ₂ → 2CaO + 4NO ₂ + O ₂			-
Q# 58/ Tol	Q# 58/ Topic: Chem 10 ALvI Chemistry/2018/s/TZ1/Paper 4/Q# 4/www.SmashingScience.org	Paper 4/Q# 4/www.SmashingScience.or		[]
4(a)	calcium – red flame			1
	barium – green flame			+
4(c)	the gas is colourless / looks like air / cannot be seen			-
	appearance of solid doesn't change / white solid becomes white solid	mes white solid		-
Q# 59/ Tol	Q# 59/ Topic: Chem 10 ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	/Paper 4/Q# 1/www.SmashingScience.o	.8	
1(b)(i)	2A(NO ₃)₂ → 2AO + 4NO₂ + O₂ correct formula balanced equation			2
1(b)(ii)	giant ionic			-
Q# 60/ T	Topic: Chem 11 ALvI Chemistry/2021/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org	n/TZ 2/Paper 4/Q# 3/www.SmashingScie	nce.org	
3(b)	$3I_2 + 6NaOH \rightarrow NaIO_3 + 5NaI + 3H_2O$		-	
Q# 61/ Tol	Q# 61/ Topic: Chem 11 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	/Paper 4/Q# 2/www.SmashingScience.o	۵۵	
(p)	Ag <i>Cl</i> white AgBr cream AgI yellow			EEE
	Solubility decreases down the group			[1]
				[4]
Q# 62/ Top 1 (a)	Q# 62/ Topic: Chem 11 ALvl Chemistry/2011/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org 1 (a) (i) <i>either</i> burn <i>or</i> shine light/uv on mixture of $H_2 + C_{12}$ but NOT heat	nem 11 ALvl Chemistry/2011/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.or <i>either</i> burn <i>or</i> shine light/uv on mixture of $H_2 + C_{12}$ <i>but</i> NOT heat	50	[1]
	 red/orange/brown colour of bromine decolourises/disappears steamy/misty/white fumes produced 	nine decolourises/disappears uced		5
	container gets warm/not			7
www.	www. Smashing Science.org	Patrick Brannac Page	Page 541 of 703	LI I BNIHSYMS

c: Chem 12 ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org	any one of:
Гор	(E)
(# 63/ T	(c)
Q# 63/ 1	

H ₂ SO ₄
Î
3 + H ₂ (
os pu
SO ₃ ar
↓2
+ 02-
2SO ₂

H ₂ SO ₄
Î
+ H ₂ 0
and SO ₃ +
and
ON +
SO3 + 1
5
+ NO2
or SO ₂ + 1

[1]	Ξ	[2]	[Total: 9]	ΞΞ		[1]	[1]	[1]	[1]	[1]	[1]	[1]
or SO ₂ + $\frac{1}{2}$ O ₂ + H ₂ O \longrightarrow H ₂ SO ₄	(ii) roasting sulfide ores/extraction of metals from sulfide ores			Q# 64/ Topic: Chem 12 ALvI Chemistry/2013/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) (due to the) strong N≡N bond	(b) (i) Any balanced equation forming a stable nitrogen oxide e.g. $N_2 + O_2 \longrightarrow 2NO$	$N_2 + 2O_2 \longrightarrow 2NO_2$	(ii) in lightning	in an engine/combustion of fuels (or a specific example)	(iii) (NO _x produces) acid rain or forms (photochemical) smog	Q# 65/ Topic: Chem 12 ALvI Chemistry/2012/s/TZ 1/Paper 4/O# 2/www.SmashingScience.org (iii) (formation of NO is endothermic) so high T and equilibrium pushed over to NO side. or high T and needed to break N-N bond in N ₂	Q# 66/ Topic: Chem 12 ALVI Chemistry/2011/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) $N_2 + 2O_2 \rightarrow 2NO_2$ (or via NO) or $2NO + O_2 \rightarrow 2NO_2$	(b) (i) catalytic converter and passing the exhaust gases over a catalyst/Pt/Rh

Q# 66/ Topic: Chem 12 ALvI Chemistry/2011/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org 4 (a) $N_2 + 2O_2 \rightarrow 2NO_2$ (or via NO) or 2NO + $O_2 \rightarrow 2NO_2$	(b) (i) catalytic converter and passing the exhaust gases over a catalyst/Pt/Rh	(ii) NO ₂ + 2CO \rightarrow ½ N ₂ + 2CO ₂ or similar Allow 2NO ₂ + CH ₄ \rightarrow CO ₂ + N ₂ + 2H ₂ O	

[1]

Page **542** of **703**

Patrick Brannac

Q# 67/ Topic: Chem 12 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (a) N=N triple bond is (very) strong or the N₂ molecule has no polarity -

E

- $\Delta H_1 = 3 \times 148 + 3 \times 2186 = 7002$ $\Delta H_2 = 994 + 2 \times 2148 = 5290$ $\begin{array}{l} 3Mg(s) \rightarrow \ 3Mg^{2^{4}}(g) \\ N_{2}(g) \rightarrow \ 2N^{3^{-}}(g) \end{array}$ (q)
- (-[1] for each error) [3] LE = $-\Delta H_1 - \Delta H_2 - 461 = -12,753 (kJ mol^{-1})$
- - (c) (i) $L_{1_3}N + 3H_2O \rightarrow NH_3 + 3LiOH$ (balanced equation)

Ξ

- Ξ no high pressure/temperature/catalyst needed/standard conditions used Li is expensive disadvantage: (ii) advantage:
 - or LiOH by-product is corrosive/strongly basic or this would be a batch, rather than continuous process or Li would need to be recycled/removed

-

ΞΞ

E

E

- Li₃N: $100 \times 14/35 = 40\%$ N urea: $100 \times 28/60 = 47\%$ N (i) (p)
- amide (11)
- $or \rightarrow \text{ NH}_2\text{CO}_2\text{H} + \text{NH}_3$ (iii) $NH_2CONH_2 + H_2O \rightarrow 2NH_3 + CO_2$
- or NH₂CONH₂ + 2H₂O → 2NH₃ + H₂CO₃
- or would 'burn' the crops/reduce plant growth/stunt plants or would contaminate the environment The LiOH would be strongly alkaline or would increase the pH of the soil (iv)

[Total: 12]

E

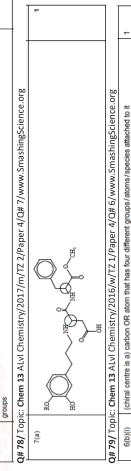
Q# 68/ Topic: Chem 13 ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

Q# 69/ Topic: Chem 13 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 4/www.SmashingScience.org Q# 70/ Topic: Chem 13 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 4(a)(ii) 0 (zero) in F AND 2 (two) in J 00H 5(b)(iii) 7(c)(i)

Q# 71/ Topic: Chem 13 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org 7(c)(vii) Asterisk on *CHCO₂H Ť

www.SmashingScience.org

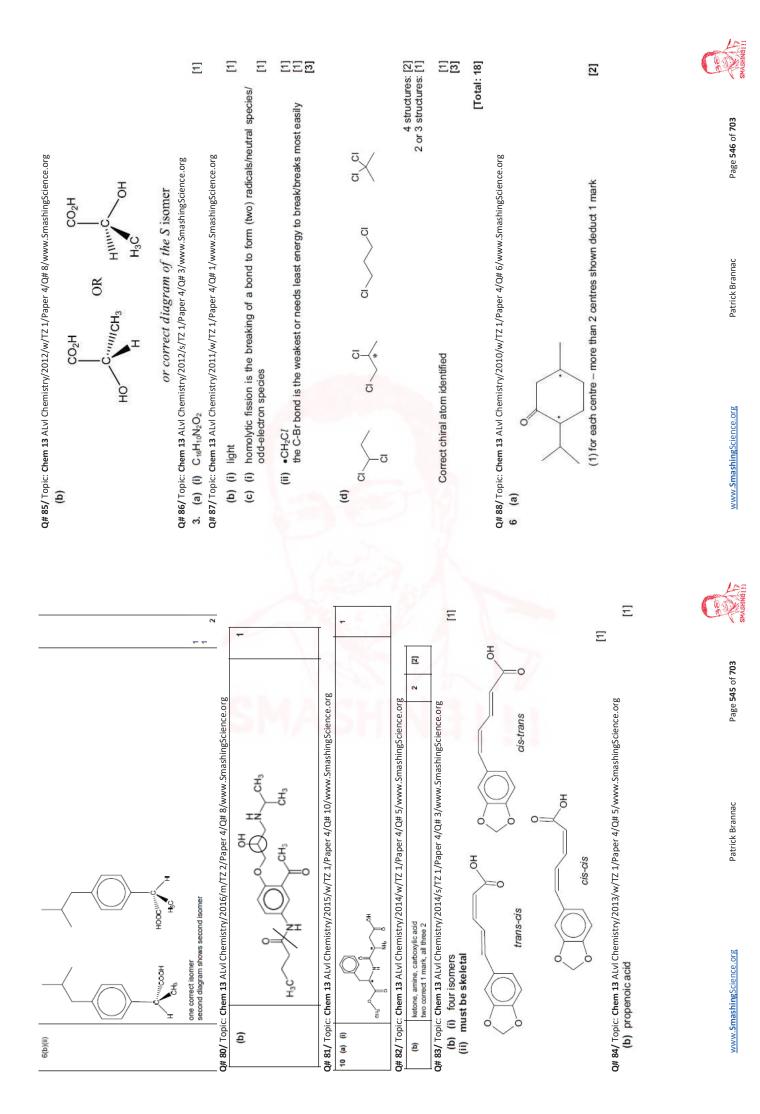
Patrick Brannac


Page 543 of 703

A SHAREN

www.SmashingScience.org

optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C* indicated or C with 4 different Q# 73/ Topic: Chem 13 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org Q# 72/ Topic: Chem 13 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org Q# 76/ Topic: Chem 13 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org Q# 74/ Topic: Chem 13 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org Q# 77/ Topic: Chem 13 ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org Q# 75/ Topic: Chem 13 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org this is a (carbon) atom which has four different atoms or groups attached to it g s of 2-aminopropanoic acid [1] ĕ labelled only C₁₅H₂₂O₄ HOOC correct chiral centre AND yes, as it has a chiral C atom CH3CH2CH(CH3)COOH 3D, tetrahedral, both HOOC C₆H₁₁O₃N optical [1] ù T 8(e)(j) 8(e)(jj) 4(a)(i) 10(b)(ii) (q)6 9(a) 8(a) 8(c)


~

6(b)(i) (chiral centre is a) carbon OR atom that has four different groups/atoms/species attached to it

Page 544 of 703

ij	(iii)	C is CH ₂ =CHCH ₂ CH ₃ CH ₃	۲
		D and E are $CH_3CH=CHCH_2CH_3$ (one shown as cis, the other as trans)	-
		F is CH ₃ CH ₂ CH ₂ CO ₂ H	-
		G is CH ₃ CO ₂ H	
		H is CH ₃ CH ₂ CO ₂ H	
(i	(iv)	geometrical or cis-trans or E–Z	-
(q)	(i)	No particular conditions or in the dark	-
-	(ii)	electrophilic addition	-
æ	(III)	CHOCH	
			-
3		Sr Br	-
			[Total: 10]
Q# 94/ Topi	oic: Cl	44/Topic: Chem 14 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 10/www.SmashingScience.org	_
10 (a)	(i)	any three of the following structures CH ₃ CH ₂ CH ₅ CH ₃ CH=CH ₂ CH ₃ C=CH CH ₂ =C=CH ₂ H ₂ C H ₂ C=CH ₂	7
	(ii)	K since it has the greatest % of hydrocarbons/ carbon-containing compounds or 99.6 % of it is burnt for energy	÷
i)	(III)	any two f rom • reacted with lime/CaO/soda lime/Ca(OH) ₂ /KOH/NaOH/ • liquefied under pressure/≥5 atm • dissolved in water under pressure/≥5 atm	2
(q)	Ξ	have a shorter carbon /hydrocarbon chain or shorter hydrocarbon or fewer carbon atoms in its chain or have high H/C ratio	÷
`	(ii)	Coal	-
www.Sr	masl	www.SmashingScience.org Patrick Brannac Page 548 of 703	Ceq

n	-	F0	-	2	7				<	e	ļ	2			-	1	1		1	-
т Ц Ц Ц Ц	major product is) formed via the most stable tertiary carbocation / intermediate DR tertiary halogenoalkane formed via more stable carbocation / intermediate	ic: Chem 14 ALVI Chemistry/2017/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org dehydration/elimination	heat with Ai ₂ O ₅ OR heat with H ₃ PO ₄ /H ₂ SO ₄			c: Chem 14 ALvl Chemistry/2015/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org	(electrophilic) addition	H ₅	CH3	any four of M1: e-bonds between C–C or C–H	M2: <i>π</i> -bonds formed from overlap of p-orbitals	M3: (a-bondslelectrons) above and below the ring M4:bondslelectrons are delocalised	M5: bond angle 120°	M8: intermediate C-C bond length/all C-C same length/strength M7: carbons are sp ² hybridised	c: Chem 14 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	(i) heat with catalyst or heat with Al ₂ O ₃ /SiO ₂		ic: Chem 14 ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	(i) heat with catalyst or heat with $A_{\rm E}O_3/SiO_2$	(ii) B is CH ₃ CH ₃ CH ₃

Page **547** of **703**

Patrick Brannac

t of SO ₂ t of SO ₂ ount of SO ₂ and NO ₂ (from F to I) (c-X bond energy) decreases/becomes weaker (from F to I) [1]	1 due to bond becoming longer/not such efficient orbital overlap [1]	ning (ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive or references to Hb and ability to carry oxygen 1 (answer must imply that it is from F to I) [1]	1 (e) (i) light/UV/hv or 300°C [3] [1]	(free) radical substitution	(ii) (iiie) faultation substitution (iii) $C_{l_{2}} \longrightarrow 2Ct^{*}$	$CH_{3}CH_{2}^{*} + CI_{2} \longrightarrow CH_{3}CH_{2}CI + CI^{*} $ $CH_{3}CH_{2}^{*} + CI^{*} \longrightarrow CH_{3}CH_{2}CI + CI^{*} $ $[1]$			(c) No, it wouldn't be reduced. Because the reaction in (a) does not presuppose a particular fuel Q# 100/ Topic: Chem 15 ALVI Chemistry/2010/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org		>	-	1 U# 101/10ptc; Cheffi 1b ALVI Chemistry/2020/m/12 2/Paper 4/Q# 6/www.SmashingScience.org 1 e(a)(0) 1 (chajschefningschefningscience.org)			te formed, because: DH ⁻ can approach from top or bottom or from any direction Q# 102/ Topic: Chem 16 ALVI Chemistry/2018/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	fixed direction / from same side / the "configuration" always inverts / 7(a) $2C_3H_2OH + 2Na \rightarrow 2C_3H_2ONa + H_2$ 1	Dame #10# 1/unuu Emethingerionee and Dame #103/ Topic: Chem 16 ALvl Chemistry/2017/m/T2 2/Paper 4/Q# 8/www.SmashingScience.org	r aper +/ c# +/ www.bitabilitigscience.org	Q# 104/ Topic: Chem 17 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org		Topic: C	+	
produces the largest amount of SO ₂ or largest combined amount of SO ₂ and NO ₂	(iii) they burn at higher temperatures	or release more neat on burning (iv) CO – the gas is toxic/poisonous or references to Hb and ability to carry oxygen	CO_2 – the gas contributes to global warming		95/ Topic: Chem 14 ALvl Chemistry/2014/s/T21/Paper 4/Q# 3/www.SmashingScience.org	O CO2H	+ CO ₂ or HO ₂ C-CO ₂ H	[1] Q# 96/ Topic: Chem 14 ALVI Chemistry/2011/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org	No, it wouldn't be reduced. Because the reaction in	Allow formed from N ₂ and O ₂ in air during combustion O# 97/T opic: Chem 15 ALvI Chemistry/2017/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org		HO	C-CI dipole and first curly arrow intermediate cation	OH ⁻ with lone pair and curly arrow	Beginning with candidate's mechanism in (c)(i):	If S _{x1} : racemate/ mixture of two optical isomers will be formed, because: the intermediate is planar / has a plane of symmetry / OH ⁻ can approach from top or bottom or from any direction	If S _M 2: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an assummetric transition state	0# 00/ Train: Cham 15 Alul Chamistra (2015/u/T7 1/Banar A/O# A/uuuu Smaching Cianar are		M1: upore of control M2: curty arrow breaking C-C/bond	M3: curly arrow from the oxygen on -OH (tone pair needs to be shown) to carbon in CCl bond and Cl- (ion) formed in the mechanism	0 1 1		H H L L

Patrick Brannac

www.SmashingScience.org

Page **549** of **703**

www.SmashingScience.org

Patrick Brannac

CH2 CHO

CH₂

Page **550** of **703**

LI I BUNHSY

Q# 106/ Top	oic: Chem 17 ALvl Chen	nistry/2015/w/TZ 1/Paper	r 4/Q# 6/w	Q# 106/ Topic: Chem 17 ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	
ବ	(11) dipoles (M1)				ę
	- H:				
	 both curry arrows (M2) arrow <u>must</u> come from lone pair 	e pair			
0# 107/ Top (b) (i	(b) (i) reduction or redox	Q# 107/ Topic: Chem 17 ALvI Chemistry/2012/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org (b) (i) reduction or redox	4/Q# 3/w	ww.SmashingScience.org	[1]
(j	(ii) NaBH4 or LiA/H4 (NOT H2 + Ni)	4 (NOT H ₂ + Ni)			[1]
Q# 108/ Top 6 (a) (i)	oic: Chem 17 ALvl Cher aqueous alkaline	 Q# 108/ Topic: Chem 17 ALVI Chemistry/2011/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org (a) (i) aqueous alkaline iodine or I₂ + OH⁻(aq) allow NaCiO + KI 	4/Q# 6/w	ww.SmashingScience.org	Ξ
(ii)	(ii) CH ₃ CO- or CH ₃ CH(OH)-	-(HO)HC			[1]
(iii) Q# 109/ Top 6 (a) (i)	(iii) Pale yellow ppt. or antiseptic smell Topic: Chem 17 ALvl Chemistry/2011/s/T2 $1/P_2$ (i) aqueous alkaline iodine or $I_2 + OH^2$	 (iii) Pale yellow ppt. or antiseptic smell Q# 109/ Topic: Chem 17 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) (i) aqueous alkaline iodine or I2 + OH⁻(aq) allow NaCiO + KI 	4/Q# 6/w allow h	ww.SmashingScience.org	ΞΞ
(II)	(ii) CH ₃ CO- or CH ₃ CH(OH)-	CH(OH)-			[1]
(III)) Pale yellow ppt.	Pale yellow ppt. or antiseptic smell			[1]
(iv)					
		compound	result		
		CH ₃ OH	×		
		CH ₃ CH ₂ OH	Ľ		
		CH ₃ CHO	×		
		CH ₃ CO ₂ H	×		

or o	Q# 112/ Topic: C 9 (a) (i) (√ (II)	Q# 113/ Topi	9(d)(i) relativ	9(d)(ii) CH ₃ CH	Q# 114/ Topic: C [Cannot see whe	4(d)(i) x = 14. 13 carb	4(d)(ii) (250 -)	Q# 115/ Topic: C	9(d) C ₆ H ₄ NF Q# 116/ Topic: C 8(a)(i) no. of	8(a)(ii) M1: C ₂ H ₅ O	M2: C	Q# 117/ Topic: C	$\theta(b)(iii) = (10$	6(b)(iv) the rati	B(b)(v) relative	6(b)(vi) C13H16NOCI	Q# 118/ Topic: C	1(b)(i) ³⁷ Cl and ⁸¹ Br	1(b)(ii) M peak M+2 peak M+4 peak two correct all 3 correct
compusion would produce horry downs as a pollucant nylon/acrylic Combustion would produce HCN	Q# 112/ Topic: Chem 20 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org 9 (a) (i) One	(ii) Any alkene (or allow a cyclic amide, as in caprolactam)	Topic: Chem 22 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	relative abundance = 2 carbons × 1.1 × 0.52 = 1.36 / 1.4 [1] min 2st	CH ₃ CH ₂ * / C ₂ H ₅ * [1]	Q# 114/ Topic: Chem 22 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org [Cannot see where mark 2 in 4(d)(i) should be given; but it is 2 marks in the question paper]	x = 14.4/100 × 100/1.1 = 13.1 13 carbon atoms (some working required)	(250 – 205 = 45, so) CO ₂ H / C ₂ H ₅ O	Q# 115/ Topic: Chem 22 ALvl Chemistry/2019/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	9(d) CeHuN+2 and CH3CH3CH3CH5 [1] Q# 116/ Topic: Chem 22 ALVI Chemistry/2019/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 0 No. of remons = 100 × 125/122.65 × 11) (= 5.02)	0 ⁹	M2: $C_{3}H_{5}O^{+}$ (positive sign required for m / $e = 57$ fragment)	Q# 117/ Topic: Chem 22 ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	n = (100/1.1) x (14.3/100) = 13.0 OR n = (14.3/1.1) = 13.0	the ratio of the (M-M+2) peaks is 3:1 AND halogen is chlorine / C1	relative abundance = 14.3 / 3 = 4.77 (4.8) OR RA = 14.3 × 33.3 / 100 = 4.76 (4.8)	1001	Topic: Chem 22 ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	⁸ 1Br	M peak CH ₂ ³⁶ CP ¹⁸ Br M*2 peak CH ₂ ³² CP ¹⁸ Br M*2 peak CH ₂ ³² CP ¹⁸ Br We correct scores 1 mark all 3 correct scores 2 marks

2

ΞΞ

Q# 111/ Topic: Chem 20 ALvl Chemistry/2011/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org

(c) PVC Combustion would produce HCl/ dioxins as a pollutant

[]]

5 E

> A SHARE A Page 551 of 703 Q# 110/ Topic: Chem 20 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 5/www.SmashingScience.org 8 Patrick Brannac З www.SmashingScience.org addition (polymerisation) 5(b)

Q# 119/ Topic: Chem 22 ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

(28 × 0.922) + (29 × 0.047) + (30 × 0.031) = 28.11

1(a)(i)

• · • · • · [3]

5

P-COCH₃

×

1 CHO

Patrick Brannac

www.SmashingScience.org

Page 552 of 703

Q# 120/ Topic: Chem 22 ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

_

1 (total must add up to 100 %)	Science.org	[5 max 4] [5 max 4] [Total: 10] cience.org	(answer + working) [1] as Br and 3 C atoms then ecf from (ii) [1] [1] 2 × [1] [Total: 10]
relative abundance 78–79 10 12–11 (total must	$\begin{array}{ c $	(ii) $m/e = 15$ Species = CH ₃ ⁺ Q# 123/ Topic: Chem 22 ALvI Chemistry/2011/s/T2 1/Paper 4/Q# 8/www.5mashingScience.org (c) (i) X is bromine – M and (M+2) peaks almost same height (ii) $\frac{M}{M+1} = \frac{100}{0.3} \times \frac{9}{0.3} = 1.1 \times n$ Hence $n = \frac{100 \times 0.3}{0.3} = 3.03$ $p = 3$	1.1×9 (If the mass peak is at 122 and the compound contains $Q = (122 - 79 - 36)$) thus $Q = 7$ (The compound is $C_3H_3R_1$) (R is at m/e 43), hence $C_3H_7^+$ (R is at m/e 43), hence $C_3H_7^+$ two from H ₂ , H ₂ O, CO, C ₂ H ₄ , C ₂ H ₂ , CH ₄
isotope abun ²⁴ Mg 78 ²⁵ Mg 78	 ii) e.g. 0.78x24 + 0.10x25 + 0.12x26 = 24.34 ic: Chem 22 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# ic: Chem 22 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# io: Pa^{to}C^PC1 io: Pa^{to}C^PC1 io: Chem 22 ALVI Chemistry/2012/s/T2 1/Paper 4/Q# ic: Chem 22 ALVI Chemist	m/e = 15 Species = CH ₃ ⁺ Chem 22 ALvI Chemistry/2011/s/TZ X is bromine – M and (M+2) pe $\frac{M}{M+1} = \frac{100}{1.1} \times \frac{9}{n} = \frac{100}{0.3} = \frac{1.1 \times n}{1.1 \times n}$ Hence $n = \frac{100 \times 0.3}{100 \times 0.3} = 3.03$ p	1.1×9 (If the mass peak is at 122 and the Q = (122 - 79 - 36)) thus $Q = 7(The compound is C3H7Br)(iii) (R is at m/e 43), hence C3H7+(iii) Any two from H2, H2O, CO, C2H4, C2H2, CH4$
3 (a) (i) (i)	(ii) (i) e. Q# 121/ Topic: Cher Q# 121/ Topic: Cher (i) 96:1 096:1 001 156 (i) 156 158 158 160 160	 (ii) m/e = Q# 123/ Topic: Chem 2 (c) (i) X is b (i) M/(+1) M+1 Henα 	(11 i Q = (71h (11i) (R i (R i (d) Any two

2(a)(i)	1 mol liquid and 2 mol gas formed from 3 mol solid OR two solid compounds converted to a liquid and a gas	-
2(a)(ii)	M1: (as T increases) TΔS becomes greater (than ΔH) OR (as T increases) TΔS becomes more positive	2
	M2: (as T increases) feasibility will increase as ΔG becomes more negative	
2(b)(i)	M1: = $314 + 131 - (19 + 3 \times 187)$ use of values and correct stoichiometry	2
	M2: = -135 (J K ⁻¹ mol ⁻¹)	
2(b)(ii)	M1: $\Delta G = 0 \therefore T = \Delta H / \Delta S$ = +219.3 × 10 ³ ÷ -(b)(i)	2
	M2: = 1624(.4) (K)	
# 125/ T	Q# 125/ Topic: Chem 23 ALvI Chemistry/2022/m/T2 1/Paper 4/Q# 1/www.SmashingScience.org	
1(b)(i)	enthalpy change when one mole of a solute AND dissolves in water to form a solution of infinite dilution	-
1(b)(ii)	$-(-629) + (-322) + (-293) = (+)14 (kJ mol^{-1})$	-
1(b)(iii)	(cationic) charge density decreases Li* to K-1(] so lattice energies become less negative / less exothermic AND because less attraction between ions [1]	2
Q# 126/ T	Topic: Chem 23 ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org	
3(a)	 enthalpy/energy change one mole of electrons gained 	2
	 by one mole of atoms gaseous (atoms) 	
3(b)	$Ca^{*}(g) \rightarrow Ca^{*}(g) + e$ [1]	1
3(c)	M1: selecting correct data 951, 844, 142 only	3
	M2: evaluation to give 249 (MH_{ann}) OR 2(951) = BE – 2(142) + 2(844)	
	M3: evaluation to 498 (2×249) ecf M2	
	951 = ArH _{6um} -142 + 844 ArH _{6um} = 249 BE = 498 (kJ mor ⁻¹) [3]	
3(d)(j)	attraction between nucleus / protons / nuclear charge and electron [1]	F
3(d)(ii)	reputsion between 1- ion / electrons of O- and electron [1]	-
3(e)	Mf: selecting correct data 951, 1933, 3517 only (ignore signs)	2
	M2: evaluation to give –633 (AH;) ecf	
	Δ <i>H</i> ₁ = 951 + 1933 – 3517 = -633 (kJ mol ⁻¹) [2]	
3(f)	ionic charge / charge density (of the ions) [1]	2
	greater (attractive) force between the ions [1]	
# 127/ T	Q# 127/ Topic: Chem 23 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
2(b)	M1 [H-1] = 10^{-5} OR 1 × 10^{-5} K ₆ = [H-1][A-1/[H-4] OR pH = pKa + log [A-1/[H-4] r1	3
	M2 moles of A ⁻ = (1.35 × 10 ⁻⁵)(5 / 74) / (1 × 10 ⁻⁵) ^{1.3} moles of A ⁻ = 0.0912 [1] ecf	
	M3 mass of sodium propanoate = $0.0912 \times 96 = 8.76$ [1] min 2sf ecf	
2(c)	all of the (sodium) propanoate (ion) has been protonated / converted to (propanoic) acid / neutralised [1]	2

Page **553** of **703**

Patrick Brannac

www.SmashingScience.org

Page **554** of **703**

Patrick Brannac

Q# 128/ Topic: Chem 23 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

2(a)(i	$K_{a} = \frac{[H^{*}][cl(cH_{a}), cc_{a},]}{[cl(cH_{a}), cc_{a},]} $ [1]	-
2(a)(ii)	$pK_{s} = -\log K_{s}$ OR $K_{s} = 10^{-24s}$ [1]	-
2(a)(iii)	$[H^{*}] = 10^{-40} = 1 \times 10^{-4} \qquad [1]$	1
2(a)(iv)	 [Hc]] = 1 × 10⁻⁴ ecf 2(a)(iii) K_a = 10⁻⁴² = 3.02 × 10⁻⁵ 	2
	 [Cl(CH₁)₅CO₃H) = (1 × 10⁻⁴)²/3.02 × 10⁻⁵ = 3.3 × 10⁻⁴ ect 	
	• $\frac{[HC1]}{[C1(CH_{2})_{3}Co_{2}H]} = \frac{1 \times 10^{-4}}{3.3 \times 10^{-4}} = 0.302$ min 2sf ecf	
Q# 129/ T	0# 129/ Topic: Chem 23 ALvI Chemistry/2021/m/T2 2/Paper 4/0# 3/www.SmashingScience.org	
3(f)(ī)	Mt: ΔS = ½(182) + ½(26) + ½(261) + 2(70) - 42 M2: (+)427 (J K ⁻¹ moi ^{r-1}) edi	
3(f)(ii)	AG (always) megative because A AH < 0/ megative OR exothermic <u>AND</u> A AN > 0 / positive OR - 7AS < 0 for all T	
Q# 130/ T	Topic: Chem 23 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	
2(a)(i)	M1 the only number extracted: 762, 1560, 490 M2 correct multiple. There four numbers used and calculation to the answer $M2$ correct H10 + $X_1(480)$, of her four numbers used and calculation to the answer $\Delta M_{\rm mink} = -3915$ (kJ mol ⁻¹) ecf	
2(a)(iii)	EeO more exothermic/more negative Ee ² net active failure thrange density (also same charge) Ee ²ⁿ has smaller radius/higher charge density (also same charge) All three for two marks All three for two marks	
Q# 131/ T	Topic: Chem 23 ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
2(a)(i)	M1 energy released when 1 mole of an ionic compound is formed [1]	2
	M2 from gaseous ions (under standard conditions) [1]	
2(a)(ii)	Ca ²⁺ & O ²⁺ have a higher charge/ charge density (than Li* and F-) [1]	-
2(a)(iii)	MgO -3600 or more negative AND BaO -3200 or less negative BOTH [1]	
2(c)	M1: Use of 2×-348 (EA F) and +158 (bond energy of F ₂) [1]	3
	M2: Use of +147 (at Mg) and +736 and +1450 (IEs of Mg) [1]	
	M3: evaluation and calculation of their answer (-1102 – (147 + 158 + 736 + 1450 – 696)) = –2897 (kJ mor ¹)[1] ecf	
2(d)(i)	 (energy change) when an / one electron is added to each atom / ion in one mole of gaseous atoms / ions mark as • · · · / [2] 	2
2(d)(ii)	F has greater nuclear charge / more protons AND greater attraction between F atom / nucleus and the electrons •	1
Q# 132/ T	Q# 132/ Topic: Chem 23 ALvi Chemistry/2020/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	_
7(b)(i)	ΔS* = 72.7 + 56.5 -96.2 = +33.0 J K ⁻¹ mol ⁻¹	1
7(b)(ii)	M1 $\Delta G = \Delta P P - T \Delta S P$	3
	M2 ∆G = (65.5)- (298x0.033) = +56.7 kJ mol^1 min 3sf	

Q# 133/ Topic: Chem 23 ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org

3(c)(j)	$\Delta H_d = (3 \times)$ electron affinity of fluorine / F $\Delta H_d = (enthialpy change of) formation of A H_3$	2
3(c)(ii)	M1 + 328 + 115 × 158 + 5137 + 3 × -328 + AH ₁₈₈ = -1504 M2 AH ₈₈₆ = -6220 (ku mor ⁻¹)	2
3(c)(iii)	M1 lattice energy of SoF5 should be less exothermic ora M2 So ion / So ²⁺ larger than A1 ion / A1 ²⁺ AND lesser attraction between the ions / ionic bonds are weaker	2
Q# 134/ T	Q# 134/ Topic: Chem 23 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
3(a)	a measure / degree of disorder / randomness of a system	1
3(b)	M1: negative – molecules have less energy in the system	3
	M2: positive - solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
3(c)(i)	(standard) Gibbs free energy <u>change</u>	÷

Q# 135/ Topic: Chem 23 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = $\Delta H / \Delta S$ [1]

3(c)(ii) M1: $(\Delta)G = \Delta H - T\Delta S$

2

6(a)		energy change	always positive	always negative	either negative or positive		-
		bond energy	`				
		enthalpy of formation			*		
-	both ticks correct				T		
6(b)	(energy change) when 1 mole of gaseous atoms are formed (from an element in its standard state)	e of gaseous atoms are	formed (from	an element in	its standard state)		-
6(c)	Br ₅ (I) 2 ΔH _{at}	2Br(a)					3
5		K					
J	$\overline{)}$	Bond energy (Br-Br)					
	Br ₂ (g) M1: correct cucle: formulae and state symbols	nd state symbols					
	M7: use of 1 v 193 and 2 v (112)						
		Ì					
	M3: for the correct sum and answer ecf from M2	answer ecf from M2					
	$\Delta H^{\rm e_{Vap}}_{\rm Vap}~(=(2\times112)-(193)~)=+31~\rm kJ~mol^{-1}~[scores~M2~and~M3]$	= +31 kJ mol ⁻¹ [scores M	2 and M3]			_	
(p)9	more endothermic and greater Van der Waals / London / induced dipole-dipole forces both	er Van der Waals / Londo	n / induced dij	pole-dipole for	ces both		1
6(e)(j)	(energy change) when 1 mole of gaseous ions is dissolved in (an excess of) water	e of gaseous ions is dis	solved in (an	excess of) wat	GI.		t
6(e)(ii)	M1: Br has a smaller ionic radii	dii					2
	M2: stronger (ion-dipole) attractions with water molecules	actions with water molecu	les				
2# 136/ Tc	Q# 136/ Topic: Chem 23 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	nistry/2019/m/TZ 2	2/Paper 4/	Q# 2/www	Smashing Science.org		
2(c)	X MB ²⁺ (g	$Mg^{2+}(g) + 20H(g)$					3
	elements	A IE					

-2993 + 148 + 736 + 1450 + 2∆H4(OHT(g)) = -925 2∆H4(OHT(g)) = -266 ∆H4(OHT(g)) = -133 (kJ mol⁻¹)

M3 AG = positive so not feasible/spontaneous

Patrick Brannac

Q# 137/ Topic: Chem 23 ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

1(a)	natural: lightning, bacterial decomposition, volcanic emissions man-made: exhaust fumes, power stations, jet / car/ vehicle engines	-
1 (b)(i)	4N0	1
1(b)(ii)	+2 to +1 AND +2 to +3	-
1(b)(iii)	ΔS = (ΔH – ΔG)/T = (-166.2+102.8)/298 ==0.310kJ mol ⁻¹ K ⁻¹	2
	Mf numerical answer M2 units	
1(b)(iv)	yes as there is a decrease in no. of moles of gas OR yes as moles of (gaseous) reaclants is greater than moles of (gaseous) products	-
Q# 138/ T	Q# 138/ Topic: Chem 23 ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org	
8(a)		2

Q# 138/1	Q# 138/ Topic: Chem 23 ALvl Chemistry/2018/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org	- L.
8(a)	S	
	S/JK ¹ ma ¹¹	
	0 tion zdo slo temperatura i K	
	M1 continuous increase in S from 0-300 K (excluding m.p.) [1] M2 steep vertical increase in S ONLY at the m.p. AND continuous increase in S after m.p. [1]	
8(b)	[1] for each correct tick	
	negative ΔS ^d positive ΔS ^d	
	solid dissolving in water	
	water boiling to steam	
8(c)	Δt [#] = (2 × C=O) + (3 × H+H) – (3 × C-H) – (C-O) – (3×O-H) Δt [#] = (2 × 805) + (3 × 436) – (3 × 410) – (1 × 360) – (3 × 460) [1] Δt [#] = 1610 + 1306 – 1230 – 360 – 1380 = – 52 (kJ mol ⁻¹) [1] ecf correct answer scores [2]	
8(d)(j)	$\Delta S^{4} = 127 + 70 - (214 + 3 \times 131) [1]$ = - 410 (J K ⁻¹ mol ⁻¹) [1] ecf correct answer scores [2]	1
8(d)(ii)	$\Delta G^{4} = \Delta H^{6} - T \Delta S^{2}$ [1] $\Delta G^{6} = -131 - (298 \times -0.41) = - 8.8(2)$ (kJ mol ⁻¹) [1] correct answer scores [2]	
8(d)(III)	(as temperature increases) feasibility decreases	
/65T #D	U# 139/ Topic: Cnem 23 ALVI Criemistry/2016/5/12 1/ Paper 4/ U# 1/ www.SmasningScience.org	
(D)L	use of (2 × 109) or 218 and (2 × 494) or 988	
	use of (0.5 × 496) or 248	
	use of 416, 142, 844	
	evaluation of expression correctly $\Delta H_{\rm sc} = -416 - (2 \times 496) - (2 \times 494) - (-142 + 844) = -2572$	
1(e)	the lattice energy of Na ₂ S is less exothermic	
	the suffide ion is larger than the oxide ion / S^{-} larger than O^{2} / ionic radii quoted 0.184 nm and 0.140 nm AND less attraction (between the ions)/bonds are weaker	1

2

٣

2 2

Q# 140/ Topic: Chem 23 ALvl Chemistry/2017/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

$\frac{\Delta H_{n} - 1392 = -1502}{\Delta H_{n} - 1392 = -1502}$ $\frac{\Delta H_{n} = -110}{P_{n} = -1216 - 394 - 286 - 26}$ $\frac{\Delta H_{n} = -338 - 2(230 + 394) = -538 - 2(692)$ $\frac{\Delta H_{n} = -338 - 2(230 + 394) = -538 - 2(692)$ $\frac{\Delta H_{n} = -136}{\Delta H_{n} \text{ will be identical to } \Delta H_{n} / \text{ unchanged}$ $\frac{\Delta H_{n} = -136}{\Delta H_{n} = -136}$ $\frac{\Delta H_{n} = -136}{\Delta H_{n} = -106}$ $\frac{\Delta H_{n} = -136}{\Delta H_{n} = -106}$ $\frac{\Phi H_{n} = -136}{\Delta H_{n} = -106}$ $\frac{\Phi H_{n} = -136}{\Delta H_{n} = -106}$ $\frac{\Phi H_{n} = -102}{\Delta H_{n} = -106}$ $\frac{\Phi H_{n} = -102}{\Delta H_{n} = -108}$	1(b)(i)	H ₄ = (538 + 2x23	$\frac{1}{10}$			2		-	-
$\Delta H_1 = -110$ $\Delta H_1 = -110$ 1(b)(ii) let $\Delta H_1 + CO_2^{-1}(aq)$ = y $2y - 538 = -1216 - 394 - 286 - 26$ $2y - 538 = -1216 - 394 - 286 - 26$ 1(b)(iii) $\Delta H_0 - 538 - 2(230 + 394) = -539 - 2(662)$ $\Delta H_0 - 538 - 2(230 + 394) = -538 - 2(632)$ $\Delta H_0 - 538 - 2(230 + 394) = -538 - 2(632)$ 1(b)(iii) $\Delta H_0 - 528 - 2(230 + 394) = -538 - 2(632)$ $\Delta H_0 - 502(g) - 205(g) - 205(g) - 205(g) - 206(g)$ as the reaction is the same, or: $2OFT(aq) + 2CO_2(g) - 205(g) - 205(g) on more gaseous moles are being consumed (in reaction 3) more gaseous moles are being consumed (in reaction 3) more gaseous moles are being consumed (in reaction 3) 1(c) more gaseous moles are being consumed (in reaction 3) more gaseous moles are being consumed (in reaction 3) 2(s) therefore expected to be more negativelless positive for reaction 3 \Delta H_0 + 120 \nabla - 2(10) 2(s) therefore expected to be more mode are the sing consumed (in reaction 3) \nabla - 2(10) \Delta H_0 + 5 2(a) \Delta H_0 + 5 \Delta H_0 + 5 \Delta H_0 + 5 \Delta H_0 - 5 2(b)(i) \Delta H_0 + 5 \Delta H_0 - 5 \Delta H_0 - 5 \Delta H_0 - 5 2(a) \Delta H_0 + 5 \Delta $		H _{rt} - 1392 = -15	02						
1(b)(ii) let $\lambda_H (HCO_7 (aq)) = y$ 2y = -538 = -1216 $y = -682$ 1(b)(ii) $\Delta H_6 = -538 - 2(682)$ $\Delta H_6 = -538 - 2(230 + 394) = -538 - 2(682)$ $\Delta H_6 = -136$ 1(b)(iv) $\Delta H_6 = -136$ $\Delta H_6 = -136$ 1(b)(iv) $\Delta H_6 = -136$ $\Delta H_6 = -106$ $\Delta H_6 = -106$ $\Delta H_6 = -100$	4	H _{rt} = -110							~
$2v - 530 = -1216 - 394 - 286 - 26$ 1(b)(ii) $\lambda H_0 = -538 - 2(230 + 394) = -538 - 2(982)$ $\lambda H_0 = -538 - 2(230 + 394) = -538 - 2(982)$ $\lambda H_0 = -538 - 2(230 + 394) = -538 - 2(982)$ $\lambda H_0 = -536$ $\lambda H_0 = -538 - 2(230 + 394) = -538 - 2(932)$ $\lambda H_0 = -516$ $\lambda H_0 = -516$ $\lambda H_0 = -736$ $\lambda H_0 = -736$ $\lambda H_0 = -700$ $\lambda $		t ∆H _i (HCO₃ ⁻ (aq))	= y						-
y = -692 1(b)(ii) $\lambda r_{h_0} = -38 = -2(29 + 394) = -538 - 2(692)$ $\lambda r_{h_0} = -136$ $\lambda r_{h_0} = -136$ 1(b)(iv) $\Delta r_{h_0} = -136$ as the reaction is the same, or. $2007(aq) + 2C05(q) = -2100(c) r(aq) or as the reaction is the same, or. 2007(aq) + 2C05(q) = -2100(c) r(aq) or 1(c) more gaseous moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) 1(c) more gaseous moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) 1(c) more gaseous moles are being consumed (in reaction 3) or more C0_2 moles are being consumed (in reaction 3) 2(a) \lambda r_{h_1} r_{h_1} r_{h_2} r_{h_1} r_{h_2} r_{h_1} r_{h_2} r_{h_1} r_{h_2} r_{h_1} r_{h_2} r_{h_1} r_{h_1} r_{h_2} r_{h_1} r_{h_$	2	y - 538 = -1216 -	- 394 - 286 - 26						
1(b)(ii) $\Delta H_0 - 538 - 2(230 + 394) = -538 - 2(682)$ 1(b)(iv) $\Delta H_0 = -136$ 1(b)(iv) ΔH_0 will be identical to ΔH_4 , / unchanged as the reaction is the same, or: $20H^2(aa) + 2CO_2(g)> 2HCO_7(aq) or 1(c) more gaseous moles are being consumed (in reaction 3) 1(c) more gaseous moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 3) 0 more CO4 moles are being consumed (in reaction 4) 2(a) the relefore wide tran 4)$	y.	= -692							1
Art/s = -136 1(b)(tv) Art/s will be identical to $\Delta H_{4,1}$ / unchanged as the reaction is the same, or: 20HT(reat) + 2C03(g)> 2HC037 (reat) or T(c) more gaseous moles are being consumed (in reaction 3) Or more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 3) Of more C02, moles are being consumed (in reaction 3) or more C02, moles are being consumed (in reaction 4/1/172, 2/Paper 4/1 Of muture is removed from a (more) positively changed is an are more of conisation or are are are are are are are are are ar		H _{ia} –538 – 2(230	+ 394) = -538 - 2(692)						~
1(b)(v) ∆Hs, will be identical to ∆Hs, / unchanged as the reaction is the same, or: 20H('aq) + 2CO ₁ (g) → 2HCO ₂ (aq) or as the reaction is the same, or: 20H('aq) + 2CO ₁ (g) → 2HCO ₂ (aq) or more gaseous moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3) the reaction is the reaction in more CO ₂ moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3) 2# 1411 Topic: Chem 23 ALVI Chemistry/2017/m/TZ 2/Paper 4/i or more CO ₂ moles are being consumed (in reaction 3) 2 Arbitic Enterpretion expected to be more megative/less positive for reaction 2 Arbitic Enterpretion expected to be more megative/less positive for reaction 2 Arbitic Enterpretion enterpretion 2 Arbitic Enterpretion 3 Arbitic Enterpretion 3 Arbitic Enterpretion affinity on the electron-moleus distance 2 Arbitic Enterpretion affinity on the electron-moleus distance 2 Arbitic Enterpretion 2 Arbitic Enterpretion 3 Arbitic Enterpretion affinity on the electron-moleus distance 3 Arb	A	H _{ra} = -136							
as the reaction is the same, or: 20HT(aq) + 2C0 ₅ (g)> 2HC0 ₇ (aq) or metal ions stay in solution/metal ions are unchanged / are spectation interal ions stay in solution/metal ions are unchanged / are spectation more gaseous moles are being consumed (in reaction 3) and interaction and another are being consumed (in reaction 3) 28 is therefore expected to be more megative/less positive for rea- 28 is therefore expected to be more megative/less positive for rea- 29 is therefore expected to be more megative/less positive for rea- 20 is therefore expected to be more megative/less positive for rea- 20 is therefore expected to be more megative/less positive for rea- 20 is therefore expected to be more megative/less positive for rea- 20 is therefore are are thanking change of atomication in the electron affinity depends (mainly) on the electron affinity depends (mainly) on the electron-nucleus distance 20 is the second electron is removed from a (more) positively changed is the electron affinity depends (mainly) on the electron-nucleus distance 21 is a distance (and afficity depends (mainly) on the electron-nucleus distance 21 is the second electron affinity depends (mainly) on the electron-nucleus distance 21 is the area affinity depends (mainly) on the electron-nucleus distance 21 is the group) 21 in the group) 21 in forditation enthalpy and lattice energy both more endothermic 22 in hydration enthalpy and lattice energy both more endothermic 23 in hydration enthalpy and lattice and ΔH_{ab} becomes (more) endot 24 in agroup)		H ₁₃ will be identic	al to ∆ <i>H</i> _{r4} / unchanged						۲
20H ⁻ (lag) + 2CO ₂ (g) → 2HCO ₂ (aq) or metal ions stay in solution/metal ions are unchanged / are spectation metal ions stay in solution/metal ions are unchanged / are spectation and more gaseous moles are being consumed (in reaction 3) 1(c) more gaseous moles are being consumed (in reaction 3) Δ S is therefore expected to be more negative/less positive for readine and the second secon	as	s the reaction is t	he same, or:						~
Item in solution/metal ions are unchanged/are spectation 1(c) more gaseous moles are being consumed (in reaction 3) AS is therefore expected to be more negative/less positive for real ions state AS is therefore expected to be more negative/less positive for real ions of the intertex is the intertex expected to be more negative/less positive for real ions AS is therefore expected to be more negative/less positive for real intertex is the intertex expected to be more negative/less positive for real intertex is the intertex expected to be more affinity in the intertex expected to be more affinity in the second electron affinity is intertex intertex electron affinity is the intertex electron affinity is the electron affinity becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-nucleus distance electron-nucleus distance electron affinity depends of the nucleus distance electron affinity depends (mainly) on the electron-nucleus distance electron affinity depends electron affinity depends (mainly) on the electron	2	OH ⁻ (aq) + 2CO ₂ (
1(c) more gaseous moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3) ΔS is therefore expected to be more negative/less positive for real ΔS is therefore expected to be more negative/less positive for real (a) 2#141/ Top/IC: Chem 23 ALVI Chemistry/2017/m/T2 2/Paper 4/(contrality or angle of atomisation positive for real positive for real (c) 2(a) Afficient of the electron affinity enthalpy change of atomisation v 2(a) Afficient of the electron affinity becomes less exothermic/negative down the electron afficity and lattice energy both more endothermic hydradon enthalpy and lattice energy both more endothermic by hydradon enthalpy and lattice energy both more endothermic diagdave 3(d) hydradon enthalpy and lattice energy both more for endothermic hydradon Affice decreases more /faster and ΔH ₆₄ becomes (more) endot	ε	etal ions stay in :	solution/metal ions are unchanged / a	ire spectators				_	
∆S is therefore expected to be more negative/less positive for real 2(a) 1141/ Topic: Chem 23 ALVI Chemistry/2017/m/TZ 2/Paper 4/ 2(a) enthalpy change positive 2(a) enthalpy change of atomisation v 2(b)(i) the second electron affinity v 2(b)(ii) the second electron affinity v 2(b)(ii) the second electron affinity becomes less exothermic/negative down the electron-nucleus distance 2(c) Att and Att as a ALVI Chemistry/2016/w/TZ 1/Paper 4/i 3(d) hu units.k.Imol ⁻¹ 3(d) hu dutister and Att as becomes (more) endothermic Att a group) Att a group) Att a group) Att		ore gaseous mo	les are being consumed (in reaction s are being consumed (in reaction 3)	3)					-
2# 141/ TopIc: Chem 23 ALVI Chemistry/2017/m/T2 2/Paper 4/(2) 2# 141/ TopIc: Chem 23 ALVI Chemistry/2017/m/T2 2/Paper 4/(2) 2(a) enthalpy change of atomisation p enthalpy obtange of atomisation p enthalpy obtange of atomisation p enthalpy obtange of atomisation p attice enthalpy obtange of atomisation p attice enthalpy obtange of atomisation p attice enthalpy obtange of atomisation 2(b)(ii) attice enthalpy obtange of atomisation 2(c) attice enthalpy obtange of atomisation 2(c) attice enthalpy obtange of atomisation 2(c) attice entron affinity becomes tess exothermic/negative down the electron affinity at at attice entergy both more endothermic/negative down the electron affinity and lattice entergy both more endothermic/negative 2(d) Mu units: kJmol ⁻¹ 2(a) Mu units: kJmol ⁻¹ 2(d) Mu units: kJmol ⁻¹ 2(d) hu entitice entergy both more endothermic/negative 2(a) hu entitice entergy both more functionermic endot bendot thermic/negative	45	S is therefore exp	ected to be more negative/less pos	itive for reaction	6				-
2(a) 141/ Topic: Chem 23 ALVI Chemistry/2017/m/T2 2/Paper 4/(2(a) enthalpy change of atomisation positive 2(b) enthalpy change of atomisation / 2(b)(i) AHs is lattice enthalpy change of ionisation / 2(b)(ii) AHs is lattice enthalpy change of ionisation / 2(b)(iii) AHs is lattice enthalpy change of ionisation / 2(b)(iii) AHs is lattice entropy enthalpy of) / 2(b)(iii) AHs is lattice entropy enthalpy of) / 2(c) AHs is lattice entropy enthalpy of) / 2(c) AHs is lattice entropy enthalpy of) / 2(c) AHs is lattice for a filling becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-runcieus distance 2(a) Mt correct use of ΔG = ΔH - TΔS Mt anits: kJmor ¹ Mt anits: kJmor ¹ Mt anits: kJmor ¹ -570 Mt anits: kJmor ¹ Mt anits: kJmor ¹ 3(a) hydration enthalpy and lattice energy both more endothermic hegitive AHs, decreases more faster and ΔH _s becomes (more) endot							Total:	÷	13
2(a) enthalpy change positive electron affinity electron affinity positive electron affinity change of atomisation 2(b)(i) the second electron is removed from a (more) positively charged i 2(b)(ii) dhe is lattice enthalpy of atomic (negative down the lectron affinity becomes less exothermic/negative down the electron affinity becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-nucleus distance 2(c) the electron affinity depends (mainly) on the electron-nucleus distance 2(c) the affinity depends (mainly) on the electron-nucleus distance 2(d) M1 correct use of $\Delta G = \Delta H - T\Delta S$ M2 $\Delta S = 26.9 - (20.8 \times (-0.1083)) = -570$ M4 units: kJ mor ⁻¹ 2(d) hydration enthalpy and lattice energy both more endothermic frequot) 3(d) hydration enthalpy and lattice energy both more endothermic heggtive down the electron affinity dependence (more) faster and ΔH_{ab} becomes (more) endot	141/ Topi	ic: Chem 23 A	.Lvl Chemistry/2017/m/TZ 2/	'Paper 4/Q# 2	/www.Smash	ningScience.or	50		1 т
Ather attricts electron affinity enthalpy change of atomisation 2(b)(i) the second electron is removed from a (more) positively changed i 2(b)(ii) dhis is lattice enthalpy 2(b)(ii) dhis is lattice enthalpy of) 2(b)(iii) dhis is lattice (energy/enthalpy) AND dHr is (energy/enthalpy of) 2(c) the electron affinity becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-nucleus distance 2(a) Mt correct use of dG = AH - TAS Mt correct use of dG = AH - TAS Mt and* A = 26.9 - (32.7 + 102.5) = -108.3.4 K ⁻¹ mal ⁻¹ OR -0.1083.1.1 Mt antis: kJ mol ⁻¹ Mt antis: kJ mol ⁻¹ 2(a) htt antic ruse of AG = AH - TAS Mt antis: kJ mol ⁻¹ Mt antis: kJ mol ⁻¹ 3(a) hydration enthalpy and lattice energy both more endothermic 3(a) hydratice energy both more endothermic Afh _{Med} decreases more / faster and Af _{Ma} becomes (more) endot	2(a)	L	enthalpy change	positive	negative	either positive or negative			2
African enthalpy change of atomisation 2(b)(i) the second electron is removed from a (more) positively charged is 2(b)(ii) the second electron is removed from a (more) positively charged is 2(b)(iii) the second electron is removed from a (more) positively charged is 2(b)(iii) the second electron is removed from a (more) positively charged is electron affinity becomes less exothermic/megative down the electron affinity depends (mainly) on the electron-nucleus distance 2(c) MH correct use of $\Delta G = \Delta H - T\Delta S$ MM correct use of $\Delta G = \Delta H - T\Delta S$ MM correct use of $\Delta G = \Delta H - T\Delta S$ MM and a correct use of $\Delta G = \Delta H - T\Delta S$ MM and a correct use of $\Delta G = \Delta H - T\Delta S$ MM anits: kLmol ⁻¹ MM anits: kLmol ⁻¹ MM anits: kLmol ⁻¹ M4 units: kLmol ⁻¹ MM anits: kLmol ⁻¹ MM anits: kLmol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic hegative Africa decreases more / faster and ΔH_{Aa} becomes (more) endothermic hegative	2		electron affinity			1			
Close enthalpy orbange of ionisation ✓ 2(b)(i) the second electron is removed from a (more) positively charged i Z(b)(ii) the second electron is removed from a (more) positively charged i 2(b)(ii) dH4 is lattice (energy/enthalpy) AND dH ⁺ is (energy/enthalpy of) the electron affinity depends (mainly) on the electron-nucleus distance 2(c) the electron affinity depends (mainly) on the electron-nucleus distance that correct use of dS = dH - TdS M1 correct use of dS = dH - TdS M2 dS = 28.9 - (32.7 + 102.6) = -108.3 JK ⁻¹ mol ⁻¹ OR - 0.1083 kJ M2 dS = 28.9 - (32.7 + 102.6) = -108.3 JK ⁻¹ mol ⁻¹ OR - 0.1083 kJ M4 units: kJ mol ⁻¹ M3 dG = -602 - (208 × (-0.1083)) = -570 M4 units: kJ mol ⁻¹ M4 units: kJ mol ⁻¹ M4 units: kJ mol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic the group) 3(d) hydratice energy both more endothermic for the group) 2(d) hydratice energy both more endothermic for the group)	6		enthalpy change of atomisation	1					
Introduction is removed from a (more) positively charged is 2(b)(ii) the second electron is removed from a (more) positively charged is 2(b)(iii) dHs is lattice (energy/enthalpy of). 2(b)(iii) dHs is lattice (energy/enthalpy) AND dHr is (energy/enthalpy of). 2(c) the electron affinity becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-nucleus distance electron affinity depends (mainly) and the electron-nucleus distance 2(d) 2(c) Mt correct use of ΔG = ΔH - TΔS. 2(d) Mt oncert use of ΔG = ΔH - TΔS. Mt and ΔS = 20.9 - (32.7 + 102.5) = -108.3 J K ⁻¹ mol ⁻¹ OR -0.1083 kJ Mt and ΔS = 20.9 - (29.7 + 102.6) = -108.3 J K ⁻¹ mol ⁻¹ OR -0.1083 kJ Mt anits: kJ mol ⁻¹ . 3(d) hydration enthalpy and lattice energy both more endothermic the group). 3(d) hydration enthalpy and lattice energy both more endothermic the group). ¹ /h _{Med} decreases more / faster and ΔH _{ea} becomes (more) endot network and network endothermic the group).	6		enthalpy change of ionisation	*					
2(b)(i) the second electron is removed from a (more) positively charged i 2(c) ΔH4 is lattice (energy/enthalpy) AND ΔH+ is (energy/enthalpy of) 2(c) ΔH4 is lattice (energy/enthalpy) AND ΔH+ is (energy/enthalpy of) 2(c) the electron affinity becomes less exothermic/megative down the electron affinity depends (mainly) on the electron-nucleus distance 2(d) M1 oncreat use of Δ0 = ΔH - TΔS M1 oncreat use of Δ0 = ΔH - TΔS M1 oncreat use of Δ0 = ΔH - TΔS 2(d) M1 oncreat use of Δ0 = ΔH - TΔS M2 ΔS = 26.9 - (32.7 + 102.6) = -108.3 J K ⁻¹ mol ⁻¹ OR -0.1083k.J M2 ΔS = 26.9 - (28.8 × (-0.1083)) = -570 M2 units: kJmol ⁻¹ 2(d) M4 units: kJmol ⁻¹ M4 units: kJmol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic hegitive Afh _{Ma} decreases more/faster and ΔH _{Ma} becomes (more) endot	ò		lattice enthalpy		>				
2(b)(ii) ΔH ₆ is lattice (energy/enthalpy) AND ΔH ⁵ is (energy/enthalpy of) 2(c) the electron affinity becomes less exothermic/negative down the electron affinity depends (mainly) on the electron-nucleus distance 2(c) M1 correct use of ΔG = ΔH - TΔS M1 correct use of ΔG = ΔH - TΔS M1 correct use of ΔG = ΔH - TΔS 2(d) M1 correct use of ΔG = ΔH - TΔS M2 ΔS = 26.9 - (32.7 + 102.5) = -108.3 JK ⁻¹ mol ⁻¹ OR -0.1083 kJM units: kJmol ⁻¹ M2 ΔS = 26.9 - (298 × (-0.1083)) = -570 M4 units: kJmol ⁻¹ M4 units: kJmol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic hegative ΔH ⁴ _{Ma} decreases more / faster and ΔH _{4a} becomes (more) end		the second electr	on is removed from a (more) positive	ly charged ion					-
2(c) the electron affinity depends (mainly) on the electron-nucleus distance electron affinity depends (mainly) on the electron-nucleus distance 2(d) M1 correct use of ΔS = ΔH - TΔS 2(d) M1 correct use of ΔS = ΔH - TΔS M2 ΔS = 28.9 - (32.7 + 102.5) = -108.3 JK ⁻¹ mol ⁻¹ OR - 0.1083 kJ M2 ΔS = 28.9 - (32.7 + 102.5) = -570 M3 ΔG = -602 - (208 × (-0.1083)) = -570 M4 units: kJ.mol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic the group) 3(d) hydratice energy both more endothermic affine decreases more / faster and ΔH _{ss} becomes (more) endothermic		AHs is lattice (ene	ergy/enthalpy) AND ΔH_7 is (energy/	enthalpy of) forma	tion			•-	-
$\label{eq:constraints} \electron affinity depends (mainly) on the electron-nucleus distance and on correct use of \Delta G = \Delta H - T\Delta S\begin{tabular}{lllllllllllllllllllllllllllllllllll$		the electron affini	ity becomes less exothermic/negativ	e down the Group	17				-
2(d) M1 correct use of Δ6 = ΔH - TΔS M2 ΔS = 26,9 - (32.7 + 102.5) = -108.3 JK ⁻¹ ma ⁻¹ OR -0.1083 kJ M3 ΔG = -602 - (328 × (-0.1083)) = -570 M4 units: kJmor ⁻¹ 3(d) My units: kJmor ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothemic the group) hydration enthalpy and lattice energy both more endothemic the group) Afh _{ed} decreases more / faster and ΔH _{ed} becomes (more) endot negative	v	electron affinity d	epends (mainly) on the electron-nucl	eus distance whic	h increases dow	n Group 17			-
$\label{eq:constraint} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M1 correct use of	f ΔG = ΔH – TΔS					•	1
M3 ΔG = -602 - (268 × (-0.1083)) = -570 M4 units: kJmol ⁻¹ M4 units: kJmol ⁻¹ M4 units: kJmol ⁻¹ 3(d) hydration enthalpy and lattice energy both more endothermic brydration enthalpy and lattice energy both more endothermic dAfh _{id} decreases more/faster and dH _{ids} becomes (more) endot negative	-	M2 AS = 26.9 - (32.7 + 102.5) = -108.3 J K ⁻¹ mol ⁻¹ OF	t –0.1083 kJ K ⁻¹ m	ol ⁻¹			•-	-
M4 units: kJ.mof ⁻¹ 2# 142/ Topic: Chem 23 ALvI Chemistry/2016/w/T2 1/Paper 4/(3(d) hydration enthalpy and lattice energy both more endothermic the group) 3.4h _{red} decreases more /faster and ΔH_{sa} becomes (more) endothermic negative	-	M3 ΔG = -802 -	(298 × (-0.1083)) = -570						-
2# 142/ Topic: Chem 23 ALvI Chemistry/2016/w/12 1/Paper 4/(3(d) hydration enthalpy and lattice energy both more endothermic the group) ΔM _{med} decreases more /faster and ΔM _{med} becomes (more) endothermic negative	_	M4 units: kJ mol ⁷	-						1
	142/ Topi	ic: Chem 23 A	.Lvl Chemistry/2016/w/TZ 1/	Paper 4/Q# 3,	/www.Smash	ningScience.or,	6		
$\Delta H_{\rm hid}$ decreases more/faster and $\Delta H_{\rm ad}$ becomes (more) endonegative		hydration entha the group)	Ipy and lattice energy both more e	ndothermic/more	e positive/less e	xothermic/less n	egative (down	-	
		ΔH _{hyd} decrease: negative	s more / faster and $\Delta H_{\rm sol}$ becomes (more) endothem	nic/(more) positi	ive/less exothem	nic/less	-	2
							Total:	11	-

٣

~ ~

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

Q# 143/ Topic: Chem 23 ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

3(a)(i)			
	(entropy) increases/is positive and $H_{\rm 2}/gas$ is formed	-	-
3(a)(ii)	(entropy) increases/is positive and (KCI (aq)) solution has (free) moving/mobile ions/aqueous ions	1	-
3(a)(iii)	(entropy) decreases/is negative and decrease in gas	-	-
3(b)(i)	ΔS ^a =26.9+214-65.7=(+)175.2(J K ⁻¹ mol ⁻¹)	-	
	ΔG*=117-(298×175.2/1000) OR ΔG*=117000-(298×175.2)	-	
	$\Delta G^{2} = + 64.8 \ (\text{kJ} \text{mol}^{-1})$	-	3
3(b)(ii)	T ΔS is more positive than $\Delta H/T\Delta S$ increases/-T ΔS more negative		
	and ΔG is negative/decrease/less positive	-	-
3(c)	use of ΔG =0 or $\overline{T\Delta S}$ =1	-	
	T=130/(316/1000)=410/411/412/411.4 (K)	F	2
0# 144/ Top	Q# 144/ Topic: Chem 23 ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org		1
8 (a)	ΔH = [2(-580) + 3(-288) + 3(-1438)] – [-2061 + 4(-437) + 3(-814)] = -61 kJ mol ⁻¹	[2]	
0# 145/ Top	Q# 145/ Topic: Chem 23 ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org		
(i) (q)	cis-trans OR geometrical	[1]	
(II)	In a complex the d-orbitals are split into 2 energy levels colour is due to absorption of light (in visible region) electron promotion to higher orbital absorbs a photon the d-d energy gap is different for the two complexes, hence different colours	EEEE	
		[Total: 7]	N.
0# 146/ Top	0# 146/ Topic: Chem 23 ALvI Chemistry/2016/s/TZ 1/Paper 4/0# 3/www.SmashingScience.org	-	1
3 (a)	$K_{p}=\{p CS_{a})\times(p H_{a})^{\frac{1}{2}})/\left(p H_{a}S)\right)^{2}\times p(CH_{a}))$ units: atm ² OR Pa ²	E	
(i) (d)	$p(H_2S) = 196 atm$ $p(H_2) = 8 atm$	ΞE	
(ii)	$K_p = (2 \times 8^4)/(196^2 \times 98) = 2.176 \times 10^{-3}$	[1]	
(c) (j)	ΔS^{\bullet} will be positive, because more gas moles on the RHS /products	E	
(ii)	$\Delta S^{2} = (AH^{2} - \Delta G^{2})/T = (241 - 51)/1000 = 0.19 \text{ OR } 190$ kJmol ⁻¹ K ⁻¹ OR Jmol ⁻¹ K ⁻¹	EE	
(d)	ΔG^{*} will become less positive/more negative as T increases,because ΔS^{*} is positive (or – $T\Delta S^{*}$ is more negative)therefore the reaction becomes more feasible/spontaneous as T increases	[2]	

B
enc
e.
Sci
8 L
ŗ
mash
S
≥
₹
₹
2/
Ħ
¥
7
be
σ
4
2
77
Ê
2
1
2016
\geq
÷
is
e
<u> </u>
ALVI
123
ε
he
5
oic:
d
ĥ
~
47
Ē

]	1	2		3	2	2				-	2	2	1		2	e
ashingScience.org		r) × 2	∆H _{latt} •	2258kJ mol ⁻¹	rgy; ease in the amount of	sign of ∆S [⊕]	negative	negative	positive	ecules			298 K)	ashingScience.org		
'TZ 2/Paper 4/Q# 2/www.Smi	CaCl2(s) (state symbols required)	$Ca^{2+}(g) + 2CI(g) (+ 2e^{-})$		- 178 - 590 - 1150 + (2 × 349) = -	at) particles have more ene ncreases because of an incr	reaction			CuSO ₄ .5H ₅ O(s) Na ⁺ (aq) + CO ₂ (g) + H ₂ O(<i>l</i>)	rall number of <u>gaseous</u> mol	((ction is <u>not spontaneous</u> (at	TZ 1/Paper 4/Q# 1/www.Sm	infinitely dilute solution)	Ca ²⁺ + 2∆H ⁶ hyd NO ₃ ⁻
Q# 147/ Topic: Chem 23 ALVI Chemistry/2016/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	$Ca^{2+}(g) + 2Cl^{-}(g) \rightarrow CaCl_{2}$	2 nd I.E of Ca	Atomisation ΔH _{at} of Ca E(C <i>t</i> -C <i>t</i>)/2ΔH _{at} of C <i>t</i>	$\Delta H_{latt}^{a} = -796 - 242 - 178 - 6$	(higher temperature means that) particles have more energy; entropy (of the gas/system) increases because of an increase in the amount of disorder/randomness;	rear	+ $O_2(g) \rightarrow 0$	½O ₂ (g) → MgC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	there is a reduction in the overall number of <u>gaseous</u> molecules	$\Delta S_{f}^{h} = 386 - (192 + (3 \times 131))$ = -199 (JK ⁻¹ mol ⁻¹)	ΔG ⁶ = ΔH ⁶ - TΔS ⁶ = 117 - ((298 × 175) / 1000) = (+) 64.85 (kJ mol ⁻¹)	ΔG^{4} is positive and so the reaction is not spontaneous (at 298 K)	Q# 148/ Topic: Chem 23 ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	(energy change when) 1 mole of ions gaseous (ions) dissolve in water (b form an infinitely dilute solution) or assours forms in annovae solution	$\Delta H^{\text{build}}_{\text{build}} = 2\Delta H^{\text{build}}$
opic: CI	()	(ii)		(iii)		()				(ii)		(i)	(ii)	opic: Cl		
147/T	(a)				(q)	(c)				P	(p)	(e)		148/ T	(i) (p)	(1)

[Total: 10]

	gaseous (tons) dissolve in water (b form an infinitely dilute solution) or gaseous (tions) form an aqueous solution	
(ii)	(ii) $\Delta F_{nac}^{ca}Ca(NO_{3})_{2} + \Delta F_{nac}^{ca}Ca(NO_{3})_{2} = \Delta F_{nac}^{ca}Ca^{2a} + 2\Delta F_{nac}^{ca}NO_{3}^{-}$ $\Delta F_{nac}^{ca} - 19 = -1650 + (2x - 314)$	8
	-2259kJ mol ⁻¹	
1	Ca ^{6→} ls a smaller (ion) or Ca ^{6→} l has a larger charge density Ca ^{6→} l has a stronger attraction / bond to H ₂ O	2
		<u>12</u>

Patrick Brannac

	rror) [3] [1] [1]	[1]	E E	2	[3]				2			2	e			-		C	i I BNIHSWS
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\label{eq:linear} \begin{array}{llllllllllllllllllllllllllllllllllll$	F ₂ a	 (i) F⁻ is smaller than CF (ii) S²⁻ is more highly charged than CI⁻ 	(c) LE = $-[178 + 590 + 1150] - [244 - 2 \times 349] - 796$ signs/	= -2260 (kJ mol ') O# 154/ Topic: Chem 24 Atvl Chemistrv/2022/m/T2 1/Paper 4/O# 3/www.SmashineScience.org	$3(c)(i) \qquad M1: \Delta G = - mE0_{cold} AND n = 4 M2: - E0_{cold} = -436100 (-4(96500)) = 1.13 V ecf$	M3: E ⁰ _{cal} = E ⁰ (0 ₂ , dt+ h4.0) – E ⁰ (110 ²⁺ 11 ³⁺) = 1.23 – E ⁰ (110 ²⁺ 11 ³⁺) E ⁰ (T10 ²⁺ T1 ³⁺) = (+)0.1 (V) ecf	151	2(c) M1: 1.00 g Si is 1/28.1 = 0.0356 mol - moles of er needed = 4 × mol Si = 0.142 faraday (3 sf)	M2: $Q = It \rightarrow t = M1 \times 96500 + 6 = 2289$ (s) ecf	Q# 156/ Topic: Chem 24 ALvI Chemistry/2021/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org	3(b)(i) M1: emf / potential difference / difference in electrode potential between two half-cells / two electrodes (in a cell) M2: (all solutions being) 1 mol dm ⁻¹ AND either 1 atm OR 238 K	$\Im(n)$ satt bridge, voltmeter, Cu(s), Cu ²⁺ (ad), Pt(s), Fe ²⁺ and Fe ³⁺ (aq) two for one mark, four for two marks, six for three marks	carriero Cu(s)	$\mathbf{F}_{\mathbf{e}^{3}\mathbf{t}^{\dagger}}(\mathbf{aq})$ $\mathbf{F}_{\mathbf{e}^{2}\mathbf{t}^{\dagger}}(\mathbf{aq})$ $\mathbf{Cu}^{2}\mathbf{t}^{\dagger}(\mathbf{aq})$		Q# 157/ Topic: Chem 24 ALvi Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org 3(e)() Mr: Feuller 10/2/H_0=-088+118=-0.51 (= teasible) Mr: Feuller H_0=120-+120=+0.58 (= teasible) Mr: Feuller t= -4H_0+200-+200-+200-+200-+200-+200-+200-+20	3(c)(ii) 24±.0₂ → 24±.0 + 0₂ 1 Q# 158/ Topic: Chem 24 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org 1 www.SmashingScience.org Patrick Brannac	
mashingScience.org 2Ag*(g) + SO4 ² -(g)	AH ^o hyd		Ag ₂ SO ₄ (aq) 1 or 2Ag ⁺ (aq) + SO ₄ ² (aq) 1	science.org		[16] [16] cience.org	[1]	[1]	[]	[6]		of the water) [1] [1]	[2]	33	ΞΞ	[3]	[Total: 12]	Page 561 of 703	LI LONHSWS
Q# 149/ Topic: Chem 23 ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org (b) 2Ag*(g) + SO ₄ ² (g)	Ag ₂ SO ₄ (s)	AH ⁰ sol	Ag ² 2Ag*(aq)	Q# 150/ Topic: Chem 23 ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (e) (i) (enthalpy change) when 1 mole of an ionic compound	adii than Ca²*	Total	the enthalpy change/released when 1 mole is formed	of ionic lattice from the gas phase ions	OgM ↔			measurements needed: volume/mass/weight of water (in calorimeter) initial + final temperature/temperature change/temperature rise (of the water) mass of Mg (used)/mass MgO	nass of oxygen used	1450 + 496/2 - 141 + 798 – 3791	$ \longrightarrow 2NaOH(aq) $ $) \longrightarrow Mg(OH)_{2}(s) \text{ or } Mg(OH)_{2}(aq) $	ph 12:5-14 [NaOH] AND 8-10:5 [Mg(OH)2] respectively		Patrick Brannac	
Q# 149/ Topic: Chem 23 ALvi Chem (b)	4			Q# 150/ Topic: Chem 23 ALvl Chem (e) () [enthalpy change) when 1 r	(ii) Mg ²⁺ has a smaller (inic) radii than Ca ²⁺	Total 3 Q# 151/ Topic: Chem 23 ALvI Chem	1 (a) (i) the enthalpy cha	of ionic lattice fro	(ii) Mg ²⁺ + O ²⁻			(b) measurements needed: volume/mass/weight of wate initial + final temperature/temp mass of Mg (used)/mass MgO	Not volume/moles/mass of oxygen used	(c) ∆H = 148 + 736 + = <u>-552</u> kJ mol ⁻¹	(d) Na ₂ O(s) + H ₂ O(aq/l) MgO(s) + H ₂ O(aq/l)	рн 12.5-14 [NaOH]		www.SmashineScience.org	

3(a)(jj)	salt bridge (indicated) voltmeter / / labelled	4
	O2 good delivery system H2 good delivery system	
	Pt electrode H+/HCI/H2SO4 solution labelled (at least once)	
	1 atm 1 mol dm ⁻³ quoted	
	Every two correct responses = 1 mark	
3(a)(iii)	$E_{cel} = (+) 1.23 \vee$ AND positive electrode = O_2 half-cell identified	-
# 162/ 7	Q# 162/ Topic: Chem 24 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org	
3(a)(i)	Mark as - イイ vorbage of an electrode / half-cell ・ compared / connected to (S)HE / hydrogen half-cell / electrode ・ under standard conditions / f mol dm ³ , 1 atm, 298 K	2
3(a)(īi)	HOU(1)	4
	Mark as	
3(a)(iii)	$Au^{3*} + NO + 2H_{2}O \rightarrow Au + NO_{3}^{-} + 4H^{*}$	-
3(a)(iv)	+1.50 - 0.86 = + 0.54 (V)	-
3(a)(v)	M1 M2 any two [1] all four [2] • adding conc HNOs shifts equilibrium 3 to the right • Ero (nall-equation 3) increases/ more positive • adding conc HO/S shift equilibrium 2 to the left • Eror (nall-equation 2) decreases /less positive M3 EF3) how mass resolver than EV2	с
# 163/ T	Q# 163/ Topic: Chem 24 ALVI Chemistry/2020/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	
2(b)(i)	$2A_{P^{+}}^{p^{+}} + 3O^{2^{-}} + 3C \rightarrow 2A_{1}^{1} + 3CO$	Ţ
2(b)(ii)	M1 Q = If = 3.5 × 10 ⁵ × 3 × 80 ² = 3.78 × 10 ³ C M2 no. c mole ⁼ 3.3 × 10 ³ 96500 = 3.22 × 10 ⁴ M3 more d = 3.7 × 10 ³ 766500 = 3.22 × 10 ⁴	3

Page **564** of **703**

Patrick Brannac

Q# 164/ Topic: Chem 24 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

1(a)	Platinum / Pt Aluminium / A2 BOTH	-
1(b)(ī)	M1: use of or quoting a valid Nemst equation $E = E^n + 0.0590 / z \log [ox] / [red] OR = E = (15 + 0.0590 / z \log [ox] / [red] OR = 0.15 + (0.0590 / z) \log 2$	2
	M2: E=(+)0.16 (0.159) \ minimum 2 sig. fig.	
	correct answer scores 2 marks	
1(b)(ii)	$E_{\text{cell}} = 0.16 - (-1.66) = +1.82 \text{ V}$ minimum 3 sig. fig.	1
1(b)(iii)	2AI+3Sn*+→2AI ^{p+} +3Sn ²⁺	2
	M1: species	
	M2: balancing	
1(c)	M1: number of C (= 300 000 × 60 × 60 × 24) = 2.59 × 10^{10} (C)	4
	M2: number of F(= 2.592 × 10 ¹⁰ / 9.65 × 10 ¹⁰) = 2.69 ×10 ⁵ (moles of electrons)	
	M3: moles of A1(= 2.69 × 10 ⁵ / 3) = 8.95 × 10 ⁴	
	M4: mass of A1(= 8.95 × 10 ⁴ × 27) = 2420 kg	
	correct answer scores 4 marks	
1(d)	M1: (Cr ²⁺ + 2e ⁻ \Rightarrow Cr) E ⁺ = -0.91 and (2H ⁺ + 2e ⁻ \Rightarrow H ₂) E ⁺ = 0.00 seen	2
	M2: hydrogen formed instead / hydrogen (ions) easier to reduce / hydrogen has more positive E*	
Q# 165/ T	Q# 165/ Topic: Chem 24 ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
3(a)	$2CN_3^2 + SO_2 \rightarrow 2CN_2 + SO_2^{2^{-1}}$	1
3(b)(i)	C1 in C/N ₂ gets both oxidised and reduced or C1 goes from +4 \rightarrow +5 and +4 \rightarrow +3	1
3(b)(ii)	MM $CIO_2 + 20H^- \rightarrow CIO_3^- + H_2O + e^-$	2
	M2 $CIO_2 + e^- \rightarrow CIO_2^-$	
3(c)(i)	MM Li \rightarrow Li ⁺ + e ⁻ and I ₂ + 2e ⁻ \rightarrow 2I ⁻	2
	M2 $2Li + I_2 \rightarrow 2Li^+ + 2I^-$	6
3(c)(ii)	E ² cel = 0.54 -(-3.04) = +3.58 V [1]	1
3(c)(iii)	M1 amount of Li = 0.10/6.9 = 1.45 × 10 ⁻² mol [1]	3
	M2 Q needed = 96500 x 1.45 x 10 ⁻² = 1399 (1398.55) C [1] ecf	
	M3 t = 1399/(2.5 × 10 ⁻⁵) = 5.6 × 10 ³ s [1] ecf 2st min	
Q# 166/ T	0# 166/ Topic: Chem 24 ALvI Chemistry/2018/w/TZ 1/Paper 4/0# 8/www.SmashingScience.org	
8(e)(i)	2CH ₃ OH + 30 ₂ ≓ 2CO ₂ + 4H ₂ O OR 2CH ₃ OH + 3O ₂ ≓ 2CO ₂ + 4H [*] + 4OH [*]	-
8(e)(ii)	$E^{*}_{cel} = 1.23 - 0.02 = 1.21 \vee$	1

Q# 167/ Topic: **Chem 24** ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

1/0T #>	Upic. CIICIII 24 ALVI		ww/c #ک/+ اعطه۲/۲	CH 10/1 10/01C. CINEIII 24 ALVI CITEIIIISUI Y/ZUTO/S/ 12 1/Fapel 4/CH 5/WWW.SITIASIIIIISSCIEIICE.UI	الا ا	
3(a)			anode	cathode		e
		AgNO ₃ (aq)	oxygen / O ₂	silver / Ag		
		saturated NaCI (aq)	chlorine / Cl ₂	hydrogen / H ₂		
	_	CuSO4 (aq)	oxygen / O ₂	copper / Cu		
3(b)(i)	$2\Gamma \rightarrow I_2 + 2e^-$					-
	Ca ²⁺ + 2e ⁻ → Ca					-
3(b)(ii)	Ca / Calcium red Oxidation numbe Oxidation numbe	Ca / Calcium reduced and I / iodine oxidised Oxidation number of calcium decreases from 2 to 0 Oxidation number of iodine increases from -1 to 0	1 2 to 0 1 to 0			2
	2 points = 1 mark 3 points = 2 marks					
3(b)(iii)	 metal / grey / silvery purple AND vapour / gas / fumes amount of melt decreases 	/ gas / fumes reases				-
	any 2 points for 1 mark					
3(c)	2 × 60 × 60 × 0.8 = 5760 C	00				-
	5760 / 96500 = 0.060 (0.0597) F	.0597) F				
	1.11/55.8 = 0.020 (0.0199) mol of Fe	99) mol of Fe				1
	0.06/0.02 = 3 .7. Fe ³⁺ or +3 or 3	or +3 or 3				•
# 168/ T	opic: Chem 24 ALvI (Chemistry/2018/m/T	2/Paper 4/Q# 6/w	Q# 168/ Topic: Chem 24 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	org	
6(a)(i)	X is an ammeter					+
6(a)(ii)	Y is AgNO3 or AgF or AgCIO4	gCIO4				-
6(b)	$\begin{array}{l} n(A_{0})=0.500/1079=4.6(34)\times10^{-3}\\ n(C)=0.200\times40\times60=480C\\ n(e^{-})=480/1.60\times10^{-19}=3.000\times10^{21}\\ n(e^{-})n(A_{0})=3.00\times10^{-21}/4.834\times10^{-3} \end{array}$	$\begin{split} n(A_{0}) &= 0.500 / 107.9 = 4.8(34) \times 10^{-3} \\ n(C) &= 0.200 \times 40 \times 60 = 480 C \\ n(C) &= 480/1.60 \times 10^{-19} = 3(.00) \times 10^{21} \\ n(e^{-3}) &= 3(.00) \times 10^{-3} = 8.474 \times 10^{-3} \\ n(e^{-3}) = 0.0 \times 10^{-3} / 4.834 \times 10^{-3} = 8.474 \times 10^{-3} \\ e^{-5} \times 10^{23} \end{split}$	0 ²³ (6.5 × 10 ²⁸)			
# 169/ T	opic: Chem 24 ALvI (Chemistry/2018/m/T	2/Paper 4/Q# 2/w	Q# 169/ Topic: Chem 24 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	org	
2(a)	the E^{a} for X_2/X^{-} becomise the halogens are less	the E^{Φ} for X_2/X^{-} becomes less positive / decrease down the group so the halogens are less reactive (as oxidants) down the group	own the group n the group			2

2(a)	the $E^{a} for X_2/X^2$ becomes less positive / decrease down the group so the halogens are less reactive (as oxidants) down the group	2
2(b)(i)	$Cb + H_2O \longrightarrow HCl + HClO$	-
2(b)(ii)	CbJCF = +1.36 V and Cb7 / (Cf + OH) = +0.89 V so E^{4}_{act} = 1.36 - 0.89 = (+) 0.47 V	2
2(b)(iii)	box three ticked Le Chatelier argument, more OH ^{-/} increase reactant concentration so equilibrium shifts right or an argument based on the half cell with OH ⁻	2
2(c)(i)	Br ⁻ + 3C/0 ⁻ −−−→ Br0 ₅ ⁻ + 3C/ ⁻	-
2(c)(ii)	$E^{2}_{cell} = 0.89 - 0.58 = + 0.31 \text{ V}$	-
2(c)(iii)	4HBrO ₃ → 2Br ₂ + 5O ₂ + 2H ₂ O	-

Page **566** of **703**

Patrick Brannac

www.SmashingScience.org

Page **565** of **703**

Patrick Brannac

Q# 170/ Topic: Chem 24 ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

٢	-	4	-	-	2	1	۲	-	-
the potential difference between two half-cells/two electrodes (in a cell)	under standard conditions of 1 atm., 298 K, (all) solutions being 1 mol dm ⁻³	8 marking points, any 2 points for each mark H./ hydrogen correct delivery system for H ₂ PP = electrode PF e	ative	shifts Pb 2* (+ 2e ⁻) \approx Pb equilibrium/reaction to the left	Q = 0.4 × 80 × 60 = 1920 C and use of 96500/193000 Moles of Pb = 1920/193000 = 9.55 × 10 ⁻³ Mass of Pb = 207.2 × 9.95 × 10 ⁻³ = 2.1 g	OR $0.4 \times 80 \times 60 = 1920C$ and use of $1.6 \times 10^{-19}/1.2 \times 10^{22}$ $alo = 0.4 \times 80 \times 60 = 1920C$ and use of $1.6 \times 10^{23} = 0.01$ Mass of Pb = $207.2 \times 0.01 = 2.19$ Mass of Pb = $207.2 \times 0.01 = 2.19$	$PbO_2(s) + SO_4^{T}(aq) + 4H^{H} + 2e^- \rightarrow PbSO_4(s) + 2H_6O$	reagents/Pb02/H2SO4 and used up/concentration decreases	as fuel/hydrogen is being continuously supplied/fuel has not run out
the pote	under st	8 marking point H ₂ / hydrogen correct delivery Pb ²⁴ (aq) Pb ²⁴ (ad) Pb electrode Pt electrode Pt electrode Rt (ad) solution salt horige voltmeter // Ial	more negative	shifts Pb	Q = 0.4 Moles of Mass of	OR Q = 0.4 atoms P Mass of	PbO ₂ (s)	reagents	as fuel/I
3(a)		3(b)()	3(b)(ii)		3(c)(i)		3(c)(ii)	3(d)	

3	-	-	-	-	-
A - H₂, 1 atm C = 1 pathum C = 1 moldm ³ H r ⁴ HcZ etc. D = sati bridge /KNO₂ etc. F = 1 mol dm ³ Fe ³⁺ AND 1 mol dm ³ Fe ³⁺	positive electrode is (Pt) on RHS AND electrons flow clockwise	cell potential is 0.77 – 0.34 =(+) 0.43 (V)	electrode potential would become more negative as equilibrium shifts to left/explanation in terms of the Nernst equation	E = -0.41 + (0.059/1)log[C/ ²⁷]/[C. ^{2²] = -0.41 + 0.059 log 4.0}	= -0.37 (V)
3(a)(i)	3(a)(ii)	3(b)	3(c)(i)	3(c)(jj)	

Q# 172/ Topic: Chem 24 ALvl Chemistry/2016/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

 Co+2Fe³⁺ - Co²⁺ + 2Fe³⁺ Co+2Fe³⁺ - Co²⁺ + 2Fe³⁺ E⁶cai = 0.77 - (-0.28) = (+or -)1.05 (V) E⁶cai = 0.77 - (-0.28) = (+or -)1.05 (V) The second mean mean mean mean mean mean mean mean		
4(d)(i) Co+2Fe ²⁺ - Co ²⁺ +2Fe ²⁺ 4(d)(ii) E ² eat = 0.77 - (-0.28) = (+or -)1.05 (V) 4(d)(ii) E ² eat = 0.77 - (-0.28) = (-0.32/-0.318 (V)) 4(e)(i) Eetence = -0.28 + (0.059/2) log [0.05] = -0.32/-0.318 (V) 4(e)(ii) more positive 4(f) 4Fe ²⁺ + V + H ₂ O - VO ²⁺ 4Fe ²⁺ + 2H ²		
	VO ²⁺ correct equation	V02* correct equation

T #D	101 /2/	Q# 1/3/ IOPIC: Cnem 24 ALVI UNEMISTIY/2016/3/ 12 1/Paper 4/Q# 4/WWW.SMASNINGSCIENCE.Org	
4	(a) (i)	4 (a) (i) SCP is the EMF / potential of a cell composed of two electrodes (OR half cells) under standard conditions (OR at 289K OR $1 \mod m^3$)	[1]
	•	voltmeter and salt bridge	[1]
	(III)	A is Ag B is Ag [*] (aq) or AgNOs(aq) C is Pt D is Fe ^{2*} (aq) and Fe ^{3*} (aq)	[3]
		(combination of A and B can be reversed with combination of C and D)	
	(i) (q)	(b) (i) $Ag^{+} + Fe^{2^{+}} \longrightarrow Ag^{-} + Fe^{3^{+}}$	[1]
	(ii)	(ii) $E = E^{+} + 0.059 \log \left[Ag^{+} \right] = 0.80 - 0.03 = 0.77 V$ so $E_{cat} = 0.77 - 0.77 = 0.0 V$	[1] [1]
			[Total: 8]

Page 568 of 703

Patrick Brannac

www.SmashingScience.org

Q# 174/ Topic: Chem 24 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org

5 (a) (i)		any metal with an <i>E</i> ^o value more negative than –0.41 V, e.g. Fe, Mn, Zn, Mg, Cr, A <i>l</i> R: Li/Na/K/Ca/Ba	-
	(ii)	M1: value of E_{cell} correctly calculated (with correct sign) for metal named in (i) M2: E^{b}_{cell} is positive and so reaction is feasible	
(q)		$ \begin{aligned} \mathbf{M1}: & (\mathrm{Cr}_{2}\mathrm{O}_{7}^{2^{-}} + 14\mathrm{H}^{+} + 6\mathrm{e}^{-} \rightleftharpoons 2\mathrm{Cr}^{3^{+}} + 7\mathrm{H}_{2}\mathrm{O}) & E^{a} = +1.33\mathrm{V} \\ (\mathrm{H}_{2}\mathrm{O}_{2} + 2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightleftharpoons 2\mathrm{H}_{2}\mathrm{O}) & E^{a} = +1.77\mathrm{V} \\ E^{a}_{aal} = 0.44\mathrm{(V)} \end{aligned} $	-
		M2: $E_{\infty i}^{\circ}$ (0.44V) is positive (so the reaction is feasible)/ $E^{\circ}(Cr_2O_{7}^{2-}/Cr^{3+})$ is less positive than $E^{\circ}(H_2O_2/H_2O)$	-
(c)		M1: $Cr_{5}O_{7}^{2-}$: ox.no Cr = +6 because -2 = 2 × ox.no(Cr) + (7 × -2) $Cr0_{4}^{2-}$: ox.no Cr = +6 because -2 = ox.no(Cr) + (4 × -2)	-
	_	M2: no change in oxidation number, so reaction is not redox	-
(p)		M1: no. moles Cr deposited = $0.0312/52 = 6.0 \times 10^{-4}$ moles M2: deduction that 6 moles of e ⁻ needed per mole of Cr/ reaction is $Cr_2Or^2 + 14H^+ + 12e^- \rightarrow 2Cr + 7H_2O$ M3: no. moles of e ⁻ = $6 \times 6.0 \times 10^{-4} = (0.125 \times 1)/96$ 500 so t = $(6 \times 6.0 \times 10^{-4} \times 96$ 500)/ $(0.125 \times 60) = 46.3$ min/ 0.772 h/2780 s	
0# 17E / TC	nic. Ch	0# 17E/ Tonic: Cham 24 Al vil Chamister/2015 /u/T7 1 /Banar 1 /0# 5 /uuuuu SmashingScience ord	7

Q# 175/ Topic: Chem 24 ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

_	_	_		_		_		_
4				-	-	-	4	뒤
			Į	7			17	/
				G				
				olution)				
			labelled	e and 1 moldm ⁻³ (s			p	
oltmeter/	s delivery	de labelled	aq)/H ₂ SO ₄ and X ²	m/101kPa pressur	• and X ²⁺ s/e [−]	+ X ²⁺	(1) = 0.0120 th 2 moles Ag 12 × 0.5 = 0.00602	
5 (a) (i) M1: salt bridge and voltmeter/	M2: method of H2 gas delivery	M3: X and Pt electrode labelled	M4: solution H*/HCI(aq)/H2SO4 and X* labelled	$25^\circ C/298 K$ and 1 atm/101kPa pressure and 1 mol dm 3 (solution)	solution - ions or H ⁺ and X ²⁺ and wires - electrons/e ⁻	(b) (i) $X + 2Ag^* \rightarrow 2Ag + X^{2*}$	moles Ag = 1.30/107.9 = 0.0120 1 moles of X react with 2 moles Ag [*] moles of X lost = 0.012 × 0.5 = 0.00602 A, of X = 0.67/0.006 = 111-112 and X = Cd	
(j)	2	2	2	(II) 2	s e	× (i)	(E)	
(a)						(q		

Q# 176/ Topic: Chem 24 ALvl Chemistry/2015/s/T2 1/Paper 4/Q# 5/www.SmashingScience.org

(e) (i) $F = Le$ (ii) $P = Le$ (iii) moles of O ₂ (g) = 130/24000 = 5.417 x 10 ⁻³ mol moles of electrons needed = 4 x 5.417 x 10 ⁻³ or 2.17 x 10 ⁻² mol no. of coulombs passed = 1.2 x 30 x 60 or 2160 C

	-	1		~	-
Q# 177/ Topic: Chem 24 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	(c) (i) E_{cell}^{*} (= 0.80 - 0.77 =) (+)0.03V and Ag ⁺ /Ag or Ag/silver or right	$E_{\rm cell}$ would be less positive/more negative	because the [Ag ⁺ (aq)] (in the Ag electrode) is less than 1.0 mol dm ⁻³	no change	more negative/less positive
2# 177/ Topic: 0	(c) (j)	(11)		(iii)	

	because the [Ag ⁺ (aq)] (in the Ag electrode) is less than 1.0 mol dm ^{-3}	
(iii)	no change	1
	more negative/less positive	-
(iv)	the [Ag*(aq)] will decrease	
	$E_{ m electrode}$ becomes less positive or due to the common ion effect	۲
Q# 178/ Topic: C	Q# 178/ Topic: Chem 24 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
(c) (i)	(c) (i) E^{a} values: $F_{2}/F^{-} = 2.87V$ and $C_{b}/CT^{-} = 1.36V$	٢
	fluorine (has the more positive E^{+} so) is more oxidising	-
(ii)	redox	+
(III)	$CiF + 2KBr \longrightarrow KCi + KF + Br_2$	-
		[Total: 8]
Q# 179/ Topic: 0	Q# 179/ Topic: Chem 24 ALvl Chemistry/2014/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
(I) (q)	(b) (i) components to be added: voltmeter or V saft bridge [must be labelled]	ΞΞ

ice.org		
1/Paper 4/Q# 1/www.SmashingScience	^-	
# 179/ Topic: Chem 24 ALvI Chemistry/2014/s/TZ 1/Paper 4/0	nents to be added: voltmeter or	Ige [must be labelled]
c: Chem 24	component	salt bridge [m
Topi	(i) (i)	
# 179/	(q)	

	5			Ξ
(II)	M1: M2: M3	A and B either C or D	copper (metal) or Cu and iron (metal) or Fe as 1 mol dm ⁻³ /1 M Cu st or CuSO. or CuCL or Cu (NO-), atc. and	ΞΞ
			Fe ²⁺ or FeSO ₄ etc.	[1]
([]])	ц, еп	(iii) $E^{\circ}_{cell} = 0.34 + 0.44 = 0.78 (V)$	0.78 (V)	[1]

(iv) if C is $Fe^{2^{4}}$; (as [C] increases), the E of the $Fe^{2^{4}}/Fe$ increases/becomes more positive/ less negative

so the overall cell potential/ E_{cell} would decrease/become less positive/more negative [1]

or

-

if C is Cu^{2+} ; (as [C] increases), the E of the Cu^{2+}/Cu increases/becomes more positive/less negative [1]

so the overall cell potential/Ecel would increase/become more positive/less negative [1]

Page **570** of **703**

Patrick Brannac

www.SmashingScience.org

A DANA

Page **569** of **703**

Patrick Brannac

/ Topic: Chem 24 ALVI Chemistry/2013/s/T2 1/Paper 4/Q# 1/www.SmashingScience.org). The potential of an electrode compared to that of a standard hydrogen electrode (SHE) or the EMF of a cell composed of the test electrode and the SHE	/www.smashingScience.org a standard hydrogen electrode (SHE) and the SHE	E	Q# 181/ Topic: Chem 24 Alv Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) A = CuSO ₄ B = silver	ΞΞ
all measurement concentrations of 1 mol dm ⁻³ and 298K/1 atm pressure	d 298K/1 atm pressure	[[[(ii) salt bridge voltmeter	ΞΞ
		Ē		[4]
			(b) (i) $0.80 - 0.34 = (+) 0.46 V$	ΕIJ
bydrugen			(ii) If $E_{\text{cell}} = 0.17$, this is 0.29V less than the standard E^{Φ} , so $E_{\text{Agenerode}}$ must = 0.80 – 0.29 = 0.51 V	E
much June			(iii) $0.51 = 0.80 + 0.06\log [Ag^{-1}]$, so $[Ag^{-1}] = 10^{(-0.290.06)} = 1.47 \times 10^{-5} \text{ moldm}^{-3}$ ecf from (ii)	m (ii) [1]
TT I	S I			[3]
	Fe ³ Fe ²		(c) (i) $K_{sp} = [Ag^+]^2 [SO_4^{-2}]$ units = mol ⁵ dm ⁻⁹ ecf on K_{sp}	ΞΞ
	H ₂ and good delivery system Fe ²⁺ /Fe ³⁺ solution labelled		(ii) $[SO_4^2] = [Ag^2]/2$ $K_{sp} = (1.6 \times 10^{-2})^2 \times 0.8 \times 10^{-2} = 2.05 \times 10^{-6} (mol^3 dm^{-9})$	Ē
	platinum electrodes (both) salt bridge and voltmeter H ⁺ or HC <i>l</i> or H ₂ SO ₄	th) [1] ter [1] O4 [1]	Chem 24 ALvl Chemistry/2012/	[2]
	(acid is not sufficient)	icient) [5]	(b) (i) MinO4 + on + ore→ Min + 4n ₂ O + ore (ii) 5:1	Ξ
(i) $E^{\circ} = 0.77 - 0.54 = 0.23$ (V)		[1]	(iii) n(MnO ₄ ⁻) = 0.02 × 15/1000 = 3 × 10 ⁻⁴ (mol)	[1]
(ii) Since E° is positive/ $E^{\circ} > 0$			(iv) $n(Fe^{2x}) = 5 \times 3 \times 10^{-4} = 1.5 \times 10^{-3}$ (mol) ecf from (i) or (ii)	[1]
	rr to the right / forward reaction is favou	ured	(v) $[Fe^{2t}] = 1.5 \times 10^{-3} \times 1000/2.5 = 0.6 \text{ (mol dm}^{-3}) \text{ ecf from (iv)}$	[1]
ecf from (c)(i)		[1]	(vi) In the original solution, there was 0.15 mol of Fe^{3+} in 100 cm ³ . In the partially-used solution, there is 0.06 mol of Fe^{2+} in 100 cm ³ .	
			So remaining $Fe^{3t} = 0.15 - 0.06 = 0.09$ mol. ecf from (v)	E
			This can react with 0.045 mol of Cu, which = 0.045 \times 63.5 = 2.86g of copper. ecf	cf [1]
			(d) (i) $Ca_2Si + 6H_2O \longrightarrow 2Ca(OH)_2 + SiO_2 + 4H_2$	[6] [1]
			(ii) silcon has been oxidised AND hydrogen has been reduced	[1]
				[2]
				[Total: 14]
			Q#.183/ Topic: Chem 24 ALvi Chemistry/2011/w/12.1/Paper 4/Q# 5/www.5mashingScience.org (c) (i) O.N.(carbon) = $+3$ (4 × (-2) + 2x = -2, thus 2x = +6)	E
ww.SmashingScience.org	c	TITBUILISYMS	www.SmashingScience.org Patrick Brannac Page 572 of 703	TI I DNIIISYMS

O# 180/ Topic: Chem 24 ALVI Chemistry/2013/s/T21/Paper 4/Q# 1/www.SmashingScier 1 (a) The potential of an electrode compared to that of a standard hydrog the EMF of a cell composed of the test electrode and the SI or

(c) (i) $E^{\odot} = 0.77 - 0.54 = 0.23$ (V)

www.SmashingScience.org

[2] [max 5] [Total: 14]		[II] to max 3]	r Ni ^{t*} (aq) or [7]	-5.10) (1) [4] olve (1) [2]	[Total: 13]		[7] [Total: 11]
(iv) $\underline{2} K_3 Fe(C_2O_4)_3 \rightarrow \underline{3} K_2 C_2O_4 + \underline{2} FeC_2O_4 + \underline{2} CO_2$ Or $K_3 Fe(C_2O_4)_3 \rightarrow \underline{312} K_2 C_2O_4 + FeC_2O_4 + CO_2$	Q# 184/ Topic: Chem 24 ALvI Chemistry/2010/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) (i) $Cu(s) - 2e^- \rightarrow Cu^{2*}$ (aq) allow electrons on RHS (1) (ii) E^{*} for Ag [*] /Ag is +0.80V which is more positive than +0.34V for Cu^{2*}/Cu , (1) so it's less easily oxidised (owthe) (1)		(vi) The blue colour fades because $Cu^{2*}(aq)$ is being replaced by $Zn^{2*}(aq)$ or $Ni^{2*}(aq)$ or $\Gamma[Cu^{2*}]$ decreases (1) [Cu^{2*}] decreases (1) (b) amount of copper = 225/63.5 = 3.54(3) mol (1) amount of electrons needed = 2 × 3.54 = 7.0819 (7.087) mol (1) no. of coulombs = 20 × 10 × 60 × 60 = 7.2 × 10 ⁵ C no. of moles of electrons = 7.2 × 10 ⁵ /9.65 × 10 ⁴ = 7.46 mol (1)	percentage "wasted" = $100 \times (7.461 - 7.087)/7.461 = 5.01$ (5.0)% (accept 4.98–5.10) (1) (c) E ^a data: Ni ²⁺ /Ni = $-0.25V$ Fe ²⁺ /Fe = $-0.44V$ (1) Because the Fe potential is more negative than the Ni potential, the iron will dissolve (1) [Q# 185/ Topic: Chem 24 ALvl Chemistry/2010/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (c) (i) +2 (1)	(ii) (half) the sulfur goes up by +2, (1) (the other half) goes down by -2 (1) (iii) HC <i>l</i> (can be read into (iv)) (1) (iv) $2SCI_2 + 2H_2O \rightarrow S + SO_2 + 4HCl(1)$	 (v) (+ AgNO₃) white ppt. (1) (+ K₂Cr₂O₇) solution turns green (1)

>la(j(i) Mi1. (rr) = 10 = 0.000910.60 = 1.592 × 10 ⁻³ etcl Mi2. K ₄ = 0.030910.60 = 1.592 × 10 ⁻³ etcl pK ₆ = -0.001 1.592 × 10 ⁻³ etcl S(a)(iii) CH3.CHCICOOHI as a stronger acid (than because electron-withdrawing effect (tr # 190/ Topic: Chem 25 ALVI Chemistry/200 1(e) Mi1. ([Hg ²⁺]) = 1.00 × 10 ⁻⁷ + 454.4 = 2. 1(e) Mi2. (K _m = Hg ²⁺]) ⁻⁷ = 1.00 × 10 ⁻⁷ + 454.4 = 4. M2. K _m = IHg ²⁺][I ⁻⁷] ⁻⁷ = 4(Hg ²⁺) ⁻⁷ = 4. M3: units = mol ² dm ⁻² etcf M3: units = 4.		•
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	dm**) 110ª ecf 81ecf	2
Topic: Chem 25 ALVI Chemit M1: ($[H_{9}^{-1}]$) = 1.00 × 10 ⁻⁷ + 454. M2: $K_{90} = [H_{9}^{-1}][T^{-1}_{-2} = 4[H_{9}^{-1}]^{-1}$ M3: units = mol ² dm ⁻² ecf	CH-LC/COCM is a stronger activity that propanoic acid, owing to higher [H ⁻¹] [1] because electron-withdrawing effect of CI (substituent) AND weakens O—H / actionylate anion stabilised [1]	2
M1: $([Hg^{2*}]) = 1.00 \times 10^{-7} + 454$ M2: $K_{20} = [Hg^{2*}][1^{-1}]^2 = 4[Hg^{2*}]^3$ M3: units = mol ³ dm ⁻⁹ ecf	Q# 190/ Topic: Chem 25 ALvl Chemistry/2022/m/T2 1/Paper 4/Q# 1/www.SmashingScience.org	
M2: K ₄₀ = [Hg ²⁺][I ⁻] ² = 4[Hg ²⁺] ³ M3: units = mol ³ dm ⁻⁹ ecf	$A = 2.20 \times 10^{-10} (\text{mol dm}^3)$	3
M3: units = mol ³ dm ⁻⁹ ecf	= 4.26 × 10 ⁻²⁸ ecf	
Topic: Chem 25 ALvI Chemistry/2022 $ \ M1: K_{ac} (93.8) = [I_3(cyclohexane)] + [I_3(aq)] \\ 93.8 = (0.390/15) + (x/20) $	Topic: Chem 25 ALvl Chemistry/2022/m/T2 1/Paper 4/Q# 1/www.SmashingScience.org Mit. Kec (93.8) = [14(cyclohexane]] = [14(aq)] 93.8 = (0.390/15) + (x/20)	2
M2: mass of $I_2(aq)$, x = 5.54 x 10 ⁻³ (g) ecf	0 ⁻⁴ (g) ecf	1
 K_x would be lower hexan-2-one is more polar (than cyclohexane) hexan-2-one is polar AND cyclohexane is it (therefore) less soluble in hexan-2-one All three correct for two marks 	K _e , would be lower hexan-2-one is more polar (than cyclohexane) OR hexan-2-one is polar AND cyclohexane is non-polar Lis (threefore) less solar AND cyclohexane is non-polar free correct for two marks	2
Fopic: Chem 25 ALvI Chemis	Topic: Chem 25 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
$K_{a} = \frac{\left[H^{+}\right]\left[Cl(CH_{2})_{3}CO_{2}^{-}\right]}{\left[Cl(CH_{2})_{3}CO_{2}H\right]}$	E	-
pKa = - logKa OR /	K ₅ = 10 ^{-p/a} [1]	-
2(a)(iii) [H ⁺] = 10 ^{-4.0} = 1 × 10 ⁻⁴	[1]	1
 [HCJ] = 1×10⁻⁴ ecf 2(a)(iii) K_a = 10^{-4.52} = 3.02×10⁻⁵ 	(11)	2
• $[C_{1}(CH_{2})_{3}CO_{2}H] = (1 \times 10^{-3} \times 10^{-4}) = 3.3 \times 10^{-4}$ $[HC1] = 1 \times 10^{-4}$ $CO_{1}(CH_{2})_{3} CO_{2}H] = 3.3 \times 10^{-5}$	$= (1 \times 10^{-4})^2/3.02 \times 10^{-4}$ = 3.3 \times 10^{-4} = $\frac{1}{1 \times 10^{-4}}$ = 0.302 min 2sf ecf	4
M1 [H ⁺] = 10 ⁻⁵ OR 1×10 ⁻ K ₅ = [H ⁺][A ⁻]/[HA] OR p	[H1] = 10 ⁻⁵ OR 1 × 10 ⁻⁵ Ks = [H1]ka1/[Ha] OR PH = pKa + log [k1]/[H4]	3
M2 moles of A ⁻ = $(1.35 \times 10^{-5})(5/74)/(1 \times 10^{-5})$ moles of A ⁻ = 0.0912	Ξ	
M3 mass of sodium propan	mass of sodium propanoate = 0.0912 × 96 = 8.76 [1] min 2sf ecf	7
all of the (sodium) propanoate (ion) has been protonated / converted to (propanoic) acid/ neutralised	(ion) has been to (propanoic) acid / neutralised [1]	2
H^{\star} is in excess / H^{\star} is 0.1 mol dm $^{-3}$ (from the $H_2SO_4)$ [1]	m ⁻³ (from the H ₂ SO₄) [1]	
Topic: Chem 25 ALvl Chemi	Q# 193/ Topic: Chem 25 ALvl Chemistry/2021/s/TZ1/Paper 4/Q# 8/www.SmashingScience.org	
M1: CH ₃ CO ₂ H and CH ₃ CO ₂ -		3
M2: due to buffering action / acting as a buffer solution M3: CH ₃ CO ₂ H reacts with NaOH / OH ⁻ (forming CH ₃ CC	ting as a buffer solution H/OH- fformina CH.cO ₂ and water)	
OR OH reacts with H* and equ	meson of the state of the second of the second sec	
identifying CH ₃ CO ₂ ⁻ is present t OR CH ₃ CO ₂ ⁻ react with water ft OR titrating a weak acid with a	identifying CH ₃ CO ₂ ⁻ is present (with water) at the equivalence point OR CH ₃ CO ₂ ⁻ react with water forming OH ⁻ OR titrating a weak acid with a strong base	-

8(b)	M1: moles MnO4 ⁺ = 0.025 × 0.0201 = 5.025 × 10 ⁻⁴	3
	moles \/** = 5.025 × 10 ⁻⁴ × 5 / 3 = 8.375 × 10 ⁻⁴	
	M2: moles VO3 ⁻ = 8.375 × 10 ⁻⁴	
	mass of NH4VO ₃ = $116.9 \times 8.375 \times 10^{-4} = 0.0979$ g	
	M3: % Purity of NH4VO3 = 100 \times 0.0979/0.15 = 65.3 must be 3 sf	
Q# 195/ T	Q# 195/ Topic: Chem 25 ALvl Chemistry/2021/s/T2 1/Paper 4/Q# 1/www.5mashingScience.org	

1(b)(i)	1(b)(i) Ca(OH) ₂ (s) ≓ Ca ^{2*} (aq) + 2OH [*] (aq)	Ŧ
1(b)(ii)	$M_{co} = [ca^{2} \text{TOH}]^{2}$ $K_{co} = 4\chi^{2}$ $K_{co} = 4\chi^{2}$	2
	12 X URU (- URD 1000) - 11 X 17 1 - 01 X 001 / 11 101 / 00101 = 1/ - 01 X 100 - 12 X 1200 - 21 X 1200	
1(b)(iii)	less soluble / decreases due to the common ion effect OR decreases as equilibrium in (b)(t) has shifted to the left OR decreases as [OHT] increases causing [Ca ^{2*}](OHT) ²³ to exceed its K _{ro}	-

196/ Topic: Chem 25 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org

7(f)	M1: initial amount of CuHMN-O4SNa = 3.501/204.1 0R 0.0171(48) mol AND amount of HCI added = 0.200 × 60.0 /1000 0R 0.0100 mol	4
	M2: equilibrium amount of CuHuM-OxSNa = 0.0171(H8) - 0.0100 OR 0.0071(H8) mol AND equilibrium amount of ACES = 0.0100 mol ecf	
	M3: K₄ = 10 ⁻⁴ = 1.32 ×10 ⁻⁷ (mol dm ⁻³) [H ⁺] = (1.32 × 10 ⁻⁷)0.01 / 0.0071 (48) = 1.86 × 10 ⁻⁷ OR 1.8465 × 10 ⁻⁷ ecf	
	M4: pH = -log(1.86 × 10 ⁻¹) = 6.73 3sf min ecf	
		[

-

(i)(a)c	ale X(i) kee = [Lpa][[G2]]-	-	
3(e)(ii)	M1: 3.69 × 10 ⁻¹³ = x(2x) ² OR x = 8(3.89 × 10 ⁻¹³ ÷ 4) M2: = 4.5(2) × 10 ⁻⁴ (mol dm ⁻³) min 2sf ecf	2	
# 198/ T	# 198/ Topic: Chem 25 ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org		
4(a)(j)	(pH =) -log(H1) OR -lg(H2) [1]		2
	(K _w =) [H-][OH.] [1]		
4(a)(ii)	[HT] = 1 × 10 ⁻⁴⁴ /0.027 = 3.7037 × 10 ⁻¹³ PH = −log(3.7037 × 10 ⁻¹³)= 12.4 (1] min 3sf		•
4(b)	[H+] = √3.72 × 10 ⁻⁴ × 0.010 = 1.9287 × 10 ⁻⁵ PH = -log(1.9287 × 10 ⁻⁵) = 4.7 [1] min 2sf		-
4(c)(i)	$N_{ex} = 40.335/50) / (0.065/50)$ $N_{ex} = 14.4 (14.38) [1] min 3sf$		~
4(c)(ii)	M1: 14.4 = ((0.935 – x) / 50) / (x / 100) [1] ecf from 4(c)(0) M2: x = 0.114.g [1] min 2sf ecf from M1		2
# 199/ T	;# 199/ Topic: Chem 25 ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org		
8(a)	M1 a solution that resists changes in pH M2 when small amounts of acid and alkali are added to it		2
RINUI	K. = NH:IH1		•

Page 575 of 703

Patrick Brannac

Patrick Brannac

CE VIEW

Rd Marketes Class Clas Class Class <thc< th=""><th></th></thc<>	
MS pit = log(1 4 × (10 ⁻⁴) = 9.86 et on MZ min 2#f 7(a)(0) MT K _a = [Ag7?[CO ⁺] MT K _a = [Ag7?[CO ⁺] MT K _a = [Ag7?[CO ⁺] 7(a)(0) X2 unths = nov[dn ⁺) MT K _a = [Ag7?[CO ⁺] MZ unths = nov[dn ⁺) 7(a)(0) X2 unths = nov[dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) S3 × 10 ⁺² mol dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) S3 × 10 ⁺² mol dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) S3 × 10 ⁺² mol dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) S3 × 10 ⁺² mol dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) S3 × 10 ⁺² mol dn ⁺) min 2#f MZ unths = nov[dn ⁺) 7(a)(0) MT E=Pe + 0.05800g12 × 10 ⁺¹ AND as the K _a is greater than one ecf on K _a . 6(b)(0) MT E=P + 0.056005 + H ₂ O = 0.05005 + H ₂ O AND for the nove MK and the nove 6(b)(0) PK = -105(CO5 + H ₂ O CO + H ₂ O CO + H ₂ O CO + H ₂ O 6(b)(0) PK = -105(CO5 + H ₂ O CO + H ₂ O CO + H ₂ O CO + H ₂ O	
Q# 20/Y Topic: Chem 25 ALVI Chemistry/2020/5/T2 1/Paper 4/Q# 7/www.Smash 7(a)(0) Mt K ₆ = [4gTF[C0, ²] N2 units = m0 ² dm ² N2 units = m0 ² dm ² 7(a)(0) x = 4k ₀ .3 x 10 ⁻⁴ t = 1,16 x 10 ⁴ (mol dm ²) min 2st 7(a)(0) (82 x 10 ⁻⁴ = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (83 x 10 ⁻⁶ = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (83 x 10 ⁻⁶ = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (81 x = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (81 x = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (81 x = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (81 x = 0.058]oog[/42 x 10 ⁻⁴ (mol dm ²) min 2st 7(a)(0) (81 x = 0.0500; 4 m) 8(b)(0) M2 z ⁻⁴ (0.7010 ⁻⁴ m) 8(b)(0) p/6 x 13 HO ₂ COO; + H, HO 9(b)(0) p/6 x - 109COO; 4 m O ₂ COO; + H, HO 9(b)(0) p/6 x - 109G 9(b)(0) p/6 x - 109G 9(b)(0) p/6 x - 109G 9(0) p/6 x - 100COO; 4 m O ₂ COO; + H, HO 9(a) m10D ⁻¹ = 2.54 x 10 ⁵ 9(a) m10CCOO; 4 m	
T(a)(b) Mf $\kappa_{ac} = [aq_T]C(Cr^2]$ T(a)(b) Mz units = mol ² dm ² T(a)(b) Mz units = [L0.5F]C(Cr ²] T(a)(b) Mz = 2.33 x 10 ⁻⁴ dmol dm ²) min 2st T(a)(b) Mz = 2.00.0 0.0580(af 12 x 10 ⁻¹) = 0.57 V ecf from (a)(i) min 2st C(C) ² T = 2.22 x 10 ⁻¹ = 0.05 T/C 2020/S/TZ 1/Paper 4/Chf 6/Www.Smash Qf 201/ Topic: Chem 2S AUV Chemistry/2020/S/TZ 1/Paper 4/Chf 6/Www.Smash Qf 201/ Mz = 4.07 x 10 ⁻¹ + 1.56 x 10 ⁻² = 0.52 CoC ₂ + H ₁ O ⁻² Qf 201/ Mz = 4.07 x 10 ⁻¹ + 1.56 x 10 ⁻³ = 0.52 CoC ₂ + H ₂ O ⁻² Qf 201/ Mz = 1.05 x 10 ⁻⁴ = 0.50 CoC ₂ + H ₂ O ⁻² Qf 201/ Mz = 1.05 x 10 ⁻⁴ = 0.50 CoC ₂ + H ₂ O ⁻² Qf 4.18 HO.50 CoC ₂ = -0.50 COC ₂ + H ₂ O ⁻² Qf 4.19 HO.50 CoC ₂ + H ₂ O ⁻² Mz = 1.05 x 10 ⁻⁴ Mz = 1.00 CoC ₂ + H ₂ O ⁻²	_
Normality M2 units = moth dm ⁴ 7(a)(i) $x = 4xb_{i3} x t D^{x} x_{2} = 2.33 x 10^{x} (mot dm^{2}) min 2st 7(a)(ii) 53 x t D^{x} x_{2} = 1.16 x 1D^{x} x_{2} = 2.33 x 10^{x} (mot dm^{2}) min 2st 7(a)(iii) 53 x t D^{x} x_{2} = 1.05 FyrCo, 71 7(a)(iii) 53 x t D^{x} x_{2} = 1.05 FyrCo, 71 7(a)(iii) 53 x t D^{x} x_{2} = 0.05 FyrCo, 71 7(a)(iii) 63 x t D^{x} x_{2} = 2.33 x 10^{x} t a - 0.57 V ect from (a)(ii) min 2st Q4 201/ Topic: Chem 25 AUV Chemistry/2020/5/TZ 1/Paper 4/QH 6/Www.5mash Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(ii) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.07 x (0^{2}/11.5k) (0^{2} = 2.23) Q(b)(i) Mx = 4.128 x 10^{2} Q(b)(i) Mx = 1.23 + 10^{2} Q($	2
$T(a)(B)$ $x = 1, b(x, x + 0^{-4} + 1, f(x, x + 0^{-4} + 1, f(x) + 1, f(x$	
Add 1= 1.16 x 10 ² x 2 = 2.33 x 10 ⁶ (mol dm ²) min 26f 7(a)(ii) 6.3 x 10 ² x 6.05F(CO2H) 7(a)(iii) 6.3 x 10 ² x 10 ² (mol dm ²) min 26f 7(a)(iii) ME E=P + 0.058(ogf(3) ME E=P + 0.058(ogf(3) ME E=P + 0.058(ogf(3) ME E=D = 0.058(ogf(3) ME E=P + 0.058(ogf(3) ME E=D = 0.058(ogf(3) ME E=P + 0.058(ogf(3) ME E=D = 0.058(ogf(3) ME = 0.058(ogf(3) ME E=D = 0.058(ogf(3) AND as the K _a is greater than one ect on K _a 6(b)(i) K _a = 4.07x(0 ² /1.78x(0 ² = 22.9 6(b)(i) S ^a box ticked [0 the right] AND as the K _a is greater than one ect on K _a 6(b)(i) K _a = 1.9 HO-CCO ₂ = HO-CCO ₂ + H ₂ O CO 0 R HO-CCO ₂ = HO-CCO ₂ + H ₂ O OR HO-CCO ₂ + H ₂ O 6(g)(i) ME PI = -100CJ CO ME PI = -100CJ CO HO-CCO ₂ + H ₁ O 6(g)(i) ME D ₂ = -105(CO H ₂ O 6(g)(i) ME D ₂ = -105(CO H ₁ O 6(g)(i) ME D ₂ = -105(CO H ₁ O 6(g)(ii) ME D ₂ = -11DO-J G(g)(ii) ME D ₁ = -1(35 x 10 ⁴ = 3.67 x 10 ⁶	-
T(a)(iii) (5.3 x, 10 ^{-1/2} = 0.05)F(COrP1) T(a)(iv) ME E=P + 0.059(log/4y1 MR E=P + 0.059(log/12 x, 10 ⁻¹) = 0.57 V ecf from (a)(ii) MR E=P + 0.059(log/12 x, 10 ⁻¹) = 0.57 V ecf from (a)(ii) MR E=P + 0.059(log/12 x, 10 ⁻¹) = 0.57 V ecf from (a)(ii) MR E=P + 0.059(log/12 x, 10 ⁻¹) = 22.9 (b)(i) (b)(i) 7^{μ} box ticked [to the right] AND 6(b)(ii) 7^{μ} a + 10.5CCO2 ⁺ + H ₂ O = -0.5CCO2 ⁺ + H ⁺ 6(g)(ii) 7^{μ} a - 10^{-2} CO2.5 6(g)(ii) 7^{μ} a - 10^{-2} COD 6(g)(ii) 7^{μ} a -	
T(a)(N) Mf $E=E^{a}$ 0.058/log(1/2 × 10 ⁻³) = 0.57 V eff from (a)(1) min 2sf Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smashl Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smashl Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smashl Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smashl Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smashl Q# 00010 $K_{ai} = 4.07 \times 10^{-3} t_{20} = 0.05 \times 0.05 \times 10^{+1}$ A(b)(m) p/c_4 1:9 H0.5CC02; $\pm H_2O = -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ A(D) p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ A(D) p/c_4 1:9 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:1 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ Distribution p/c_4 1:1 H0.5CC02; $\pm -0.5CC02; \pm H_1^{-1}$ A(D) p/c_4 1:1 H0.7 H0.5 p/c_6 B(g)(m) M/c_4 = $-\log (12, 2, 2)/2$ D/c_6	-
M2 E=0.80 + 0.059log(1.2 x 10 ⁻⁵) = 0.57 V ecf from (a)(ii) min 2sf Q# 201/ Topic: Chem 25 ALVI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.Smash 6(b)(i) $%_{4.8} = 4.07x10^{-3}1/78x10^{-4} = 22.9$ 6(b)(iii) $p''_{6.4} = 4.07x10^{-3}1/78x10^{-4} = 22.9$ 6(b)(iii) $p''_{6.4} = 4.07x10^{-3}1/28x10^{-4} = 20.5COS_7 + H_9O^ ecf on K_{4.8}$ 6(b)(iii) $p''_{6.4} = 19$ H0.5COS_4 + H_4O = H0.5COS_7 + H_9O^- oR $OSCOS_1 + H_2O = -0.5COS_7 + H_9O^-$ 6(b)(iv) $p''_{6.4} = 19$ H0.5COS_7 + $E_{10} = -0.5COS_7 + H_9O^ oR$ $HO.5COS_7 + H_2O = -0.5COS_7 + H_9O^-$ 6(g)(i) $p''_{6.4} = 19$ H0.5COS_7 = $-0.5COS_7 + H^+$ $E(D)(N_1 - D'_{6.4} = 100/4)^ R_1 = 10^{-3}$ 6(g)(ii) $p''_{6.4} = 100/4$ R_6 R_7 R_7 6(g)(ii) M_1 [D^-] = $\sqrt{1.35}$ x 10^{16} = 3.67 x 10^9 R_7 R_7 6(g)(ii) M_1 [D^-] = $\sqrt{1.35}$ x 10^{16} = 3.67 x 10^9 R_7 R_7 6(g)(ii) M_1 [D^-] = $\sqrt{1.35}$ x 10^{16} = 3.67 x 10^9 R_7 R_7 6(g)(ii) M_1 [D^-] = $\sqrt{1.35}$ x 10^{16} = 3.67 x 10^9 R_7 R_7 6(g)(iii) M_1 [D^-] = $\sqrt{1.35}$ x 10^{16} = 3.67 x 1	2
Q4 201/ Topic: Chem 25 ALVI Chemistry/2020/5/TZ 1/Paper 4/Q# 6/www.Smashi 6(b)(i) $K_{ee} = 4.07 \times 10^{+1}.78 \times 10^{+2} = 22.9$ 6(b)(ii) $p''_{ee} = 4.07 \times 10^{+1}.78 \times 10^{+2} = 22.9$ 6(b)(iii) $p''_{ee} = 4.07 \times 10^{+1}.78 \times 10^{+2} = 22.9$ 6(b)(iii) $p''_{ee} = 4.07 \times 10^{+2} = 22.9$ 6(b)(iii) $p''_{ee} = 1.07 \times 10^{+1} = 4.0 \times 0.000 \times 10^{-1} = 1.05 \times 0.000 \times 10^{-1} = 1.05 \times 0.000 \times 10^{-1} = -0.5 \times 10^{-1} = 3.67 \times 10^{-1} = 3.67$	-
	-
	-
	2
	1
	-
	2
0000	V
$5(a)$ Mit S(a) COD11 COD11 more additic than phenol AND because the O-H bond in add is weaker OR carboxylate ion is more stable MI MI AND because the O-H bond in add is weaker OR carboxylate ion is more effect of C=0/ OR MI a solution which resists changes in PH / controls pH / keeps pH within a small range $5(b)(i)$ M1 a solution which resists changes in PH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $5(b)(ii)$ M1 a solution which resists changes in pH / controls pH / keeps pH within a small range $M2$ when small anounts of H * 0.0000) = 3.12 \times 10^{-5} $M2$ pH = -loge (3.112 \times 10^{-5} = 4.6(1) min 2sf M10^{-5} = 4.6(1) min 2sf $M1$ pH = -loge (3.112 \times 10^{-5} = 0.6(1) min 2sf M10^{-5} = 0.6(1) min 2sf $M2$ chall c+ 1 +	
M2 M2 0 H2 0 H2 0 H2 0 H2 0 Reachorylate finn / annois more stable AND due biodecoalisation of muus effect of C=0.1 0 Reachorylate finn / annois more stable AND due biodecoalisation of muus effect of C=0.1 5(b)(i) M1 a solution which resists changes in pH / controls pH / keeps pH within a small range 5(b)(ii) M1 as of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M2 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M2 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M3 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M3 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M3 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M3 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M2 mol of galitic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M2 mol of 0.012 (0) mol M2 M3 mol of 0.012 (0) mol M2 M3 M2 M3 M1 M2 M3 M1 M2 M3 M2 M3/WWW.Smasi M4 M3 M0 M3 M3	8
$5(b)(i)$ Mf a solution which resists changes in pH/ controls pH/ keeps pH within a small range $5(b)(i)$ M2 when small amounts of H* or OH* are added $5(b)(i)$ M1 no. of mol of gallio acid = 2.04 + 170.0 OR 0.012(0) mol $R2$ $R4$ $R4/H4/[RJ]$ = 3.88 × 10 ⁺⁵ × 0.012(0.260 + 0.0600 $B1.2$ $R1$ $R2$ $R4/H4/[RJ]$ = 3.88 × 10 ⁺⁵ × 0.012(0.260 + 0.0600 $B1.2$ $R1$ $R2$ $R2$ $R4/H4/[RJ]$ = 3.88 × 10 ⁺⁵ × 0.012(0.260 + 0.0600 $B1.2$ $R10^+$	
5(b)(ii) M1 no. of mol of gailic acid = 2.04 + 170.0 OR 0.012(0) mol M2 M2 M3 M3 M4 M3 M4 M3 M4 M3 M4 M3 M3 M3 M3 M3 M4 M4 M4 M3 M4 M3 M4 M3 M4 M4 <thm< td=""><td>2</td></thm<>	2
$\label{eq:relation} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	e
$\label{eq:constraint} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
5(b)(iii) M1 C;HeOs + OH ⁻ → C;HeOs + H ₂ O OR H ⁺ + OH ⁻ → H ₂ O AMD C;HeOs → C;HeOs + H ⁻ M2 C;HsOs + H ⁺ → C;HeOs C;HeOs + H ⁻ → C;HeOs → C;HeOs + H ⁻ M2 C;HsOs + H ⁺ → C;HeOs C;HeOs + H ⁻ → C;HeOs → C;HeOs → C;HeOs + H ⁻ Q1 C;HsOs + H ⁻ → C;HeOs → C;HeOs → C;HeOs + H ⁻ C;HsOs + H ⁻ → C;HeOs → C;HeOs → C;HeOs + H ⁻ Q1 C;HsOs + H ⁻ → C;HsOs → C;HsOs + H ⁻ C;HsOs + H ⁻ → C;HsOs → C;HsOs + H ⁻ Q1 C;HsOs + H ⁻ → C;HsOs + H ⁻ → C;HsOs + H ⁻ C;HsOs + H ⁻ → C;HsOs + H ⁻ Q2 Topic: Chem 25 Chu Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.Smasi 30001 K _m = C;Hs ⁻ C;HsOs + H ⁻ C;HsOs + H ⁻ C;HsOs + H ⁻	
M2 C;He ₁ O ₅ + H ⁻ → C;He ₀ O ₅ Q# 203/ Topic: Chem 25 ALVI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.Smasi 30000 K _w = {A ² TIP ⁻¹ 3	2
Q# 203/ Topic: Chem 25 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.Smasl 3/04010 K_m=[APTHT-]3	
	-
+	•

Q# 204/ T	Q# 204/ Topic: Chem 25 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	[
5(a)(i)	Kep = [Ag*]]{S*2]	-
5(a)(ii)	 [S²⁺] = 1.16 × 10⁻¹⁷ [Ag²] = 2.32 × 10⁻¹⁷ K_{ap} = 6.2(4) × 10⁻⁸¹ minimum 2 sig. fig. 	2
	correct answer scores 2 marks Award 1 mark for two points, award 2 marks for three points	
5(a)(iii)	M1: moles Ag ₂ S = 1 / 247.9 = 0.00403 moles [1] 2sf min	2
	M2: 1.16 × 10 ⁻¹⁷ = 0.0040 / V so V = 3.5 × 10 ¹⁴ (dm ³) [1] 2sf min ecf on M1	
	correct answer scores 2 marks	
5(b)(i)	$\mathbf{M1}: [\mathbf{H}^*] = \sqrt{2.0 \times 10^{-5} \times 0.20} \\ [\mathbf{H}^*] = 2.0 \times 10^{-5} (1.9976 \times 10^{-5})$	2
	M2: pH = 4.7 (4.699) minimum 2 sig. fig. min	
	correct answer scores 2 marks	
5(b)(ii)	M1: Both equilibria correctly stated moles KOH = 0.005 × 0.2 = 1 × 10 ⁻³ moles HOBr(em) = 4 × 10 ⁻³ = 4 × 10 ⁻³ moles BrO'(eqm) = 4 × 10 ⁻³ - 1 × 10 ⁻³ = 3 × 10 ⁻³	2
	M2: ratio [OBr_](HOBr] = 1/3 [H1] = 3 × 2.0 × 10° ⁴ = 6 × 10 ⁻⁵ PH = 8.2(2)	
	correct answer scores 2 marks	
Q# 205/ T	Q# 205/ Topic: Chem 25 ALvI Chemistry/2019/s/T2 1/Paper 4/Q# 7/www.SmashingScience.org	
7(d)(ī)	$K_{a2} = \frac{[H^*][So_a^{a^2}]}{[HSo_a^{a^2}]}$	-
(iii)(p)/	K _a of H ₂ SO ₄ is larger than K _{a2}	
7(e)	M1: [H1] = 10 ⁻²⁴⁰ = 1.26 × 10 ⁻³ M2: K ₅ = [1.26 × 10 ⁻³ P./0.025 = 6.3 × 10 ⁻⁶ (mol dm ⁻³)	2
Q# 206/ T]
3(a)(i)	['H]gol = Hq 1M	2
	M2 Ks = [H1][A](HA]	
3(a)(ii)	M1A-+H*→HA OR NaA+H*→HA+Na*	2
	M2 HA + OH ⁻ → H ₂ O + A ⁻	
3(b)	remaining n(HC10) = 0.17 – 0.03 = 0.14 mol (dm ⁻³)	3
	pH = -log(1.35 × 10") = 6.87/ 6.9 OR pH = 7.54 + log(0.03/0.14) = 6.87	
Q# 207/ T	Q# 207/ Topic: Chem 25 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	Γ
2(b)(i)	K ₂₀ = [Mg ²⁺ (aq)][OH+(aq)] ² OR K ₂₀ = (2.0 × 10 ⁻⁴)(4.0 × 10 ⁻⁴) ²	2
	= 3.2 × 10 ⁻¹¹	
2(b)(ii)	M1 (white) ppt./ solid (of BaCO ₃) will appear	2
	M2 due to the common ion effect OR the BacO ₂ (s) = Ba ² (aq) + CO ₂ ²⁻ (aq) equilibrium shifts to the left OH 308/Tonic: Cham 25 A101 Chamicter/J018/w/1771/Daner / A0H A/www. SmachingScience and	
4(b)(i)	LHOILHI (= "X)	-

Patrick Brannac


www.SmashingScience.org

	effect of increasing temperature	decreases	stay the same	increase		
	H	>				
	ratio of [H ⁺]:[OH]		`			
4(c)	$ \begin{bmatrix} H^{\prime}] = 10^{-12.8} = 5.62 \times 10^{-14} \ [1] \\ [OHT] = R_{\rm e} [H^{\prime}] = 1.0 \times 10^{-16} [5.62 \times 10^{-16} \\ [OHT] = 0.18 \ [0.178) \ [mol dm^{-3}] \ [1] \ ect \ correct \ answer \ scores \ [2] \ [0HT] = 0.18 \ [0.178) \ [0.178) \ [mod m^{-3}] \ [1] \ ect \ correct \ answer \ scores \ [2] \ [0HT] = 0.18 \ [0.178) \ [0HT] = 0.18 \ [0.178) \ [0HT] = 0.18 \ [0HT] =$	0 ⁻¹⁴ [1] 0 ⁻¹⁴ /5.62 × 10 ⁻ 1 dm ⁻³) [1] ec	-14 f correct answer si	cores [2]		2
4(d)	HCO3 + H ⁺ → H ₂ CO3 0 H ₂ CO3 + OH ⁻ → HCO3	→ H ₂ CO ₃ OR HCO ₃ ⁻ + H ⁺ → HCO ₃ ⁻ + H ₂ O[1]	° CÒ ↑	+ H ₂ O [1]		2
4(e)(i)	$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+[1]$ acid + base = base + acid [1]	CH ₃ COO ⁻ + H	H30*[1]			2
4(e)(ii)	M1 moles NaOH = 0.15	× 20/1000 = 0	.0030 AND initial	moles CH ₃ CO(M1 moles NaOH = 0.15 × 20/1000 = 0.0030 AND initial moles CH ₃ COOH = 0.25 × 30/1000 OR 0.0075 [1]	4
	M2 equilibrium moles CH ₃ COOH = 0.0045 AND equilibrium moles CH ₃ COONa = 0.0030 [1]	H3COOH = 0.0	045 AND equilibri	um moles CH ₃ (COONa = 0.0030 [1]	_
	M3 [CH ₃ COOH] = 0.00450.05 = 0.090 AND [CH ₃ COONa] = 0.0030.05 = 0.060 [H ²] = K ₆ × [CH ₃ COOHJ](CH ₃ COONa] = 2.625 × 10 ⁻⁶ [1]	5/0.05 = 0.090 × [CH3COOH]) AND [CH3COON; [CH3COONa] = 2.	a] = 0.003/0.05 625 × 10 ⁻⁶ [1]	e = 0.060	đ
	M4 pH = -log[H ⁺] = 4.6 [1] correct answer scores [4]	 correct and 	swer scores [4]			
4(f)(i)	end point = 28 cm ³					-
4(f)(ii)	M1 reaction M bromothy	/mol (blue) / br	romocresol (green) AND reaction	M1 reaction M bromothymol (blue)/bromocresol (green) AND reaction N bromothymol (blue)/thymolphthalein [1]	2
	M2 (both indicators have	e) a pH range/	colour change wit	thin / in end-po	M2 (both indicators have) a pH range / colour change within / in end-point / vertical region / sharp fall of the graph [1]	
Z09/ T	opic: Chem 25 ALvI C	hemistry/2	018/w/TZ 1/P	aper 4/Q# 1	Q# 209/ Topic: Chem 25 ALvl Chemistry/2018/w/T2 1/Paper 4/Q# 1/www.SmashingScience.org	
1(d)(i)	M1 ratio of the concentrations of solute in two (immiscible) solvents [1] M2 at equilibrium [1]	ations of solut	te in two (immiscib	ile) solvents [1]		2
1(d)(ii)	Kpartition = (x/10)/(1.25-x/50) [1] 4.75(1.25-x) = 5x x = 5.9375/9.75 = 0.61 g [1]		correct answer scores [2]			2
Q# 210/ T	opic: Chem 25 ALvl C	hemistry/2	:018/s/TZ 1/Pa	per 4/0# 1/	Topic: Chem 25 ALvl Chemistry/2018/s/TZ 1/Paper 4/O# 1/www.SmashingScience.org	-
1(c)(i)	the reaction produces sodium hydroxide / hydroxide ions / OH ⁻ ions	dium hydroxid	e / hydroxide ions /	OH ^r ions		-
	the hydroxide ions can receive / accept H^{\star} ions / protons	eceive / accept	: H* ions / protons		1	1
1(c)(ii)	Calculation of Na ₂ O moles 3.10 g / 62 OR 0.05	es 3.10g/62	OR 0.05			-
	Calculation of [OH] $0.05 \times (2/0.400) = 0.25 \text{ mol dm}^{-3}$	5 × (2 / 0.400) =	= 0.25 mol dm ⁻³			1
	Calculation of pH -log 0.25 = 0.60 14 - 0.60 = 13.40	.25 = 0.60				1
211/T	opic: Chem 25 ALvI C	hemistry/2	:018/m/TZ 2/P	aper 4/Q# 4	04 211/ Topic: Chem 25 ALVI Chemistry/2018/m/TZ 2/Paper 4/0# 4/www.SmashingScience.org	
4(a)(i)	(ratio of the) concentrations of a solute in two solvents / liquids at equilibrium	ins of a solute	in two solvents / liq	uids at <u>equilibri</u>	m	1
4(a)(ii)	$ \begin{array}{l} [NH_3]_{\text{bet}} = 0.1 \times 12.5 /10 = 0.125 \text{mol}\text{dm}^{-3} \\ [NH_3]_{\text{chc2}} = 0.1 \times 13 /25 = 0.052 \text{mol}\text{dm}^{-3} \\ \text{ratio} = K_{\text{partun}} = 0.052 /0.125 = 0.416 \end{array} $	= 0.125 mol dm = 0.052 mol dr 1.125 = 0.416	r_ ^r _			2
4(a)(iii)	${\it K}_{\text{correct}}$ will be larger for butylamine than for ammonia butylamine contains a hydrophobic/non-polar (C4) group	utylamine thar drophobic / noi	n for ammonia n-polar (C₄) group			2
Q# 212/ T	opic: Chem 25 ALvI C	hemistry/2	018/m/TZ 2/P	aper 4/Q# 3	Topic: Chem 25 ALvI Chemistry/2018/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org	
3(a)(i)	$ \begin{split} & [H^*] = \sqrt{[K_{\Delta^*} \ c)} = \sqrt{[6.2 \times 10^{-10} \times 0.1)} \\ & [H^*] = 7.9 \times 10^{-6} \\ & pH = -log[H^*] = 6.1(0) \end{split} $	10 ⁻¹⁰ × 0.1)				2
Q# 213/ T	opic: Chem 25 ALvI C	hemistry/2	018/m/TZ 2/P	aper 4/Q# 1	Topic: Chem 25 ALvI Chemistry/2018/m/T2 2/Paper 4/Q# 1/www.SmashingScience.org	
1(b)(i)	K ₂₀ = [Sr ²⁺][OH ⁻] ²					1
1(b)(ii)	$K_{sp} = (3.37 \times 10^{-2}) \times (6.74 \times 10^{-2})^2 = 1.5 \times 10^{-4}$ units: mol ³ dm ⁻⁵	.74 × 10 ⁻²) ² = 1	1.5 × 10 ⁻⁴			2
	-		ć			
<u>www</u>	www.SmashingScience.org		הא	trick Drong		

Q# 214/ Topic: **Chem 25** ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

214/Tc	24 214/ Topic: Chem 25 ALVI Chemistry/2017/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org	
2(a)	it/solubility decreases down the group and \mathcal{K}_{zs} decreases	1
2(b)(i)	$MgCO_2(s) \Rightarrow Mg^{2*}(aq) + CO_3^{2*}(aq)$	1
2(b)(ii)	(white) solid appears/precipitation (of MgCO ₃)	-
	as $[CO_3^2]$ increases shifting equilibrium to the LHS (precipitating out MgCO ₃)	1
2(c)	solubility = $\sqrt{1.0 \times 10^6} = 3.16 \times 10^{-3} \text{ mol dm}^{-3}$	-
	solubility= $3.2 \times 10^{-3} \times 64.3 = 0.27 \text{ g dm}^{-3}$	-
215/To	Topic: Chem 25 ALvl Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
2(a)(i)		++
	16 electrons on each diagram	-
2(a)(jj)	HNC = 115–125° AND NCO = 180°	-
2(a)(iii)	cyanic acid, because it's a stronger /higher bond enthalpy / triple / C≡N / more electrons involved bond	٣
2(b)(i)	$[H^{-}] = \sqrt{[[HNCO]K_{a}]} = \sqrt{[0.1 \times 1.2 \times 10^{-4}]} \text{ or } 3.46 \times 10^{-3}$	٣
	pH = log [H ⁺] = 2.6 (2.46)	٣
2(b)(ii)	Ma_CO3 + 2(NH2)2CO → 2MaNCO + CO2 + 2MH3 + H5O	۲
2(c)(i)	$(n(OH)$ at start = $(2 \times 0.1 \times 30)/1000 = 6 \times 10^{-3}$ mol) ($n(OH)$ reacted = $(0.1 \times 20)/1000 = 2 \times 10^{-3}$ mol) $n(OH)$ remaining = $(6-2) \times 10^{-3} = 4 \times 10^{-3}$ mol, $(in 50 \text{ cm}^3)$	-
4	so $[OH]_{ped} = (4 \times 10^{-3} \times 1000) / 50 = 0.08 \text{ mol dm}^{-3}$	-
2(c)(ii)	$[H^{-1}] = K_{w}/[OH^{-1}] = (1 \times 10^{-14})/0.08 = 1.25 \times 10^{-13} \text{ mol dm}^{-3}$	1
	so pH = -log(1.25 × 10 ⁻¹³) = 12.9	1
2(c)(iii)	curve starts at 2.46/2.5	1
	vertical portion (end point) at vol added = 10.0 cm ³	1
	finishes at pH = 12.9	1
2(d)(j)	monodentate: (a species that) forms one dative/ coordinate bond	1
	ligand: a species that uses a lone pair of electrons to form a dative / coordinate bond to a metal atom / metal ion	1
2(d)(ji)	[Ag(NCO),J] or [Ag(OCN),J] correct formula	-
	correct charge	٢
2(e)(i)	n(BaCO ₃) =1.66 / 197.3 = 8.4(1) × 10 ⁻³ mol	1
2(e)(ii)	$n(\text{RNCO}) = 8.41 \times 10^{-3} \text{ mol}$, so $M_{\text{e}} = 1/(8.41 \times 10^{-3}) = 119$	٢
2(e)(iii)	molecular formula = C;H ₆ NO	-
2(e)(iv)	NH ₂	-
	$\langle \bigcirc \rangle$	
		_

 Q# 216/ Topic: Chem 25 ALVI Chemistry/2017/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org

 4(d)(i)
 M₆ = (pNHa)²((pNa)(pHa)³

-

	$1.45 \times 10^{-5} = (pNH_3)^2 / 20 \times 60 \times 60$		
	pNH ₃ = 7.81		-
Q# 217/ To	Q# 217/ Topic: Chem 25 ALvI Chemistry/2016/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org 7(a) moles of thiosuftate = 0.1×20.8/1000 = 2.08×10 ⁻³	-	
	moles of ClO ⁻ in 25 cm ³ portion = $2.08 \times 10^{-3}/2 = 1.04 \times 10^{-3}$	-	
	(moles of ClO ^{$-$} in 250 cm ³ =1.04 × 10 ⁻²)		
	concentration of ClO ⁻ = $1.04 \times 10^{-2} / (10/1000) = 1.04$ (moldm ⁻³)	-	e
7(b)(i)	starch	-	-
7(b)(ii)	blue OR black to colourfess	-	.
7(b)(iii)	towards/close to the end-point of the titration/when the solution goes yellow	-	-
7(c)	moles of O_2 = 82/24000 = 3.42 × 10 ⁻³ = moles CAO ⁻ ions	-	
	concentration of ClO ⁻ = 3.42×10^{-3} /(5/1000)= 0.68/0.683/0.684 (mol dm ⁻³)	-	2
Q# 218/ To	0# 218/ Topic: Chem 25 ALvl Chemistry/2016/w/TZ 1/Paper 4/0# 7/www.SmashingScience.org		Т
7(d)(i)	$K_c = \frac{[C_2 + J_1 V_0 O_3][H + L O_2]^2}{[C_2 - L J_1 V_2 O_3][H + L O_2]^2}$	-	-
7(d)(ji)	(position of eqm) moves to the right/forward reaction predominates/more HCtO made (as [HCtO] decreases)	-	
	no effect on K_c	-	2
(iii)(p) <u>/</u>	2HCIO→2HCI+O2		T
	OR 2HC/D→H ₂ +C ₂ +O ₅	- 4	-
7(e)(i)	addition of acid: H ⁺ + HCO ₃ ⁻ \rightarrow H ₂ CO ₃	-	
	OR H"+HC03 ⁻ →H ₂ O+CO ₂		
	addition of base: $OH^- + H_2CO_3 \rightarrow HCO_3^- + H_2O_3^-$	-	-
	OR H ⁺ +OH ⁻ \rightarrow H ₂ O and position of eqm moves to the right	_	
	OR OHT+HCO3T → CO3t + H±O		c
7(e)(ii)	<u>الإ = (الم)الباده، 1/ (المحمر)</u>		•
	[H ⁺]=(7.94×10 ⁻⁷)×1/9.5=8.36×10 ⁻⁵	÷	
			-

Q# 219/ Topic: Chem 25 ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

101 /617 #7	4 219/ 10pic: Unem 25 ALVI Unemistry/Z016/5/ 12 1/Paper 4/Q# 5/WWW.SmasningScience.org	Ī
5 (a) (i)	pK _a = -logK _a	[1]
(E)	diacids are more acidic than CH ₂ O2,H D4C- group is electron-withdrawing, stabilising the monoanion OR HO ₂ C- croup is electron-withdrawing, weakening the O-H bond OR monoanion is stabilised by H-bonding OR monoanion is stabilised by H-bonding an increases, the electron-withdrawing group is further away from the ionising CO ₂ H group OR the (intervening) alky groups deschiles the anion	EEE
(II)	removing H* from an anion is not electrostatically favourable	[1]
(i) (q)	a solution which resists changes in pH when small amounts of H ⁻ or OH ⁻ are added	ΞΞ
(II)	H0₂CCH₂CH₂CO₂Na + H' → H0₂CCH₂CH₂CO₂H + Na` H0₂CCH₂CH₂CO₂Na + NaOH → NaO₂CCH₂CH₂CO₂Na + H₂O	ΞΞ
		[Total: 9]
2# 220/ Top	Q# 220/ Topic: Chem 25 ALVI Chemistry/2016/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	-
3 (a)	$\label{eq:constraints} \begin{split} K_{\mathcal{K}} &= \{p(CS_2) \times (p(H_2))^2 \rangle / \left([p(H_2S))^2 \times p(CH_4) \right) \\ & \text{units: atm^2} \text{OR } Pa^2 \end{split}$	E
(i) (q)	$p(H_2) = 196 atm$ $p(H_2) = 8 atm$	ΞE
(II)	$K_p = (2 \times 8^4) / (196^2 \times 98) = 2.176 \times 10^{-3}$	[1]
2# 221/ Top	Q# 221/ Topic: Chem 25 ALVI Chemistry/2016/m/TZ 2/Paper 4/Q# 4/www.SmasehingScience.org	
(ii)	(ii) acid/proton donor/acidic behaviour	-
(c) (i)	(c) (i) equilibrium constant (for the solution) of a solute between two (immiscible) solvents	-
9	or ratio of the concentration of the solute in (each of the) two solvents	
Г	or ratio of the solubility of the solute in (each of the) two solvents	
)		-
	x = 0.0036g	-
		[Total: 10]
2# 223/ Top 4 (a)	Q# 223/ Topic: Chem 25 ALVI Chemistry/2015/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org $ $ 4 (a) (i) $ $ K _{sp} = [Ag ⁺ (aq)] ² [SOa ²⁻ (aq)] and units: mol ³ dm ⁻⁹	۲
	(ii) $K_{sp} = (2 \times 0.025)^2 \times (0.025) = 6.25 \times 10^{-5}$	-
2# 224/ Top (d)	Q# 224/ Topic: Chem 25 ALvl Chemistry/2015/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org (d) [Fe ³⁺ (aq)] = 0.2 mol dm ⁻³	-
	$[H^{+}] = \sqrt{(c.K_{a})} = \sqrt{(0.2 \times 8.9 \times 10^{-4})}$ or 1.33 x 10 ⁻² (mol dm ⁻³) pH = $-\log([H^{+}]) = 1.9$ (or 1.87–1.89)	1
 2# 225/ Top	0# 225/ Topic: Chem 25 ALvl Chemistry/2014/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org	[Total: 13]
(l) (l)	K ₄₀ =[Ca ²⁺] ² PO ₄ ³⁻] ²	

1 2 16

Total:

PH=-log[H⁺]=7.08

www.SmashingScience.org

Patrick Brannac

Page **582** of **703**

[1]	[1]	[1]	[1]	[1]	[5 max 4]	[1]	ecf [1]	[1]	[1]	[1]	ecf [1]	[9]	[1]	[1]	[1]	[1]	[1]	[1] [8]	solvents. [1]	[1]	[1] [3]	
Q# 228/ Topic: Chem 25 ALvl Chemistry/2013/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (c) (i) a solution that resists changes in pH	when small quantities of acid or base/alkali are added	(ii) in the equilibrium system HZ + $H_2O = Z^- + H_3O^+$	addition of acid: reaction moves to the left or H ⁺ combines with Z ⁻ and forms HZ	addition of base: the reaction moves to the right or H ⁺ combines with OH ⁺ and more Z ⁺ formed		(d) (i) $[H^{+}] = \sqrt{(0.5 \times 1.34 \times 10^{-5})} = 2.59 \times 10^{-3} (mol dm^{-3})$	pH = 2.59/2.6 (min 1 d.p)	(ii) $CH_3CH_2CO_2H$ + NaOH $\longrightarrow CH_3CH_2CO_2Na$ + H_2O	 (iii) n(acid) in 100 cm³ = 0.5 × 100/1000 = 0.05 mol n(acid) remaining = 0.05 - 0.03 = 0.02 mol [acid remaining] = 0.2 (mol dm³) 	likewise, $n(salt) = 0.03 mol$ [salt] + 0.3 (mol dm ³)	(iv) $pH = 4.87 + log(0.3/0.2) = 5.04-5.05$		Q# 229/ Topic: Chem 25 ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (iii) $K_{\rm c} = [Fe^{2+j^2}[T_2]/[Fe^{3+j^2}[T^-]^2]$	units are mol ⁻¹ dm ³ ecf on expression	(iv) ([Fe ²⁺] must always be twice [I ₂], so) [Fe ²⁺] = 0.02 (mol dm ⁻³)	([I ⁻] must always be equal to [Fe ³⁺], so) [I ⁻] = 2 \times 10 ⁻⁴ (mol dm ⁻³)	(v) $K_c = \{(0.02)^2 \times 0.01\} / \{(2 \times 10^{-4})^2 \times (2 \times 10^{-4})^2\}$ correct expression (allow ecf from incorrect expression in (c)(iii))	$= (4 \times 10^{-6}) / (1.6 \times 10^{-1.5}) = 2.5 \times 10^{9} (mol-1 dm3)$	 Q# 230/ Topic: Chem 25 ALvl Chemistry/2012/s/T2 1/Paper 4/Q# 7/www.SmashingScience.org (b) (i) Ratio of the <u>concentration</u> of a solute in each of two solvents or equilibrium constant representing the distribution of a solute between two solvents. [1] 	(ii) illustration of some method of getting into our body via the food chain	They dissolve preferentially in fats/oils	www.SmashingScience.org Patrick Brannac Page 584 of 703
		E	Ξ	EE	Ε	[1]	E	E			[1]	[1]	1	_	ecf [1]	-			ecf [1] [4]	2		II IDNILLEONS
-		c I				S		1	A	cohonto					Φ		D		٥			Page 583 of 703
2°1=		Q# 226/ Topic: Chem 25 ALvl Chemistry/2014/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	5 mol dm ⁻³	[H ⁺] = K _w /[OH ⁻], so [H ⁺] = 1 × 10 ⁻¹⁴ /0.15 = 6.67 × 10 ⁻¹⁴ moldm ⁻³ pH = -log ₁₀ [H ⁺] = 13.18 (13.2) ecf from [H ⁺]	otor 0 ~ 10 ⁻³ mol	$10^{-3} = 0.0005/5 \times 10^{-4}$ mol	this is in 30 cm ³ of solution, so [HCI] at finish = $0.5 \times 10^{-3}/0.030 = 1.67 \times 10^{-2}$ moldm ⁻³ pH = $-409_{10}(1.67 \times 10^{-2}) = 1.78$ ecf from (d)(i)			 Q# 227/ Topic: Chem 25 ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org C) Ratio: of the <u>concentration</u> of a solute in each of two (immiscible) solvents 	ne distribution of a solute per mperature)		allow reverse ratio				tain in solution		= 3.56/3.6 g			Patrick Brannac
$ \left[Ca^{2*} \right] = 3 \times 2.50 \times 10^{-6} = 7.50 \times 10^{-6} \text{ mol } dm^3 $ $ \left[PO_4^{-1} \right] = 2 \times 2.50 \times 10^{-6} = 5.00 \times 10^{-6} \text{ mol } dm^3 $	$= (7.50 \times 10^{-5})^3 (5.00 \times 10^{-5})^2$ = 1.05(1.1) × 10^{-3} mod ⁵ dm ⁻⁵	Copic: Chem 25 ALvI Chemistry/2014/s/T K = IH+IICH-1	in 0.15 mol dm ⁻³ NaOH, [OH] = 0.15 mol dm ⁻³	[H ⁺] = K _w /[OH ⁻], so [H ⁺] = 1 × 10 ⁻¹⁴ /0.15 = pH = -log ₁₀ [H ⁺] = 13.18 (13.2) ecf from [H ⁺]	piperidine is a poorer proton acceptor or piperidine is partially ionised	n(HCI) at finish = 2 × 10 ⁻³ - 1.5 × 10 ⁻³ = 0.0005/5 × 10 ⁻⁴ mol	this is in 30 cm ³ of solution, so [HCI] at finish = pH = $-\log_{10}(1.67 \times 10^{-2}) = 1.78$ ecf from (d)(i)	vol curve: start at pH 11.9	vertical portion at V = 15 cm ³ levels off at pH 1.8 indicator is B	Chem 25 ALvI Chemistry/2013/w/ io of the <u>concentration</u> of a sol	or PC = $[X]_a/[X]_b$ (at a constant temperature)		$K_{pc} = [Z \text{ in ether]/}[Z \text{ in } H_2O] - allow reverse ratio$	40 = (x/0.05)/((4-x)/0.5)	= 3.2 g	First extraction 40 = (x/0.025)/((4-x)/0.5)	x = 2.01 g Second extraction: 1.33g remain in solution Second extraction:	40 = (y/0.025)/((1.33-y)/0.5) y = 0.887 g	rr ass extracted = 2.67 + 0.89 = 3.56/3.6 g			www.SmashingScience.org

Q# 231/ To 2 (a)	pic: CI	Q# 231 / Topic: Chem 25 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) One that can go in either direction.	[1]
	q (ii)	both forward & reverse reactions are going on at the same time, but the concentrations	ions
	0 0	or all species do not change (owne) or rate of forward = rate of backward reaction	[1]
(q)	(i)	(b) (i) K _c = [H ⁺][OH]/[H ₂ O]	[1]
-	(II) k	K_w = [H ⁺][OH ⁻] rearrangement of equation in (i) gives K _c [H ₂ O] = [H ⁺][OH ⁻] & K_w = K _c [H ₂ O] (owtte)	[]
0		or the [h2/J] is contained within N _w (iii) K _w will be higher in hot water because reaction is endothermic	ΞΞ
	•		
(c)	(i)	(c) (i) $[OH] = 5 \times 10^{-2}$; $[H^{+}] = (1 \times 10^{-14})/5 \times 10^{-2} = 2 \times 10^{-13}$ (correct ans = [2]) ecf [1] pH = $-\log_{10}[H^{+}] = 12.7$	f[]]
-] (II)	(ii) $[NH_4^+] = [OH_1 (= x)]$ $x^2 = 1.8 \times 10^{-5} \times 0.05 \implies x (= [OH_1]) = 9.49 \times 10^{-4} (mol dm^{-3})$ (correct ans = [2]) [1]	E
0] (III	(iii) $[H^{*}] = K_{w}[OH^{-}] = (1 \times 10^{-14})/9.49 \times 10^{-4} = 1.05 \times 10^{-11}(mol dm^{-3})$ ec	ecf [1]
)	iv) p	(iv) pH = 11.0	ecf [1]
		[Total: 12 max 11]	11]
Q# 232/ To (c)	pic: Cl	Q# 232/ Topic: Chem 25 ALvI Chemistry/2010/w/T2 1/Paper 4/Q# 4/www.SmashingScience.org (c) (i) $K_{sp} = [Pb^{2*}][Cl^{-1}^{2}$ (1) units = mol ³ dm ⁻³ (1)	
	11	$f(\mathbf{i})$ if $f(\mathbf{D}h^2 + \mathbf{i}) = \mathbf{v} \cdot \mathbf{k} = 4v^3 \text{ so } \mathbf{v} = 3\sqrt{\mathbf{i}} \mathbf{k} \cdot \mathbf{i} \mathbf{\lambda}$	

2

Q# 234/ Topic: Chem 26 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org measure volume / amount of oxygen formed / mass lost / and time / against time / per unit time OR

measure absorbance / transmission against time / per unit time

time taken for the concentration / mass / amount of a reactant to fall to half (its original value) / to halve

 $t_{1/2}$ = 150 s AND evidence on graph/ paper of one half-life

5(b)(ii) 5(b)(iii)

5(b)(i)

S -

5(a)

no change

-

5(c)(j)

M1: evidence on graph of tangent AND 4 to 5 × 10⁻⁴ M2: mol dm⁻³ s⁻¹

M1: NO₂ + O₃ \rightarrow NO₃ + O₂ M2: NO₂ + NO₃ → N₂O₅

2(d)

(c)(i) / 0.10 AND s⁻¹

5(c)(jj)

2

M1: first order wr.t. H₂O,AND change in conc. x1.5 gives increase rate x1.5 (expts 3/4) M2: reforder wr.t. 10: AND change in conc. x2 gives increase rate x1.5 (as readon rate x1. for AND change in conc. x2 gives increase rate x1. 2) and 2) M2: zerobi order wr.t. H-MND change in conc. has no effect on rate (expts 1/3/4 and 2)

Q# 236/ Topic: Chem 26 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

$$\label{eq:main_state} \begin{split} M1: k = 8.82 \times 10^{-6} \div (0.150 \times 0.140) = 4.20 \times 10^{-3} \mbox{ min } 2sf \mbox{ ecf} \\ M2: \mbox{ mol}^3 ss^{-1} \mbox{ ecf} \end{split}$$

rate = k[H₂O₂][IO₅-] ecf

3(d)(ii)

3(d)(i)

3(d)(iii)

1(a)

-

Q# 235/ Topic: Chem 26 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org

(ii) if $[Pb^{2^*}] = x$, $K_{sp} = 4x^3$, so $x = {}^3\sqrt{[K_{sp}/4]}$ $[Pb^{2^*}] = {}^3\sqrt{[2 \times 10^{-5}/4]} = 1.71 \times 10^{-2} \text{ mol dm}^{-3} (1)$

(iii) $[Pb^{2+}] = 2 \times 10^{-5}/(0.5)^2 = 8.0 \times 10^{-5} \text{ mol dm}^{-3}$ (1)

(iv) common ion effect, or increased [C1] forces solubility equilibrium over to the left (1)

[Max 4]

2 2 2 **.** Q# 233/ Topic: Chem 26 ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org M1: when [NH₃] increases ×1.5, rate increase ×1.5 AND first order (w.r.t. [NH₃]) / rate is proportional to [NH₃] 5(c)(iii) so that [NH₃] is (effectively) constant AND doesn't affect the rate / zero order evidence on graph / paper of one half-life (use of data) / $t_{\rm tiz}$ = 500 s [1] constant half-life (= first order) [1] M2: S_N2 DEP on M1 (because rate is first order w.r.t. to [2-chloropropanoate] and [NH₃]) greater proportion of particles have $E\gg E_{\rm A}$ [1] frequency of (effective) collisions increases AND rate increases OR rate of collisions increases AND rate increases [1] 5(c)(iv) 5(c)(vi) 5(c)(ii) 5(c)(v)

[Total: 10]

1(a)	the order of reaction with respect to [NO] 2	-
	the order of reaction with respect to [O2] 1	
	the overall order of reaction 3	
	ALL CORRECT [1]	
1(b)(i)	k = (1.51 × 10 ⁻⁴)/(0.003 ² × 0.00200) k = 8399 [1] min 2sf	2
	mol ⁻² dm ⁶ s ⁻¹ [1]	
1(b)(ii)	8400 = (6.05 × 10 ⁻⁵)/ (x ² × 0.005) × = V (6.05 × 10 ⁻⁵)/ (8400 × 0.005) × = 0.00120/1.20 × 10 ⁻³ [1] min 2sf ecf from Q1bi	-
1(c)	slow(est) [1]	۲
1(d)(j)	correct RDS identified as step 1 with only one S ₂ O ₈ ² and one I ⁻ [1]	2
	overall mechanism adds up to chemical equation and no cancellable species on LHS/RHS in each of the equations [1] MD EP on one Sto ²⁺ and one I ⁻ in step 1 e. g. step 1 Sto ²⁺ + I Sto ²⁺ + I.	
1(d)(ii)	no. of t _{1/1} = 192/48 = 4 [1] = 0.0078/16 = 4.9 × 10 ⁻⁴ [1] min 2sf	1
(# 237 / T	(# 237/ Topic: Chem 26 ALvI Chemistry/2020/s/T2 1/Paper 4/Q# 9/www.SmashingScience.org	
(q)6	rate = 2.0 x 10 ⁺⁵ x 0.75 = 1.5 x 10 ⁺⁸	1
9(c)(i)	slowest step in overall reaction	1
9(c)(ii)	H ₂ O ₂ + 2H ⁺ + 2I ⁻ → I ₂ + 2H ₂ O	•

Q# 237/ Topic: Chem 26 ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	rate = 2.0 x 10 ⁻⁶ x 0.75 = 1.5 x 10 ⁻⁶	9(c)(i) slowest step in overall reaction	9(c)(ii) H ₂ O ₂ + 2H ⁺ + 2I ⁻ → I ₂ + 2H ₂ O	OR H ₂ O ₂ + 2HI → I ₂ + 2H ₂ O	9(c)(iii) H ₂ O ₂ = 1 AND I ⁺ = 1 AND H ⁺ = 0	
Q# 237,	(q)6	9(c)(j	9(c)(ji		9(c)(iii	

-

www.SmashingScience.org

Patrick Brannac

Page 585 of 703

Q# 238/ Topic: Chem 26 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org

(Wala		
	M1 1st order w.r.t. AuCib because rate x2/ doubles when concentration x2/ doubles M2 First order H ₂ O ₂ x 2; AuCib x 3 rate x 6 so order = 1 for H ₂ O ₂ M3 rate = k [AuCib] [H ₂ O ₂]	e
	k = 1.53 × 10 ⁻¹ / (0.10 × 0.50) = 3.08 dm ² moir ² minute ⁻¹	2
1.9-	Topic: Chem 26 ALvI Chemistry/2019/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org	-
	(rate =) k[CNOJ][NO]	-
	mol ⁻¹ dm ³ s ⁻¹	-
	Yes AND number of moles of reactants in overall equation is the same as order in rate equation	-
	 straight line with a negative gradient starting at 2.0 × 10⁻⁴ reaches at 1.8 × 10⁻⁴ at 0.2 seconds 	2
	Award 1 mark for two points, award 2 marks for all three points	,
	2×10 ⁻⁵ (mol dm ⁻³)	-
	The reaction has reached equilibrium	1
10	Topic: Chem 26 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	
	M1: using expt 2 and 3, $[NH_3] \times 2$, rate $\times 4$ so order with respect to $[NH_3] = 2$	2
	M2: using expt 1 and 2, $[COT] \times 2$ and $[NH_3] \times 2$, as rate $\times 8 (=2^2 * x)$ so order with respect to $[COT] = 1$	-
1	rate = K(NH ₃)F(C/O ⁻]	-
1	M1: k = 0.256 / (0.200 × 0.100 ²) k = 128	2
	M2: Units dm ⁶ mol ⁻² s ⁻¹	
1	curve/line showing k increasing as temperature increases	
	M1: plot a graph of [1-] against time	2
	M2: constant half-lives	2
	ct0- + I- → I0- + ct-	
	Topic: Chem 26 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	-
	change in amount / mass / concentration of reactant / product per time	-
-	decrease in volume or pressure	-
	8.13 × 10*/81280/81300	-
-	mol ² dm ⁶ s ⁻¹	-
	√(0.00231/(0.0046×81280)) = 2.49×10 ⁻³	-
	2,1,3	-
	2	-
	the total of steps 1 and 2/ the components of 2 are two NO and one ${\rm H_2}$	
	time for amount or mass or concentration to halve	-
	0.02 at start and 0.01 after 2 seconds	-
	0.005 after 4 seconds and 0.0025 after 6 seconds	-
	NO + ½ O2 → NO2 or NO + O2 → NO2 + ½ O2 AND NO2 + SO2 → NO + SO3	-
	(NO is) regenerated / reformed	-
	SO_3 + $H_2O\rightarrow H_2SO_a$ AND acid rain or consequence of this described	-
	www.SmashingScience.org Patrick Brannac Page 587 of 703	C
		SM

Q# 242/ Topic: Chem 26 ALvl Chemistry/2017/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

					9	
4(f)			heterogeneous	homogeneous		2
		Fe in the Haber process	1			
		Fe ²⁺ in the I ⁻ /S ₂ O ₈ ²⁻ reaction		*		
		NO ₂ in the oxidation of SO ₂		*		
		V ₂ O ₅ in the Contact process	*			
Q# 243/	Topic: Chem 26 ALvl Chu	Q# 243/ Topic: Chem 26 ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	aper 4/Q# 1/ww	w.SmashingScie	ence.org	

		1-1-0
	t# 244/ Topic: Chem 26 ALvI Chemistry/2017/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org	2# 244/
-	m = 2 and $n = 0$	1(d)
1	k decreases (as rate decreases)	1(c)(v)
1	mof ⁻² dm ⁵ s ⁻¹	
1	(0.0034 = k(0.03) ² (0.02)) k = 188.9	1(c)(iv)
1	initial rate = $0.16(32)$	(c)(iii)
-	using expt. 1 and 2 b = 1 or [Br ₂] 1 [#] order and conc × 2 rate × 2 or 6.8 × 10 ⁻³ /3.4 × 10 ⁻³ = (0.04/0.02) ^b	
1	using expt. 2 and 3 a = 2 or [NO] 2nd order and $control = (0.09/0.03)^{a}$ and cont $\times 3$ rate $\times 9$ or $6.1 \times 10^{-2}/6.8 \times 10^{-3} = (0.09/0.03)^{a}$	1(c)(ii)
1	the power to which a concentration of a reactant is raised in the rate equation	1(c)(ī)

١ä

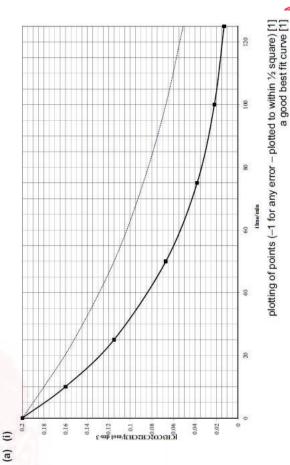
	4	-	1	•	[
_					
# 244/ Topic: Chem 26 ALvl Chemistry/2017/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org	Any of the three methods possible. Any 4 of the 5 points for each method available for maximum 4 marks. Method 1 1 Ensure boths solutions (A and B) at 40 °C before mixing 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(i) from 1 and 3: when [RC1] is trebled, so is rate, so order w.r.t. [RC1] = 1	from 1 and 2: when both concentrations are doubled, rate doubles so [OHT] has no effect on rate, so order w.r.t[OHT] = 0	(ii) rate = k[RCI] AND units: sec ⁻¹ 1/s	
# 24	6(a)	6(b)(i)		6(b)(ii)	

relative rate = 2.0

6(b)(iii)

Q# 245/ Topic: Chem 26 ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org

AND homogeneous catalysis are in the same 1 AND homogeneous catalysis are in the same 1
are in the same
reactants AND homogeneous catalysts are in the same heterogeneous homogeneous
heterogeneous
2
diagram datayst lowers E _a for both the forward and reverse reactions so the process requires less energy/can occur at a lower temperature Q# 246/ Topic: Chem 26 ALVI Chemistry/2016/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org
3.17
4


Q# 247/ Topic: Chem 26 ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

(j) (q)	(b) (i) time taken for the concentration of a reactant(s) to fall to haif its original value	1
(ii)	(ii) evidence of a pair of construction lines on graph and $t_{ij} = 49-53$ s	٢
(III)	(iii) no effect/ change	1
(c) (i)	(c) (i) evidence of tangent at 80 s and data used, e.g. 0.42/152 = 0.00263	2
	units mol dm ^{-a} s ⁻¹	
(ii)	(ii) correct use of answer to (i)/0.19 and s ⁻¹	1
		<mark>6</mark>

Q# 248/ Topic: Chem 26 ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

1 (a) (i)	Ξ	[NO] $2^{\rm ind}$ order and the concentration is $\times 2,$ rate $\times 4$	۲	
		$[0_2]$ 1 st order and evidence of using expt 1 & 2 when the concentration is $\times 2$, rate doubles	1	
	(ii)	(0.00408×27) rate = <u>0.11</u> (mol dm ⁻³ s ⁻¹) to 2sf	1	
		(Pate =) $k [O_2][NO]^2$	۲	
	(iv)	k = 332(.03125) mol ² dm ⁶ s ⁻¹	1	[9]
(q)	(i) (q)	labelled axes x-axis: energy (KE) and y-axis: molecules or particles two curves: starts origin; not touching x-axis again; no levelling out; curves only intersecting once curves tabelled and T2 is to the right and lower max than T1	111	
	(!!)	rate increases and energy of the particles increases	1	
		more particles have E _a	۲	[2]
(c)		1 mole of F_2 and 1 mole NO reacting in the slow step	٢	
		a balanced mechanism consistent with overall equation	٢	
		e.g. $F_2 + NO \rightarrow NOF + F$ OR $F_2 + NO \rightarrow NOF_2$ NO + $F \rightarrow NOF$ NO + $NOF_2 \rightarrow 2NOF$		[2]
Total	۰,			[13]
010 #0	/ Ton	O# 240/ Tonio: Cham 26 Alid Chamidau / 0013 / / 17 1 / Danos 4 / O# 3 / / Junio: EmorphicsEciones 270		

Q# 249/ Topic: Chem 26 ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i)

www.SmashingScience.org

LI I BUIHSWS

Page **590** of **703**

Patrick Brannac

Page **589** of **703**

construction lines for two half-lives and $t_{\rm bi}\approx 63$ m or 32 m (±3 min) / $t_{\rm bi}$ is constant or construction lines for two tangents and mention of two values / concentration doubled, rate doubled	(q) [1]	
either ratio of (initial) rates (slopes) or ratio of $t_{\rm N}$ = 2.0		
so reaction is first order w.r.t. [HC/]	$[1] \qquad \qquad$	
rate = $k[CH_3CO_2CH_2CH_3][HCI]$ conditional on (a)(iii) and ecf from (a)(iii)		
(initial) rate = 0.2/95 or 0.2/47 $\approx 2.1 \times 10^{-3}$ or 4.3 $\times 10^{-3}$ (mol dm ⁻³ min ⁻¹)	$\frac{\Delta H(2)}{\text{or} -57} + \frac{NO_2 + SO_3}{NO_2 + SO_3}$	
$ \approx 2.1 \times 10^{-3} / (0.2 \times 0.1) \text{ or } 4.3 \times 10^{-3} / (0.2 \times 0.2) $ $ \approx 0.11 \text{ (mol}^{-1} \text{ dm}^{3} \text{ min}^{-1} \text{)} $ [8 max 7]	extent of reaction	
(b) (i) because H ₂ O is the solvent or its concentration cannot change	both ΔH shown, with $\Delta H(1) > \Delta H(2)$ [1]	[2]
because HClis a catalyst	 [1] 0# 251/ Tonic: Chem 26 Al vI Chemistrv/2012/s/TZ 1/Paner 4/0# 2/www SmachineScience ore 	[Total: 10]
ce.org		ΞΞ
heterogeneous: different states AND homogeneous: same state the correct allocation of the terms heterogeneous and homogeneous to common	[1] (ii) rate = k p_{NO}^2 . p_{H2}^2 s ⁻¹ units (of k) are atm ⁻² s ⁻¹	[1] [1]
catalysts example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system equation, e.g. $N_2 + 3H_2 \longrightarrow 2NH_3$	[1] (iii) add all three equations: NO + NO + H ₂ + O + H ₂ + N ₂ O \rightarrow N ₂ O + O + H ₂ O + N ₂ + H ₂ O cross out all species common to both sides: NO + NO + H ₂ + Θ + H_2 + H_2 \rightarrow H_2O + Θ + H ₃ O + N ₂ + H ₂ O	E
how catalyst works, adsorption (onto the surface) ecf for non-iron catalyst	$(1) \qquad \qquad (\Rightarrow 2NO + 2H_2 \rightarrow N_2 + 2H_2O)$	5
example of homogeneous, e.g. Fe ³⁺ or Fe ²⁺ (in S ₂ O ₈ ²⁻ + I ⁻) linked to correct system equation, e.g. S ₂ O ₈ ²⁻ + 2I ⁻ \longrightarrow 2SO ₄ ²⁻ + I ₂	 [1] O formed from NO [1] O formed from NO N₂O formed from NO 	[1] [1] [8]
how catalyst works, e.g. $Fe^{3^+} + \Gamma \longrightarrow Fe^{2^+} + \gamma_2 I_2$ ecf for non-iron catalyst	 [1] Q# 252/ Topic: Chem 26 ALvl Chemistry/2011/w/T2 1/Paper 4/Q# 2/www.5mashingScience.org 2 (a) (i) Order w.r.t. [CH₃CHO] = 1 Order w.r.t. [CH₃OH] = 1 [8] Order w.r.t. [H³] = 1 	EEE
	(ii) rate = k[CH₃CHO][CH₃OH][H⁺]	[1]
	(iii) units = $mol^{-2} dm^{6} s^{-1}$	[1]
	(iv) rate will be 2 × 4 = 8 times as fast as reaction 1 (relative rate = 8)	[1] [6]
		C

Page **592** of **703**

Patrick Brannac

www.SmashingScience.org

LI IDNIHSTWS

Page **591** of **703**

Patrick Brannac

e

0

ŝ

4

2

4

4

3

Q# 263/ Topic: Chem 27 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

		`
Z(a)	Sr(NU3)2 → SrU + ZNU2 + 15U2	-
2(b)	M1 increases	3
	M2 cationic radius/ ion size increases (down the group)	
	M3 less polarisation/distortion of anion / nitrate ion / NO3- / nitrate group	
2(c)(j)	more readily and Ca2+ has a smaller ionic radius or more readily and Ca2+ has a greater charge density	
Velvelo	Spaniel - Baint - Anie	•
		-
Q# 264/ T	Topic: Chem 27 ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	Ī
2(a)(i)	M1 $\Delta H_{ m set}$ and $\Delta H_{ m hyd}$ both decrease OR $\Delta H_{ m hyd}$ soth become less exothermic/ more endothermic	3
	M2 ΔH_{sc} decreases more than ΔH_{tyd} (as OH ⁺ being smaller than M^{2*})	
	M3 ΔH_{zd} becomes more exothermic/more negative	
2(a)(ii)	(for MCO ₂) change / decrease in ΔH_{hot} is larger than decrease in ΔH_{hot}	-
2(a)(iii)	M1 Sr and Ba could be used AND Mg could not be used	2
	M2 solubility of MgCO3 is more than Mg(OH) ₂ OR SrCO3/BaCO3 is less than Sr(OH) ₂ /Ba(OH) ₂	
Q# 265/ T	Topic: Chem 27 ALvl Chemistry/2018/w/T2 1/Paper 4/Q# 4/www.SmashingScience.org	
4(a)	M1 solubility decreases (down the Group) [1] M2 because intice energy and hydration energy decreases OR lattice energy and hydration energy become less exothermic / more endothermic [1] M3 because hydration energy decreases to a greater extent (than does Δ1 ₄₄₀ [1]	ñ
Q# 266/ T	Q# 266/ Topic: Chem 27 ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	-
4(b)	 the temperature increases down the group incit radius increases / thange density decreases down the group decreasing distribution / plantisation or decreasing weakening of bonds of the anion / the CO₂⁻² ion 	e
	2 points = 1 mark 3 points = 2 marks 4 points = 3 marks	y
Q# 267/T	0# 267/ Topic: Chem 27 ALvI Chemistry/2018/m/TZ 2/Paper 4/0# 1/www.SmashingScience.org	
1(a)(i)	(solubility) increases (down the group)	-
1(a)(ii)	down the group:	
	lattice energy or hydration energy decrease lattice energy decreases more than hydration energy enthalpy change of solution becomes more negative / exothermic	
1(c)(j)	2 SrO2	+
1(c)(ii)	temperature will increase (down the group) charge density of cation decreases (down the group) this means less polarisation of the O ₂ ⁻² ion or weakens the O-O bond less	8
1 (d)(i)	BaC ₂ O ₄ +) BaO + CO + CO ₂	-
Q# 268/ T	Q# 268/ Topic: Chem 27 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org	
2(d)(i)	Mg^{2k} ion is smaller than Ba^{2k} ion or ionic radii increase down group ora	-
	(Mg ^{2*}) distorts/polarises/the anion/nitrate group/nitrate ion/NO ₃ ⁽¹⁾ /NO ₃ ion more easily (than Ba ^{2*}) ora	-
2(d)(ii)	$Ba(NO_3)_2 \rightarrow BaO + 2NO_2 + 14O_2$	-
2(d)(iii)	$BaO + H_2O \to Ba(OH)_2$	-
	$Ba(OH)_2 + H_2SO_4 \to BaSO_4 + 2H_2O$	1

Q# 269/ Topic: Chem 27 ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

0 1007 #2			1 1 / 2/ 17 7/ 1 abci 4/ 34		20	+	ſ
1(a) 1	solubility increases down the group	wn the group				-	-
	∆H _{ist} and ∆H _{ive} both di or ∆H _{ist} and ∆H _{hve} both	ecrease h become less ex	$\Delta H_{\rm bar}$ and $\Delta H_{\rm hyd}$ both decrease or $\Delta H_{\rm bar}$ and $\Delta H_{\rm hyd}$ both become less exothermic / more endothermic				1
~	∆H _{att} decreases / chan	ges more (than ∆	ΔH_{hyd} decreases / changes more (than ΔH_{hyd} as OH ⁻ being smaller than $M^{2*})$	M ²⁺)			1
	∆H _{sol} becomes more e:	xothermic / more	$\Delta H_{\rm zd}$ becomes more exothermic / more negative / less endothermic / less positive	ss positive			1
2# 270/ Tol	pic: Chem 27 ALvI	Chemistry/2	016/w/TZ 1/Paper 4/Q#	Q# 270/ Topic: Chem 27 ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	org		Г
2(a)	solid remains					-	-
2(b)	stability increases (down the group)	down the group				-	
	as size/radius of (metal) ion/ M^{2+} increases	netal) ion/M ²⁺ ii	ncreases			-	
	so polarisation / dist	tortion of anion/	so polarisation / distortion of anion / carbonate ion decreases			-	~
2(c)(ii)	CaCN ₂ +3H ₂ O → CaCO ₃ +2NH ₃	aCO3+2NH3					
	CaCO ₃ correct equation						2
					Total:		80
271/ To	pic: Chem 27 ALvI	Chemistry/2	016/s/TZ 1/Paper 4/Q# 1	Q# 271/ Topic: Chem 27 ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	org		Γ
1 (a) (i)	Ca(OH)2 + CO2 -	> CaCO ₃ +	+ H ₂ O			Ξ	_
(ii)	Ba(OH) ₂ is soluble, OR BaCO ₃ is insoluble	OR BaCO ₃ is in	isoluble			Ξ	_
	Mg(OH) ₂ is insoluble/ not very soluble will not form ppt. of MgCO ₃	e/ not very solul MgCO ₃	ble			ΞΞ	
(q)	carbonates are more stable down the group due to increase in cationic size/ radius (causing) less polarisation of CO_3^{2+} ion	re stable down ti ationic size/rad risation of CO ₃ ²⁻	he group lius ion			EEE	
(c)	radius of Ni ²⁺ = 0.070 nm; radius of Ca ²⁺ = 0.099 nm so NiCO ₃ decomposes more readily than CaCO ₃	070 nm; radius o ses more readily	of Ca ²⁺ = 0.099 nm y than CaCO₃			ΞΞ	
						Ţot	[Total: 9]
t# 272/ To	oic: Chem 27 ALvI	Chemistry/2	016/m/TZ 2/Paper 4/Q#	Q# 272/ Topic: Chem 27 ALVI Chemistry/2016/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	org	-	
6 (a)						3	
			identity	identity or value			
		٧	nitrogen or	chlorine			
		x	NO/NO ₂	C102/C103			
		Ε	2, 3	1,2,3, or 4			
		M	ns	sulfur			
		٢	SO ₂ 0	SO ₂ or SO ₃			
		Ľ	4,	, 3			
(q)	M1: (white descendin	M1: (white precipitate is BaSO4) descending the group ΔH_{sol} beco	M1: (white precipitate is BaSO_4) descending the group ΔH_{sol} becomes more endothermic/positive;	ndothermic/positive;		-	
	M2, M3 an ∆H _{latt} decre ∆H _{hyd} decr	M2, M3 any two from: ΔH _{latt} decreases/beco ΔH _{hyd} decreases/beco	mes more endothermic mes more endothermic	M2, M3 any two from: AH _{latt} decreases/becomes more endothermic/becomes less exothermic AH _{hyd} decreases/becomes more endothermic/becomes less exothermic	nic	2	
	AMhyd aecr	∆H _{hyd} decreases more tnan ∆H _{latt}	tnan ∆H _{latt}				6

www.SmashingScience.org

Patrick Brannac

Page 595 of 703

www.SmashingScience.org

Page **596** of **703**

Q# 273/ Topic: Chem 27 ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

(# 2/3/ 10ptc: Cn (c) (i) CaOa	עד 2/3/ וסטוב: נחפות 2/ אבעו נרופוזואנוץ/ בעבט/ש/ וב בו/ רקופו א/ עד בו/ שיים בווווקטטופוונפטטופון ער 2/3/ ו (כ) (ו) במס and brown gas	-	
(ii) the (ci	the (cat)ion size/radii increases	2	
decrei	decreasing its ability to polarise the nitrate ion/N-O bond		
Q# 274/ Topic: Ch	0# 274/ Topic: Chem 27 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	[1
(i) (q)	nitrates become more stable (down the group)	-	
	as the ionic radius increases or charge density on cation/ion decreases	-	
1000-100 g	decreasing its ability to distort/polarise the NO $_3^-$ / nitrate ion		1
(ii)	$4LiNO_3 \longrightarrow 2Li_2O + 4NO_2 + O_2$	-	
(III)	the charge density of the other cations are too small (to polarise the anion sufficiently so the anion is more stable)	1	
		[Total: 7]	-
Q# 275/ Topic: Ch (b) (i) it	Q# 275/ Topic: Chem 27 ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org (b) (i) it would react (with H ₂ SO ₄)	[1]	
(ii) C	$CaO + H_2O \longrightarrow Ca(OH)_2$	[1]	
(III) C	CaO absorbs more water or CaO has greater affinity for water	[1]	
		[3]	
(c) (j) 2(2Ca(NO ₃)2→ 2CaO + 4NO ₂ + O ₂	[1]	
(ii) (D	(Down the group, the nitrates)		
þ	become more stable/stability increases	[1]	
þé	because the size/radius of ion (M^{2*}) increases	[1]	
of Ħ	thus causing less polarisation/distortion of the anion/NO $_3^\prime$ /N-O bond	E	
		[4]	
		[Total: 10]	
Q# 276/ Topic: Ch (e) solubili as M ²⁺ both la	 Q# 276/ Topic: Chem 27 ALVI Chemistry/2012/w/TZ 1/Paper 4/Q# 2/www.5mashingScience.org (e) solubility decreases down the group as M²⁺/ionic radius increases both lattice energy and hydration (solvation) energy to decrease both almost of solution becomes more and thermic 	EEE	
		[4]	

3(a)(ii)	 variable oxidation states behave as catalysis benave as catalysis form colored compounds / ions form colorured compounds / ions 	-
3(b)(i)	Ti is in +4 oxidation state so no d electrons / d ^o OR Ti in TiO* has no d electrons / d ^o [1] cannot absorb photons / light in visible spectrum OR no wavelength / frequency absorbed in visible spectrum [1]	2
3(b)(ii)	(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d¹ (4s ⁰)	•
3(b)(iii)	$2TIO^{**} + 4H^* + Zn \rightarrow 2TI^{**} + 2H_2O + Zn^{**}$	-
3(c)(ii)	TP^{2} empty/vacant d orbitals can form dative bonds/accept a lone pair from a ligand OR Tn^{2} has vacant d-orbitals which are energetically accessible	-
3(c)(iii)	the E^0 of the half-cell must be greater than +1.23 V/ E^0 of the O ₂ H ⁺ half-cell as $E^0_{carl<0}$ 0 and the reaction does not occur	-
3(d)(i)	the number of co-ordinate bonds being formed by the metal atom/ion	-
3(d)(ii)	TiO₂ + 6HF → TiFe² + 2H4O + 2H+ OR TiO₂ + 6HF → TiFe² + 2H5O*	-
3(d)(iii)	species with two lone pairs (of electrons) [1] that form dative covalent / co-ordinate bonds to a central metal atom/ion [1]	2
3(d)(iv)	mirror image of isomer 1 trans isomer	2
1		
3(d)(v)	isomer I AND cis isomer drawn by candidate ecf [1] dipoles do not cancel / partial charges do not cancel [1]	2
Q# 278/ T	Topic: Chem 28 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
1(c)(iii)	aday	-
Q# 279/ T	Topic: Chem 28 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
1(d)	Reduction of Fe ³⁺ : $2Fe^{3+} + 2I^- \rightarrow 2Fe^{3+} + I_2$ [1] Regeneration of Fe ³⁺ : $2Fe^{3+} + S_2O_8^{3^*} \rightarrow 2Fe^{3+} + 2SO_8^{3^*}$ [1]	2
80/1	Q# 280/ Topic: Chem 28 ALvI Chemistry/2021/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org	
6(a)	$2Cu^{2*} + 4I^{-} \rightarrow 2CuI + I_2 \qquad \text{OR} 2CuSO_4 + 4NaI \rightarrow 2CuI + I_2 + 2Na_5SO_4 \qquad [1]$	-
6(b)(i)	M1: d-d orbital splitting occurs [1]	4
	M2: electron(s) promoted / excited [1]	
	M3: wavelength / frequency of light is absorbed [1]	
	M4: colour seen is complementary OR wavelength / frequency of light not absorbed is seen [1]	
6(b)(ii)	(for Cu ⁺) 3d ¹⁰ OR 3d subshell full [1]	-
6(c)	M1: $(Cu^{2*}/Cu^{*}) E^{2*} = (+)0.15 \vee AND (I_{2}/\Gamma^{*}) E^{2*} = (+)0.54 \vee [1]$	2
	M2: No. since (CF _{cel}) negative /-0.39 V OR No. since (L ₂ /IT) is more positive than (Cu ²⁺ / Cu ²) OR No. I ₂ is more easily reduced OR No. I ₂ stronger oxidant ORA [1]	
6(d)	M1: $Cu^{2*}/Cu^{*}E$ becomes more positive as equilibrium shifts to the right [1]	2
	M2: The new E for Cu ²⁺ / Cu ²⁺ is more positive than 0.54 / E^{4} (I_{2}/I^{-}) [1]	

[Total: 18]

Page **597** of **703**

Patrick Brannac

www.SmashingScience.org

O# 277/ Topic: Chem 28 ALvI Chemistry/2022/m/TZ 1/Paper 4/O# 3/www.SmashingScience.org 3(a)() (d-block) element that forms one or more stable ions with incomplete d subshell / incomplete d orbitals

Q# 281/ Topic: Chem 28 ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

5(a)(i)	+2 [1]	1
5(a)(ii)	cr ^{Mnuncr} cr ^{Mnuncr} [1] bond angle labelled 109.5* [1]	2
5(b)(i)	$ \begin{bmatrix} Co(H_2O)_k \end{bmatrix}^{2*} + 2OH^- \rightarrow Co(H_2O)_k (OH)_{2*} + 2H_3O \text{ OR } \begin{bmatrix} Co(H_2O)_k \end{bmatrix}^{2*} + 2OH^- \rightarrow Co(OH)_{2*} + 6H_2O \\ \end{bmatrix} $ blue precipitate [1]	2
5(b)(ii)	$ \left[Co(H_2(0)_k]^2 + 6NH_3 \rightarrow \left[Co(NH_3)_k\right]^2^{-2} + 6H_2O \right] $	2
5(b)(iii)	19 + -{[2
5(b)(iv)	ligand exchange [1]	
5(c)(i)	(a species) that donates two lone pairs to form two dative bonds [1] to a (transition) metal atom / metal ion [1]	2
5(c)(ii)	MINA HAVE NO CONTRACT OF A CON	8
- / coc #O	M2 a correct optical isomer of M1 [must 3D] [1]	
1/282 #D	UH 202/ IOPIC: CNEM 28 ALVI CREMISTRY/ZUZI/S/ IZ 1/PAPER 4/UH 4/WWW.SMASTINBSCIENCE.OFB	
4(a)(i)	M1: blue solid / blue ppt M2: $\label{eq:main_solution} M2: \label{eq:main_solution} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	e
4(a)(ii)	M1: dark blue solution / deep blue solution	3
	M2: [Cu(H₂O)k] ²⁺ 4 4NH ₃ → [Cu(NH ₃ µ(H₂O)k] ²⁺ 4H₂O M3: ligand exchance/ substitution / disalacement/ replacement	
4(b)	M1: X cusod, and Y Cu	2
	M2: type of reaction = redox / disproportionation	
Q# 283/ T(Topic: Chem 28 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	I
3(a)(i)	(an element) forming stable ion / ions / compound(s) / oxidation state(s) AND with partially filled / incomplete AND d orbitals / d subshell / d shell	-
3(a)(ii)	(melting point) higher AND (density) higher	•
3(b)(i)	M1: ent/potential difference / difference in electrode potential between two half-cells / two electrodes (in a cell)	2
	M2: (all solutions being) 1 mol dm ⁻³ AND either 1 atm OR 298 K	

	M1: 2I ⁻ + 2Fe ³⁺ \rightarrow I ₂ + 2F	2Fe2*		2
	M2: $S_2O_8^{2^{n}}$ + $2Fe^{2^{n}} \rightarrow 2SO_4^{2^{n}}$	لو ²⁻ + 2Fe ³⁺		
_	M1: I2/I ⁻ +0.54 V AND Fe ³⁺ /	M1: I ₂ /I ⁻ +0.54 \ AND Fe ³⁺ /Fe ²⁺ + 0.77 \ AND [Fe(CN) ₆] ³⁻ / [Fe(CN) ₆] ⁴⁻ +0.36 \	;(CN)₅] ^{±−} +0.36 V	2
	M2: $\frac{1}{C^2}$ of $1_2/1^-$ is more positive / greater than $0 R^2 \frac{1}{C^{n-1}} = 0.18$ V so no reaction or count $0 R \frac{1}{C^2}$ of F^{2n-1} Fiezh is more positive (1) $0 R \frac{1}{C^{n-1}} = 0.23$ V so reaction occurs [1]	M2: $\frac{1}{2}$ of I_2/I^- is more positive/ greater than $\frac{1}{2}$ of [Fe(CN) ₈] ¹⁻ / [Fe(CN) ₈] ¹⁻ (DE $\frac{1}{2}e_{st} = -0.18 \vee so no eaction occurs CM \frac{1}{2}e^{st} / Fe2- is more positive/ greater than \frac{1}{2}e^{st} / I_2/I^-OR \frac{1}{2}e^{st} = 0.23 \vee so reaction occurs [1]$	F ^a N	
	S ₂ O ₈ ²⁺ and tartrate ions are bo	5:00 ^{s and tartrate ions are both negatively charged / both reactants same charge}	nts same charge	-
	ANU so repel each other OR have a high E _s	a high Es		
	pic: Chem 28 ALvl Chem	iistry/2021/s/TZ 1/Paper 4/	Q# 284/ Topic: Chem 28 ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	-
				-
		CeH5CH(NH3T)CH3		
	DH OR dianion of tartrate with two cations present	o cations present		
	ppic: Chem 28 ALvl Chem	iistry/2021/s/TZ 1/Paper 4/	Topic: Chem 28 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
	reagent	structure of organic product	type of reaction	e
	an excess of LiA/H4	R H H	reduction	
		рн		
		ococh		
	an excess of CH ₃ COC1 H	H ₂ O2 H ₂ O2	condensation	
		ococH3		
	M1: product with LiA/H4 M2: product with CH3COC1 M3: both types of reaction			
	ppic: Chem 28 ALvI Chem	iistry/2021/s/TZ 1/Paper 4/	Q# 286/ Topic: Chem 28 ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
	M1: (complexes have two sets of) d orb OR d orbital(s)/d (sub)-shell splits OR (inferred from a movement of a	M1: (complexes have two sets of) d orbital(s) of different energy / d-d splitting occurs OR d orbital(s) / d (sub)-shell splits OR (inferred from a movement of an electron) from a lower d to higher d orbital	d-d splitting occurs to higher d orbital	4
	M2: electron(s) promoted/ excited OR electron(s) moves to higher (d–)orbital OR electron(s) jumps up (to d–orbital) / jum	electron(s) promoted/ excited OR electron(s) moves to higher (d–)orbital OR electron(s) jumps up (to d–orbital) / jumps to higher (d–orbital)	oital)	
	M3: wavelength / frequency / light / photon / hv absorbed OR radiation / energy from visible (region) absorbed	ght / photon / hv absorbed 1 <u>visible</u> (region) absorbed		
	M4: colour seen is complemen OR wavelength / frequency	M4: colour seen is complementary (to colour absorbed) OR wavelength /frequency/ colour/light not absorbed is transmitted / reflected / seen	smitted / reflected / seen	

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

Patrick Brannac

4	P2	1	2	2	+	-		/							
					8				F	-	-		1	-	
M: All changes	mas, unic construction must context and M3: All formulae M4: R is cis, S is trans	dipoles cancel	M1: (a species) that donates two lone pairs / forms two coordinate bonds / two dative bonds	M2: to a metal atom/metal ion	CO2 ⁻ structure of the picolinate anion ligand	(coordination number) six AND (geometry around Cr) octahedral	(NH4,JsCr2.07 +6 Cr2.03 +3	Q# 287/ Topic: Chem 28 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org	square planar	the distance between two coordinating oxygens is too small to bond trans OR atoms in a bidentate ligand can only bond 90° not 180°	44	Q# 288/ Topic: Chem 28 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org	(element that forms one or more stable) ions with incomplete/ partially filled 3d-orbitals/d-subshell		
2(b)(j)		2(b)(ii)	2(c)(i)		2(c)(ii)	2(c)(iii)	2(d)(i)	Q# 287/	5(a)(ii)	5(a)(iii)	5(a)(iv)	Q# 288/	4(a)	4(b)(i)	

M1: Jower energy level (in between axes)	~ N(N	
A _		
M2: higher energy level (on the axes)	N	
	No.	
Circles round both N atoms and all four O-		
M1: (d–d) energy gap / ΔE is different M2: different frequency / wavelength (of light) absorbed	ght) absorbed	
ligand exchange / substitution / displacement / replacement	ent / replacement	
[Fe(edds) ⁻] Fe(H₂O) ₆ ^{3a}][edds [←]]		
[Fe(edta)]- is more stable as it has the higher Kww	gher Kww	
$=\frac{1.26\times10^{26}}{3.68\times10^{20}}=3.17\times10^{4}$	1.26×10 ²⁸ 3.98×10 ²⁰ = 3.17 × 10 ⁴ (31658) min 2sf	
emistry/2020	Q# 289/ Topic: Chem 28 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	
ne lone pair [1] te to a central met	(a species) that donates <u>one</u> lone pair [1] to form a dative / coordinate to a central metal atom/ metal ion [1]	

.org	2	-	-	-	1	•	-	-
Q# 289/ Topic: Chem 28 ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	(a species) that donates <u>one</u> lone pair [1] to form a dative / coordinate to a central atom / metal ion [1]	[Ag(S ₂ O ₃)2] ³⁻ [1]	[Ag(S_2O_)]z]* + 2CN* → [Ag(CN)]z] + 2S_2O_3* [1] OR Ag(S_2O_)]z]* + 2NaCN → [Ag(CN)]z] + Na_S_2O_3 + S_2O_3*	Q is more stable / has a larger Kase than P [1]	ligand exchange / displacement / substitution	NG, ICI CL CL CL I CON	boli bireti (1) square planar [1]	cis-trans OR geometric(al) [1]
ido7 /68	6(a)(i) (a to	6(a)(ii) [A	6(b)(i) [A	6(b)(ii) Q	6(b)(iii) lig	6(c)(i) N	6(c)(ii) so	6(c)(iii) ci

Patrick Brannac

Page 601 of 703

www.SmashingScience.org

Page **602** of **703**

Q# 290/ Topic: Chem 28 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

5(a)(i)	$Kstab = [(Cu(NH_3)_4)^{2+}] / [(Cu(H_2O)_6)^{2+}] [NH_3]^4 [1]$	1 ² 0)ε) ²⁺] [NH ₃] ⁴ [1]				-
5(a)(ii)	deep / dark / royal blue [1]					1
5(b)	$ \begin{array}{l} [Cu(NH_3)_4]^{2^*}+2H_2O \rightarrow Cu(OH)_2+2NH_4^{*}+2NH_3 \left[7 \right] \\ OR \ [Cu(NH_3)_4]^{2^*}+2H_2O \rightarrow Cu(OH)_2+2H^{*}+4NH_3 \end{array} $	H) ₂ + 2NH ₄ ⁺ + 2NH ₃ [1] u(OH) ₂ + 2H ⁺ + 4NH ₃				F
5(c)	$Cu(OH)_2 + 4HCI \rightarrow [CuC4]^2 + 2H_2O + 2H_5O + 0R Cu(OH)_2 + 4CI - + 2H^{-} [CuC4]^{2-+} 2H_2O$	+ 2H ₂ O + 2H ⁺ [cuC4] ²⁻⁺ 2H ₂ O				2
	[CuCl2] ²⁻ complex including charge [1] rest of equation fully correct [1]	harge [1] 1]				
5(d)			γ	Z		2
		colour of complex	yellow	blue / pale blue		
		geometry of complex	tetrahedral	octahedral		
		formula of complex		[Cu(H₂O)ε]²+		
	one mark for any <u>three</u> cells [1] two marks for all five cells [2]	[1]			S	
5(e)	M1: d orbitals splits into two sets of energy levels of different energy [1] M2: weveloph/ frequency/ight/ photon/ hx absorbed [1] M3: electron(a) promoted / excited [1] M4: orbit reset is complementary (to orbit absorbed) [1] M6: d-d energy gap //E is different for Y and Z AND so different frequency (wavelength of light <u>absorbed</u> - / [1]	ets of energy levels of c ight / photon / hv absorb crited [1] ntary (to colour absorbe fferent for Y and Z wavelength of light <u>abso</u>	lifferent energy [1] bed [1] cd) [1] cd) [1] <u>orbed</u> • ✓ [1]		M	9
Q# 291/T	Q# 291/ Topic: Chem 28 ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 10/www.SmashingScience.org	nistry/2020/s/TZ 1	/Paper 4/Q# 1	0/www.SmashingS	cience.org	
10(a)	+4 and any of +1, +2, +3					-
10(b)	close similarity of energy of the 4s and 3d sub-shells	he 4s and 3d sub-shells				F

Q# 292/1	Q# 292/ Topic: Chem 28 ALvI Chemistry/2020/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	
1(a)(i)	(a molecule or ion) formed by a (central) metal atom / ion surrounded by / bonded to (one or more) ligands	۲
1(a)(ii)	M1: blue pptsolid	9
	M2: [colt+.c)k] ⁺ + 2oH → Co(CH) ₂ + 6H ₂ O OR [colt+.c)k] ⁺ + 2OH → [col(H-:0)k(OH) ₂] + 2H ₂ O	
	M3: precipitation/ acid-base	
	M4: blue solution	
	M5: [Co(H±O)k] ²⁺ + 6NH ₃ → [Co(NH ₃)k] ²⁺ + 6H ₂ O	
	M6: ligand exchange/displacement/substitution/replacement	
1(b)	 solution turns blue → pink a while ppt of AgCi forms equilibrium shifts to the left/ [Cl7] decreases 	2
	Two correct responses = 1 mark Three correct responses = 2 marks	
1(c)		2
	geometric ALLOW cis-trans Two correct responses = 1 mark Three correct responses = 2 marks	
1(d)(j)	each nitrogen / the four nitrogen's has a lone pair of electrons (to the metal ion) Two correct responses = 1 mark	-

optical

	1(d)(ji)	$1(d)(ii) [Co(H_2O)_6]^{2*} + C_6H_{16}N_4 \rightarrow [Co(C_6H_{16}N_4)]^{2*} + 6H_2O_{OD}$	(CeH ₁₈ N4)] ²⁺ + 6H ₂ O
		$[Co(H_2O)_6]^{2*} + C_6H_{18}N_4 \rightarrow [Co(C_6H_{18}N_4)(H_2O)_2]^{2*} + 4H_2O$	(CeH18N4)(H2O)3] ²⁺ + 4H2O
α	# 293/	/ Topic: Chem 28 ALvI Chemist	Q# 293/ Topic: Chem 28 ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 6/www.SmashingScienc

ice.org

	-	
8(c)(iii)	$K_{\text{des}} = \frac{[Ni(H_2O)_2 Val_2]}{[Ni(H_2O)_5^{**}][Var]^2}$	1
6(c)(iv)	equilibrium lies (well) to the right/towards the products AND (Z) is stable / more stable (than [Ni(H_ZO)s] ²⁺ in the presence of Val")	ŀ
B(c)(v)	bidentate	+
Q# 294/ T	Q# 294/ Topic: Chem 28 ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	
1(a)(i)	forms (one or more stable) ions with partially filled (3)d-subshell	+
1(a)(ii)	(Iron) has a higher (meiting point) AND is denser/higher (density) (than calcium)	ł
1(a)(iii)	(15 ²) 25 ² 2p ⁶ 32 ² 3p ⁶ 3d ⁶ (45 ⁰)	-
1(a)(iv)	M1 d sub-shell splits into two sets of d onbitals of different energy M2 wavelength / frequency of light absorbed M3 electron(s) promoted / excited / excited M4 colour seen is complementary (to colour absorbed)	4
1(b)(i)	octahedral	-
1(b)(ii)	$[Fe(H_2O)_{S}]^{2*} + BCN^- \rightarrow [Fe(CN)_{S}]^{4*} + BH_2O$	-
1 (b)(iii)	[Fe(CN) ₅] ⁴⁻ is (+)2 [Fe(CN) ₅ MO] ²⁻ is (+)3	-
1(b)(iv)	M1 forms a single / one dative bond to a (central) metal atom / ion M2 with lone pair (of electrons)	2
1(b)(v)	NC-Feincn NC CN CN CN	ł
1(b)(vi)	M1 d-d energy gap / ∆E is different M2 different frequency / wavelength of light <u>absorbed</u>	2
1(c)(j)	the number of dative bonds formed with/by the (central) metal atom / ion OR number of bonds between the ligands and the (central) metal atom / ion	+
1(c)(ii)	trans $\begin{bmatrix} \omega & \beta_{111}, 02 \\ \omega & \beta_{111} \end{bmatrix}$	3
	-	

Page **604** of **703**

Patrick Brannac

www.SmashingScience.org

Page **603** of **703**

Patrick Brannac

Q# 295/ Topic: Chem 28 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

7(a)	forms one or more stable ions with incomplete / partially filled d-orbitals / d-subshell	itals / d-subshell		-
7(b)(i)	purple to pale pink / colouriess AND orange to green			-
7(b)(ii)	$3Sn^{2*} + Cr_2O_7^{2^{-}} + 14H^{+} \rightarrow 3Sn^{4*} + 2Cr^{2*} + 7H_2O$			1
7(c)(i)	 six coordinate bonds / dative bonds / lone pairs donated to the (central) metal ion 			-
	award 1 mark for all three points			
7(c)(ii)	[Ru(NH3)4CRSO2)]*			-
7(c)(iii)	1444 1444 1444 1444 1444 1444 1444 144			n
	M1: six correct ligands around Ru, bonds are shown from S of SO2			4
7(c)(iv)	M2: 3-D bonds used correctly for octahedral M3: cis and trans isomers shown cis-trans or geometric(al) [1]			F
7(c)(v)	M1: complexes have two sets of d orbital(s) of different energy OR d-orbitals splits into two sets (of orbitals)		И	3
	M2: visible light absorbed (and complementary colour observed)			t
	M3: electron(s) promoted / excited OR electron(s) moves to higher (d–) orbital			-
Q# 296/ T	Q# 296/ Topic: Chem 28 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	# 4/www.Smas	ningScience.org	-
4(a)	x x	× ×	All shapes required for mark	-
	0	p		
4(b)	both cadmium ions have full d subshells			
4(c)(i)	ate			-
4(c)(ii)	M1 one 3D diagram of [Cd(CH ₃ NH ₂) _k (H ₂ O) ₂ P ⁺ M2 cis and trans structures			2
4(d)(j)	equilibrium constant for the formation of a complex ion in solution / solvent [1]	lvent [1]		-
4(d)(ii)	decreases	ses no change	increases	2
	Kaaa IIICAICH-NH-J.VH-O.)-P-1 /			
	 M1 both ticks correct [1] M2 equilibrium moves to the left as the (forward) reaction is exothermic [1] 	nemic [1]		
4(d)(iii)	[CdEDTA] ²⁻ and larger K _{ans} value			-

Q# 297/ Topic: Chem 28 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

01 /167 #D	Q# 291/ Iopic: Cnem 28 ALVI Chemistry/2019/s/12 1/Paper 4/Q# 1/WWW.SmashingScience.org	-	
1(a)	M1 $[Cu(H_2O)_8]^{p*} + 2OH^- \rightarrow Cu(OH)_2 + 6H_2O$		9
	M2 precipitation		
	M3 blue precipitate		
	M4 [Cu(H ₂ O) ₄] ² + 4C1 ⁻ \rightarrow CuCL ² + 6H ₂ O		
	M5 ligand exchange / displacement / substitution / replacement		
	M6 yellow solution		
1(b)	M1 amount of Ag ⁺ = 0.050 × 0.0224 = 1.12 × 10 ⁻³ mol (in 25 cm ³) amount of Ag ⁺ = 1.12 × 10 ⁻³ × 4 = 4.48 × 10 ⁻³ mol (in 100 cm ⁹)		3
	M2 amount of CT = 4.48 × 10 ⁻³ mol (in 100 cm ³) mass of CT = 4.48 × 10 ⁻³ × 35.5 = 0.159g (in 100 cm ³) mass of S = 0.303 - 0.159 = 0.144g (in 100 cm ³) ecf		
	M3 moles of S = 0.144/32.1 = 4.49×10^{-3} molar ratio S : $C1$ 1:1 \rightarrow SC1		
Q# 298/ Tc	Q# 298/ Topic: Chem 28 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org		
4(a)(i)	() (15 ² 25 ² 2p ⁶)35 ² 3p ⁶ 3d ¹⁰⁴ 5 ¹		1
4(a)(ii)	ii) M1 d orbitals / sub-shell split into two levels by repulsion of approaching ligands		4
	M2 light absorbed and complementary colour observed		
	M3 (d) electron(s) promoted / excited OR (d) electron(s) moves to higher (d) orbital		
	M4 (in Cu(I) complexes) all the orbitals in Cu are full OR Cu(I) is d ¹⁰		
4(b)	$n(S_2O_3^2) = 28.35 \times 0.5/1000 = 0.0142 (0.014175)$		3
	this also equals n(cut*) mass of Cu = 0.014175 x 63.5 = 0.90 g		
5	% of Cu = 100 × 0.90 / 1.5 = 60%		
4(d)(i)	i) Cu ²⁺ (aq) is (light) blue AND [CuC4] ²⁻ (aq) is yellow		1
4(d)(ii)	ii) ligand displacement / replacement / substitution / exchange		1
4(d)(iii)	 Mass = [CuC da]²⁻/ ([Cu²⁻]]Crf⁴) units: mol⁻⁴ dm¹² 		2

Page **606** of **703**

Patrick Brannac

Page **605** of **703**

CC HIS

Q# 299/ Topic: Chem 28 ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

1(a)	natural: lightning, bacterial decomposition, volcanic emissions man-made: exhaust fumes, power stations, jet / car/ vehicle engines	-
1(b)(i)	4N0	-
1(b)(ii)	+2 to +1 AND +2 to +3	-
1(b)(iii)	ΔS = (ΔH - ΔG)/T = (-196.2+102.8)/298 = -0.310 kJ mol ⁻¹ k ⁻¹	2
	M1 numerical answer M2 units	
1(b)(iv)	yes as there is a decrease in no. of moles of gas OR yes as moles of (gaseous) reactants is greater than moles of (gaseous) products	-
1(c)(i)	K ₆ = p(NO)p(NO ₂) / p(N ₂ O ₃) AND units: atm OR Pa	-
1(c)(īi)	M1 p(NO) = p(NO ₂) = 0.48 atm p(N ₂ O ₃)e _m = p(N ₂ O ₃)e - 0.48 a tm	2
	M2 K ₆ = 0.49 ² /0.12 = 1.92 (atm)	l
1(d)(i)	M1 from 3rd and 1st rows as [NO] $\times 2$, rate increases $\times 4$, so order = 2	2
	M2 from 3rd and 2nd rows as $[O_2] \times 2$, rate also $\times 2$, so order = 1	~
1(d)(ii)	rate = k[NO] ² [0 ₂]	3
	k = rate / ([NO] ² [O2]) = 3.5 / (0.01 × 0.05) = 7000	1
	units: moh ² dm ⁶ s ⁻¹	
1(e)(i)	the number of dative bonds formed with / by the central metal atom / ion OR number of bonds between the licands and the central metal atom / ion	-
1(e)(ii)	from 5 to 4	-
1(e)(iii)	tetrahedral	-
1(f)(i)	Contraction Contra	2
(E)(E)	geometric(al) OR cis-trans	•

org.
ō
Ψ
2
ē
.0
Sa
Ē
Ē
as
Ĩ
Š
×
≦
≦
<
ŝ
费
2
4
e
ă
a
P
Ч
\mathbb{N}
5
٤,
∞
H
20
1
5
str
Ē
Je
Ξ
>
ΑĻ
28
ε
ē
ട
<u>.</u>
do
Ĕ
~
Q# 300/
8
#
ő

3(a)	[1] for	[1] for each column				2
	L		number o electr	number of unpaired electrons in		
		element	9q	4s		
		cr	5	1		
		Mn	5	0		
		Fe	4	0		
3(b)	2KMn(formuli rest of	$\begin{array}{l} 2KMnO_4 \rightarrow K_3MnO_4 + O_2 + \\ formulae of K_3MnO_4 and O_2 [1] \\ rest of the equation [1] \end{array}$	04 + 02 + Mr and 02 [1] [1]	MnO ₂		2
3(c)	M1 d c M2 vis M3 ele	orbitals split in sible light is ab	ito two levels / sorbed and ti moted / excited	lower and upp he complemer [1]	M1 d orbitals split into two levels / lower and upper orbitals [1] M2 visible light is absorbed and the complementary colour observed [1] M3 electron(s) promoted / excited [1]	'n
3(d)(i)	precipi solutio solutio	precipitate A [Cu(H ₂ O) ₄ (OH) ₂] 0 solution B [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ [1] solution C Cu(CH ₃ CO ₂) ₂ [1]	0)4(0H)4(0H)4(0)4(0)4(0)4(0)4(0)4(0)4(0)4(0)4(0)4(0	OR Cu(OH) ₂ [1]		e
3(d)(ii)	Na ₂ CC	Na ₂ CO ₃ or CO ₃ ²⁻				-
3(d)(iii)	CuCO3	3 + 2CH3CO2H	² H → Cu(CH ₃ CO ₂) ₂	3CO2)2 + CO2	2 + H2O	-
3(d)(iv)	any tw • fiz • so gr	any two for one mark fizzing / bubbles / effervescen solid disappears green / blue solution (formed)	two for one mark fizzing / bubbles / effervescence solid disappears green / blue solution (formed)	8		-
3(e)	sum of OR a c	f the charges calculation Pt	of the (four) lig +2, NH ₃ neutra	gands equals t al / no charge,	sum of the charges of the (four) ligands equals the oxidation number / charge of Pt OR a calculation Pt + 2 , NH ₃ , neutral / no charge, both Cl ⁻ s =1 (so no overall charge)	-
3(f)(i)	CI NeH	Pt CI [1]				2
	square	square planar and 180° [1]	180° [1]			
3(g)	R A		0,1			-
301/ T	Topic: C	chem 28 AL	-vl Chemisti	ny/2018/w/	Q# 301/ Topic: Chem 28 ALvI Chemistry/2018/w/T2 1/Paper 4/Q# 2/www.SmashingScience.org	
2(a)	specie	es that forms d	lative bond(s)) to a (central)	species that forms dative bond(s) to a (central) metal atom / ion	-
2(b)	ĽĽ	H Composition	V I		Out of the other	2
2(c)(j)	any tw $K_{sp} = [v]$	any two structures $[1] \times 2$ $K_{sp} = [Ca^{2+}][C_2O4^{2-}][1]$	1)×2 [1]			2
	units n	nol² dm ⁻⁵ [1]	,			

2

$$\begin{split} & [Ca^{2^*}] = [C_2O_4^2] = 6.65 \times 10^{-3} / 128.1 = 5.19 \times 10^{-5} \, \text{mol} \, \text{dm}^{-3} \, [1] \\ & K_{\text{sp}} = (5.19 \times 10^{-5})^2 = 2.7 \times 10^{-9} \, \text{mol}^2 \, \text{dm}^{-6} \, [1] \end{split}$$

2(c)(ii)

Page **607** of **703**

Patrick Brannac

Q# 302/ Topic: Chem 28 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

5(a)	3s ² 3p ⁵ 3d ¹⁰ 4s ¹	-
	3s ² 3p ⁶ 3d ¹⁰	-
5(b)	CI-CI-CI	-
	one minus charge	•
5(c)	HOM, OH HOM, MUCH HOM, OH	-
	octahedral and 90° or 180° labelled correctly on diagram as appropriate	-
5(d)	reaction 1: blue pp1/blue solid	5
	[Cu(H±0)k] ²⁺ + 20H ⁻ → Cu(0H) ₂ + 6H ₂ O or [Cu(H±0)k] ²⁺ + 20H ⁻ → Cu(0H) ₂ (H±0)k + 2H_2O or [Cu(H±0)k] ²⁺ + 2NH ₃ → Cu(0H)k(H±0)k + 2NH ₄ .	-
	reaction 2: deep / dark / royal blue solution	-
	$ \begin{array}{l} Cu(OH)_{2} + 4NH_{3} + 2H_{2}O \rightarrow [Cu(NH_{3})_{4}(H_{2}O)_{2}]^{2*} + 2OH \\ or \ Cu(OH)_{2} + 4NH_{3} \rightarrow [Cu(NH_{3})_{4}]^{2*} + 2OH \\ or \ Cu(OH)_{2}(H_{2}O)_{4} + 4NH_{3} \rightarrow [Cu(NH_{3})_{4}(H_{2}O)_{3}]^{2*} + 2OH + 2H_{2}O \\ \end{array} $	-
5(e)(i)	ligand exchange / displacement / replacement / substitution	-
5(e)(ii)	K _{mab} =[[OuEDTA] ²⁻]/[[Cu(H_0)k] ²⁺][[EDTA] ⁴]	+
5(e)(iii)	stable / more stable than [Cu(H ₂ O) _k] ²⁺	1
5(f)(i)	donates Ione pairs / forms dative / co-ordinate bonds to (central) metal atom / metal ion	1
	donates two lone pairs / forms two (dative or coordinate) bonds	-
5(f)(ii)	[Zr(C_0,1,1]*	-
	not octahedral because 8 dative bonds to Zr or not octahedral because not 6 dative bonds to Zr or not octahedral because co-ordination number is 8 / is not 6	-
∆# 303/ T	Q# 303/ Topic: Chem 28 ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org	1
5(a)(i)	1s ² 2s ² 2p ³ 3s ³ 3p ⁸ 3d ⁶ 4s ¹	Ţ
5(a)(ii)	(+)g and (+)g	+
5(b)(i)	H is deep / dark / royal and blue (solution) K is yellow / yellow-green M is blue (precipitate) (allow pink)	2
5(b)(ii)	Lis [Cock1] N is [Cock1]	2
5(b)(iii)	(pale) blue precipitate	-
2# 304/ T	Q# 304/ Topic: Chem 28 ALvl Chemistry/2018/m/T2 2/Paper 4/Q# 3/www.SmashingScience.org	
3(b)(i)	2.	-
3(b)(ii)	geometrical / cis-trans	-
3(b)(iii)	2 isomers Br	3

re atom = (15.2.3.20).30.45	-
Fe ⁻¹ ion= (1s ^{-2s-2p⁻})3s ^{-3p-3d⁻}	
[H ⁺] ² = 8.9 × 10 ⁴ × 0.25 or 2.225 × 10 ⁴) H ⁺] = 0.0149	-
pH = -log(0.0149) = 1.83	-
(Kaao is) the equilibrium constant for the formation of a complex (ion) (in a solvent from its constituent ions/molecules)	-
[Fe(H±0)₅F]²² and [Hg(H±0)₅CJ]⁺	-
K _{tab} = [Fe(ed)_Ct_1^2"] [Fe(H_0)_4Ct_1"][ed] ²	-
mol ² dm ⁵	-
cis city of the second se	n
any cis isomer and the trans isomer identified	-
both correct cis isomers identified	-
trans isomer identified	
0# 206/ Tonic: Cham 28 Alul Chamistru/2017/w/T7 1/Danas //O# //www. SmachingScience are	
density is higher and melting point is higher	-
(density) due to 4, being larger and smaller atomic radii or (Co) atoms / ions heavier and smaller	-
(melting point) due to stronger attraction to cations as more delocalised electrons	•
(a molecule or ion) formed by a central metal atom/ion surrounded by (one or more) ligands	-
same number and type of <u>atoms</u> and different structural formula	-
e.g. e.g. NH ₅ NNH5 B structure of [Co(NH5);Bn/2 ⁺¹ HJN, TNH4, H ₅ N/ ₆ ,NH4, H ₅ N_ ₆ ,NH4, H ₅ N_ ₆	-
NH _B H _b NH _b NH _b NH _b NH _b NH _b	
co-ordinate / dative covalent	-
+3 for both	-
(HNO ₅) $Ag^{+}/AgNO_{3}$ cream(–yellow) ppt. (of AgBr) and no reaction/while ppt. for other isomer	-
$Ba(OH)_2/Ba^{24}(aq)/BaCl_2/Ba(NO_3)_2$ white ppt. (of $BaSO_4$) and no reaction for other isomer	1
(d-d) energy gap / ΔE is different	۲
<u>absorb</u> different wavelength /frequency (of light)	1
Q# 307/ Topic: Chem 28 ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
+3 or Co ³⁺	1
oxidation	1
ومراوبه والمستقلين والمستعمل والمستعمل والمستقل والمستقل والمستقل والمستقل والمستقل والمستقل والمستقل	•

e

NC

CI CN CN (must be clearly square planar)

C is Ni(CN)₂ D is K₂Ni(CN)₄ E is K₃Ni(CN)₅

3(c)

Page **609** of **703**

www.SmashingScience.org

Patrick Brannac

3(a)(iii)	$\left[\begin{array}{c} H_{3}V_{0} \\ H_{3}V_{0} \\ \\ H_{3}V_{0} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1+1
	geometrical or cis-trans	-
3(b)(i)	The number of bonds/ atoms bonded to an atom / ion / species / metal	-
3(b)(ii)	C 6 [Cr(CN) ₆] –	6
	D - [Ni(NH5CH2CH3NH5)3] 2+/+2	
	E 4 [PtC4] –	
	F 6 - 3-/-3	
3(c)(i)	K _{abb(1)} = [FeSCN ^{2*}]/[[Fe ^{3*}]]SCNT]) mol ⁻¹ dm ³	3
	K ₂₈₀₆₂] = [FeC4]/([Fe ³⁺][C7] ⁴) mol ⁻⁴ dm ¹²	
3(c)(ii)	Keqt3) = Koase(1) / Kaase(2)	1
3(c)(iii)	Ketai = 1750	1
	mol ³ dm ⁻²	1
	Total:	19

Q# 308/ Topic: Chem 28 ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

		1000 #0
1	correct charge	
1	2(d)(ii) [Ag(NCO)J ⁻] or [Ag(OCN)J ⁻] correct formula	2(d)(jj)
1	ligand: a species that uses a lone pair of electrons to form a dative / coordinate bond to a metal atom / metal ion	
1	monodentate: (a species that) forms one dative / coordinate bond	2(d)(j)
	A 300/ I Upic. Citeti 20 ALVI Citetifisti y 201//3/12 1/ rapel 4/ C# 2/ WW.Sifiasifii gotefice.01g	/onc

1,000 20 ALVICH

		-	T		1	1	1	1	1	2
U 309/ 10ptc: Cnem 28 ALVI Cnemistry/2011//m/12 2/Paper 4/Q# 6/WWW.SmasmingScience.org		Ni : [15 ² 2s ² 2p ⁵ 3s ² 3p ⁵] 3d ⁴ 4s ² Ni ³⁺ : [15 ² 2s ² 2p ⁵ 3s ² 3p ³] 3d ⁷	in address of some	octabetra: suoraireu tou retrataetra: complex complex	energy/photon is absorbed in the visible region/light	electron jumps from the lower to the upper energy level / is excited	different frequency/wavelength of light are absorbed by the two complexes OR different size of energy gap	colour of solution: green	explanation: because the solution absorbs most strongly in the blue AND red regions	
1/605 #0	B(a)(ī)	6(a)(ii)	0(b)(i)		6(b)(ii)		6(b)(iii)	8(c)		6(d)(i)

B(d)(ii)	dis-trans/geometrical	-
0(e)(i)		2
6(e)(ii)	optical	-
6(f)(i)	K ₃₈₈ = [Ni(NH ₃)s ²]y([Ni(H ₂ O)s ²⁴])NH ₃] ⁵)	-
6(f)(ii)	$[Ni(en)_3]^2$ would be formed because it is much more stable $ K_{abs} $ is much greater OR in the presence of both ligands the overall equilibrium $[Ni(NH_2)g]^2 \Rightarrow [Ni(H_2O)g]^2 \Rightarrow [Ni(en)_3]^2$ would shift right	F
6(f)(iii)	cis-trans isomers identified	1
	two cis isomers identified	ł

Q# 310/ Topic: **Chem 28** ALvl Chemistry/2016/w/TZ 1/Paper 4/O# 4/www.SmashingScience.org

4(a)	(an element) forming one or more (stable) ions or compounds or oxidation states with partially filled/incomplete d orbitals	1
4(b)(i)	A Co(OH) ₂ OR Co(H ₂ O) ₄ (OH) ₂	
	B [coct] ²⁻	
	C [Co(NH ₃)k] ^{2*} OR [Co(NH ₃)k] ^{3*}	
	two correct = 1 mark three correct = 2 marks	2
4(b)(ii)	[Co(H_2O)k] ²⁺ pink	
	solution of B blue	
	solution of C brownlyellow/orange	
		_
-1	two correct = 1 mark three correct = 2 marks	2

50
e.org
e.
nc
cie
S
80
Рi
asl
E
S.
3
≶
1
#
Ö
4/
er
đ
P.
1
5
Ň
16/w/
2016/w/
//2016/w
try/
try/
mistry/
mistry/
try/
mistry/
ALvl Chemistry/
ALvl Chemistry/
n 28 ALvl Chemistry/
hem 28 ALvl Chemistry/
Chem 28 ALvl Chemistry/
hem 28 ALvl Chemistry/
pic: Chem 28 ALvI Chemistry/
Topic: Chem 28 ALvl Chemistry/
/ Topic: Chem 28 ALvI Chemistry/
opic: Chem 28 ALvl Chemistry/
/ Topic: Chem 28 ALvI Chemistry/

Cu [Ar] 3d ¹⁰ 4s ¹		-	Γ
		-	0
igand exchange / replacement / displacement / substitution	ibstitution	-	-
$[Cu(H_2O)_6]^{2^*}$ blue and $[CuC_4]^{2^*}$ yellow OR yell	yellow OR yellow/green OR green/yellow	-	-
tetrahedral		-	-
K ₅₁₈₀ = [cucl ₄ ²]/[cu(H ₂ 0) ₅ ^{2*}][cr] ⁴		-	-
a species that contains two lone pairs		-	
that (each) form a co-ordinate/dative bond OR are donated (to a metal ion/atom)	re donated (to a metal ion/atom)	-	2
equilibrium 2 lies more to the RHS / favours forward reaction more	rd reaction more	-	-
optical		1	۲
3D correct for octahedral		-	
one correct structure with 3D		-	-
second correct with 3D		-	
			3
ic: Chem 28 ALvI Chemistry/2016/s/TZ 1/F Co:3s ² 3p ⁶ 3d ⁴ s ² Co ² *:3s ²³ p ⁶ 3d ⁷	Q# 312/ Topic: Chem 28 ALVI Chemistry/2016/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (b) Co:	·	Ξ
solution starts pink turns blue (CCH ₂ O) _{al} ^{2*} pink is (CCCL ₂ O) _{al} ^{2*} this complex is tetrahedral			EEEEE
R ₃ P ^{Mm} Ni R ₃ P ^{Mm} Ni R ₃ P	PR ₃		EEE

e.org
ce.o
enc
Sci
ing
ash
Sma
≥
ş
3/
ţ,
r 4/
ipei
/Pa
m/TZ 2/Pa
۲ ۲
/2016/
2
nist
nen
È
ALv
28 AL
_
Chem
<u>.:</u>
Top
2# 313/ Topic:
31
₿.

2# 313/ Topic: C	Q# 313/ Topic: Chem 28 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 3/www.5mashingScience.org	1
3 (a)	Co [Ar] 3d ⁷ 4s ² Co ²⁺ [Ar] 3d ⁷	
(q)	-	-
	Energy — — —	
	isolated ion tetrahedral complex	
(c) (j)	[Co(C1) ₃ (H ₂ O) ₃]	-
(ii)	-0	2
	CIMIL CIMILON CIMIL CIMILON	
2	H ₂ Ó - CI -	
(d) (j)	[Pt(C1) ₂ (NH ₃) ₂]	-
(ii)	M1, M2: diagrams M3: names	1
E	PH Han Han Han Han Han Han Han Han Han Ha	
3	CI NH ₃ CI NH ₃ CI NH ₃ Cis-platin / trans-platin / trans-platin / trans-diamminedichloroplatinum(II)	
(ii)	(cis isomer) this can react/bond/bind with <u>DNA;</u> which prevents replication of the strand/prevents cell division;	
(e) (i)	M1: formula M2: units (ecf from formula)	
	$K_{stab} = [Cu(NH_{3)4}(H_{2}O)_{5}^{2^{*}}] mol^{-4} dm^{12}$ $[Cu(H_{2}O)_{5}^{e^{*}}][NH_{3}]^{4}$	
(ii)	(large value of $K_{\rm stab}$ shows that) the tetram mine complex is more stable	-

Page **614** of **703**

Patrick Brannac

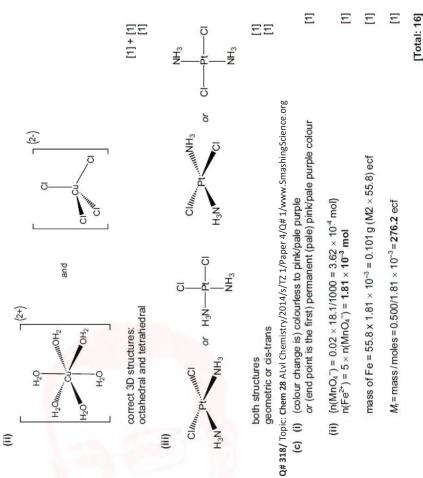
[Total: 9]

Page **613** of **703**

Patrick Brannac

Q# 314/ Topic: Chem 28 ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

-	1	2					•	n					6
								type of reaction	precipitation		ligand exchange/substitution	redox/oxidation	
shells		cannot act as a linand		>		>		formula of manganese species formed	Mn(OH) ₂ Mn(H ₂ O) ₄ (OH) ₂	Mn(OH) ₃	MnC4 ²⁻ MnC4 ⁴⁻	Mn*	
one or more) ions with incomplete d orbital(s)/sub-shells/shells	8	can act as a linand	×		>			formula	W				
) ions blete d orbital	r co-ordinate	ran art ar							H (aq)		entrated HCI	ous H ₂ O ₂	
forms (one or more) ions with incomplete d	dative (covalent) or co-ordinate	enariae	NO3	BF3	H ₂ NCH ₂ CH ₂ NH ₂	.*HN			Mn ²⁺ (aq) + NaOH (aq)		Mn ²⁺ (aq) + concentrated HCl	Mn ²⁺ (aq) + aqueous H ₂ O ₂	
3 (a)	(i) (q)	(1)					10 T-1	(c) (i)					


Q# 315/ Topic: Chem 28 ALvI Chemistry/2014/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (molecule/ion/species) that donates a lone pair of electrons (to a central transition metal atom or (inclusion) Ξ

O# 316/ Topic: Chem 28 ALvI Chemistrv/2014/w/TZ 1/Paper 4/O# 2/www.SmashingScier

2 (a)		34					4s		٢	
8	(Ni)	$\downarrow \downarrow$	₹	++	4	4	++		٢	
	(Ni ² *)	${\downarrow}$	++	++	+	4				
(p) (q)	degenerate								۲	
(1)	2 upper orbitals and 3 lower orbitals	orbitals							-	
(III)	correct upper orbital diagram	E	-	pr.		-		G	-	
	correct lower orbital diagram		26		_ / ``	- 00	06		-	
(c)	electron(s) move from lower to upper level	r to upper	evel			5			-	
	absorb (red/blue) light/photon	u							٢	
	complementary colour (green) is seen OR green light is transmitted	n) is seen							٣	

(q)	A N(OH)2 OR N(OH)3(H2O)4 B [N(NH3)6] ²⁺ OR [N((NH3)6](H2O)6+a] ²⁺ OR [N((NH3)6(H2O)4+a] ²⁺		
	N ^{P*} + 20H ^{-→} NI(0H) ₂ R [N(H ₂ O) ₂ P ⁺ + 20H ^{-→} NI(0H) ₂ + 6H ₂ O OR [NI(H ₂ O) ₂ P ⁺ + 20H ^{-→} NI(0H) ₂ + 4H ₂ O OR [NI(H ₂ O) ₂ P ⁺ + 20H ^{-→} NI(0H) ₂ (H ₂ O) ₄ + 2H ₂ O	-	
	$\label{eq:relation} \begin{split} \text{NI}(\text{OH})_{R} + \text{GNH}_{4} & - \text{[NI}(\text{NH}_{4})_{a}^{1}^{2}^{n} - 3 \text{ OH} \\ \textbf{OR} & \text{NI}(\text{H}_{2}\text{O})_{b}^{1}^{2}^{n} + \text{GNH}_{4} & - \text{[NI}(\text{NH}_{3})_{b}^{1}^{2}^{2}^{n} + \text{GH}_{2} \\ \end{split}$	1	[4]
Total			[13]

E Q# 317/ Topic: Chem 28 ALVI Chemistry/2014/s/T2 1/Paper 4/Q# 2/www.SmashingScience.org 2 (a) (i) A complex is a compound/molecule/species/ion formed by a central metal atom/ion surrounded by/bonded to one or more ligands/groups/molecules/anions A *ligand* is a species that contains a **lone pair** of electrons that forms a **dative bond** to a metal atom/ion/or a lone pair donor to metal atom/ion [1]

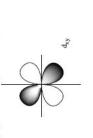
Patrick Brannac

www.SmashingScience.org

TI I DANIHASYMS

reaction	acid- base	ligand exchange	precipitation redox	redox
$\left[{Cu}({H_2}{O})_6 \right]^{2+} \ + \ 4N{H_3} \ \rightarrow \ \left[{Cu}({NH_3})_4 \right]^{2+} + 6{H_2}{O} \label{eq:constraint}$		>		
$[Cu(H_2O)_6]^{2^+} + 4HCI \rightarrow [CuCI_4]^{2^-} + 4H^+ + 6H_2O$		~		
$2 FeCl_2 + Cl_2 \rightarrow 2 FeCl_3$				`
$[Fe(H_2O)_{6]^{2^+}} + 2OH^- \to Fe(OH)_2 + 6H_2O$	>		~	
$2Fe(OH)_2 + 1/2O_2 + H_2O \rightarrow 2Fe(OH)_3$				>
$CrO_3 + 2HCl \rightarrow CrO_2Cl_2 + H_2O$	>	< <		
$\begin{array}{l} Cr(H_{2}O)_{3}(OH)_{3} + OH^{-} \rightarrow [Cr(H_{2}O)_{2}(OH)_{4}\Gamma + H_{2}O_{2}(OH)_{4}\Gamma $	>	~		
$[Cr(OH)_{4}]^{-} + 11_{2}H_{2}O_{2} + OH^{-} \rightarrow CrO_{4}^{2-} + 4H_{2}O$		1		1
	5			

(Where more than one tick appears on a line in the table above – these are alternatives – but allow the mark if both are given). 8


Q# 320/ Topic: Chem 28 ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (c) (i) NO

$3Fe^{2^{+}} + 4H^{+} + NO_{3}^{-} \longrightarrow 3Fe^{3^{+}} + NO + 2H_{2}O$ $W Fe^{2^{+}} + H^{+} + HNO_{2} \longrightarrow Fe^{3^{+}} + NO + H_{2}O)$	ive/coordinate bonding
(ii) 3Fe ²⁺ (allow Fe ²⁺	(iii) dative/cool

(n = 1-6)(iv) [Fe(H₂O)_{6-n}(NO)_n]²⁺ Q# 321/ Topic: Chem 28 ALvl Chemistry/2011/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

[4]

3 (a) for example.... also allow d_{z2}

shape (4 lobes) [1] correct label e.g. d_{xy} [1] [2]

(i)

(q)

Page 617 of 703

Patrick Brannac

www.SmashingScience.org

(Energy

(i) (d)

Marks are for 5 degenerate orbitals [1] and 3:2 split [1]

colour due to the absorption of light NOT emitted light E = hf or photon's energy = E in above diagram electron promoted from lower to higher orbital (II)

EEE

EEE E

as ΔE changes, so does f in \vec{E} = hf size of ΔE depends on the ligand

0.N. = +3 (ii)

E

A ligand is a species that contains a lone pair of electrons, or that can form a dative bond (to a transition element) (1) Q# 322/ Topic: Chem 28 ALvl Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org (a) (i) 2

[2]

species	can be a ligand	cannot be a ligand
-HO	>	
NH4 ⁺		>
CH ₃ OH	>	
CH ₃ NH ₂	~	

C is $[Cu(NH_3)_6]^{2^+}$ SO₄²⁻ (allow $[Cu(NH_3)_4]^{2^+}$ SO₄²⁻ (1) D is CuO (1) E is Na₂SO₄ (1) F is BaSO₄ (1)

acid-base or neutralisation (1) (11)

CERT

[2]

3

	T(a)(i) B = (2°) amide 4(a)(i) 2 4(a)(i) 2 Q# 327/ Topic: Chem 29 ALVI Chemistry/2019/s/T2 1/Paper 4/Q# 7/www.SmashingScience.org 7(a)(i) Mt. berzene (120°) and cyclohexane (109.5°)	M2: as <i>x</i> -bonds are transformed into c-bonds Q# 328/ Topic: Chem 29 ALVI Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	Any two of: chloro amine / hydroroy / phenol bertzen / phenyi ring / anyl / arene	Q# 329/ Topic: Chem 29 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org	4-aminobenzoic acid	Q# 330/ Topic: Chem 29 ALVI Chemistry/2017/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	Q# 331/ Topic: Chem 29 ALvl Chemistry/2016/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	ibuprofen: carboxylic acid/carboxyl	paracetamol: phenol and amide	Q# 332/ Topic: Chem 29 ALVI Chemistry/2016/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org	P arride Q ketone R secondary alcohol	Q = carbonyl and R = alcohol scores [1]	Q# 333/ Topic: Chem 29 ALvI Chemistry/2015/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org	() c-bonds = 14 示-bonds = 2	Q# 334/ Topic: Chem 29 ALvl Chemistry/2014/w/T2 1/Paper 4/Q# 7/www.SmashingScience.org	lower doses of the drug required OR improved activity of the drug OR reduced side effects	clerzeases enzyme activity OR derzeases rate at which moduct is formed	tive site OR similar	(competitive inhibition can be overcome by) increasing [substrate] OR increasing substrate concentration 1 [3]	energy source/carrier OR releases energy when hydrolysed 1 [1]	2	A (a) three from phenol (secondary) alcohol (secondary) alcohol	(primary) amine arene/ary/benzene	www.SmashingScience.org Patrick Brannac Page 620 of 703
O# 325/ 4(a)(0) Q# 326/ T 4(a)(0)	Q# 327/ Q# 327/ (10)	Q# 328/	6(a)		6(b)(i)	Q# 330/	Q# 331/	6(a)	[3]		8 (a)			(q)		(q)				(q)	Total			MMM III
(1) (1) (1) (4 max 3)	(1)	ΞĒ		(5 max 4)		(1)	(1)		(1)	[Total: 10]	cience.org		any 3 points [3]		Ξ			55	[0]	² [1] + [1]	2	[1] [3] [Total: 12]		Page 619 of 703
 Q# 323/ Topic: Chem 28 ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org a) coloured ions / compounds variable oxidation states formation of complexes catalytic activity 	(green is [Ni(H ₂ O) ₆] ^{2*}) ppt is Ni(OH) ₂ blue solution is Mi/MH_1,1 ^{2*} or Mi/MH_1,1 ^{2*} or Mi/MH_1,1 ^{2*}	ิจ [าพ(เพเเ3)6] บ. [เพ(เพเเ3)4] บ. [เพ(เพเเ3)4(เา2∪)2] nd exchange	→ Ni(OH) ₂ H. → Ni(NHAJA ²⁺ + 20H ⁻			48 + 6 + 28 + 32 = 172.7 (173)	n(Ni) = 4.00/172.7 = 0.0232 mol	.0232 × 58.7 = 1.36g	percentage = 100 × 1.36 / 3.4 = 40.0 %		 Q# 324/ Topic: Chem 28 ALvl Chemistry/2009/w/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) d-orbitals split into two / different levels light is absorbed Control is consorted from a lower to bicher level 	election is promoted from a lower to a ingrer rever- colour observed is the complement of the colour absorbed			[Cu(H ₂ O) ₆] ²⁺ is pale blue	[cu(NH3,4(H2U)z] T is deep / dark blue or purple because it has a larger absorbance peak or a larger se value	because λ_{\max} is in the visible region (hence more visible light is absorbed)	curve will have λ_{max} between >600 nm and 800 nm with maximum ϵ_o in between the other two		/ ¹ ///[Cu ²⁺][Cl ⁻¹⁴) units are mol ⁻⁴ dm ¹²		(ii) [CuCl₄ ⁺]/[Cu ²⁺] = K _c [Cl] [*] = 672 (no units)		org
Q# 323/ Topic: Chem 28 ALvl Chemistry/20 2 (a) coloured ions / compounds variable oxidation states formation of complexes catalytic activity	(b) (green is [Ni(H ₂ O) ₆] ²⁺) ppt is Ni(OH) ₂	formed by ligand exchange	Ni ²⁺ + 20H ⁻	7/100/101		(c) $M_r = 58.7 + 48 + 6$	n(Ni) = 4.00/	mass(Ni) = 0.0232	percentage =		Q# 324/ Topic: Chem 28 ALvl 3 (a) d-orbitals split in light is absorbed		E = N1		(b) (i) [Cu(H ₂ O) ₆]	(ii) because it	because λ	(iii) curve will I with maxin		(c) (i) $K_c = [CuCl_4^2-]/([Cu^{2+}][Cl-]^4)$		(ii) [GuOl47]/[www.SmashingScience.org

2

-

2

2

2

-

8

(c)	decreases enzyme activity OR decreases rate at which product is formed	٢	
	binds with the enzyme's active site OR has a complementary shape to active site OR similar shape to substrate	-	
	(competitive inhibition can be overcome by) increasing [substrate] OR increasing substrate concentration	۲	[3]
(p)	energy source/carrierOR releases energy when hydrolysed	1	[1]
ta I			7

Q# 342/ Topic: Chem 30 ALVI Chemistry/2020/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org [1] 8(a)(0) HBr / hydrogen bromide [1] [1]	[1] M1 curly arrow to Bir AND curly arrow from C-H bond as shown [1] M2 correct intermediate [1]	[1] 8(a)(iii) electrophific substitution [1]	[1] 8(b)(i) reagent chloroethane / bromoethane / lodoethane OR formula [1]	[2] 8(b)(ii)	ax 4]	8(b)(iii) step 3 = LiAJH4 [1]	[2] tep 4 = Pt AND Hz [1] Q# 343/ Topic: Chem 30 ALVI Chemistry/2020/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	6	3 The addition product is not stabilised by delocalisation of (6)rr-electrons [1] 5(a)(ii) Br ⁺ Br ⁺ + + + + + + + + + + + + + + + + + +	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	first curly arrow intermediate 2 nd curly arrow, product and H ⁺ formed / lost	5(a)(iii) ABGr2+H+ > ABGr3 + HBr	Q# 344/ Topic: Chem 30 ALVI Chemistry/2020/m/T2 2/Paper 4/Q# 5/www.SmashingScience.org 5(e)(i) HN0_3 + 2H_5S0_4 → H_5O^+ + NO_7^+ + 2HS0_4 ∩ H_5O_4 → H_5O^+ + HSO_4^-	5(e)(ii) COOH COOH	M1 curly arrow from ring to N of NO2 ² M2 correct intermediate AND curly arrow from C—H back to ring	5(c)(iii) electrophilic substitution		
Q# 336/ Topic: Chem 29 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) phenol ketone	(a) (i) (through its long chain or) delocalised electrons/mobile electrons free electrons is not sufficient	(II) planar	the π bonds/p-orbitals overlap (with each other)	(iii) C ₈ H ₆ C ₄ H ₃	[5 max 4]	mashingScience.org	(ii) ketone, alkene, amine, aryl (benzene/arene/phenyl) (any 3) Q# 339/ Topic: Chem 30 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	7(e)(i) CH ₅ C1 + A/Cb → -CH ₅ + A/C4- [1]		M1: arrow to CH1 ² (arrow must come from inside the hexagon) [1]	M2: correct structure of intermediate [1]				7(a)(ii) M1: step 1 hot KMnO₄/ MnO₄-	M2: step 2 conc. H ₂ SO ₄ and conc. HNO ₃	M3: step 3 Sn and conc. HC/ (heat) Q# 341/ Topic: Chem 30 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 5/www.5mashingScience.org	

2

-

~ 2 -

2

~

e

~

-2

-

Patrick Brannac

CE VIEW

Page **622** of **703**

www.SmashingScience.org

www.SmashingScience.org

M1: curly arrow from inside hexagon to C of electrophile M2: correct intermediate M3: curly arrow from C—H bond AND formation/loss of H*

Patrick Brannac

CC I I DNILLES YWS

Page **621** of **703**

Q# 345/ Topic: Chem 30 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

2	9					C	2	~	'n	-	2
M1: CH ₂ COC <i>l</i> or ethanoy/ chloride M2: AlCb, catalyst	organic product name of mechanism	The radical substitution chlorine atom(s) in side chain only	electrophilic substitution substitution	one only -NO ₂ group added at 3 position	no reaction with Br ₂	Award 1 mark for each correct entry to the table [5]	0# 346/ Topic: Chem 30 ALvl Chemistry/2019/s/TZ 1/Paper 4/O# 7/www.SmashingScience.org 7(a)(0 M1: reduction/hydrogenation	atalyst	M: first curly arrow to the sulfur atom M2: Internediate shown M3: 2nd curly arrow and h* formed/lost	H:SO4	Mr: Cr _e HzBfr and halogen carrier e.g. AIBr ₃ (+ heat) M2: electrophilic substitution
M1: CH3COCI or e M2: AICI3 catalyst	reagent	cı	nitric / sulfuric		Br	Award 1 mark fe	pic: Chem 30 ALvI Cherr M1: reduction / hydrogenation	M2: H ₂ + Ni / Pt catalyst	So ₃ H ¹ M1: first curly arrow to th M2: intermediate shown M3: 2nd curly arrow and	HSO4 ⁻ + H ⁺ → H ₂ SO4	M1: C₁₂H₂sBr and halogen α M2: electrophilic substitution
4(a)	4(b)						(# 346/ To 7(a)(i)		7(b)(l)	7(b)(ii)	7(c)

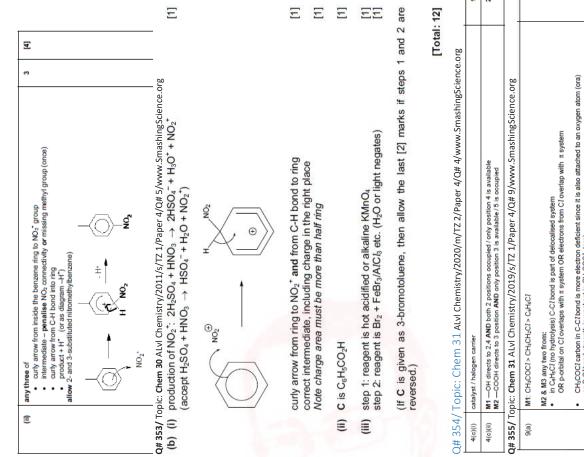
Q# 347/ Topic: Chem 30 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

6(a)(i)	D 2-chloropropane	
	E hydrogen chloride	1
6(a)(ii)	(Friedel-Crafts) alky/ation	1
6(b)(i)	A/Cl ₅ or Fecl ₅	1
6(b)(ii)		~
6(b)(iii)	sunlight or UV OR T>100 °C	1
6(b)(iv)		-
6(c)	reaction with hot KMMO4(aq)	~
	reaction with his + Ni, high pressure	F
6(d)	NO2 ⁺ Products	
	attacking species is NO2*	1
	curly arrow starting within hexagon and going to NO^{4}_{2}	1
	correct intermediate	1
	2nd curty arrow from C-H bond into ring	-
(# 348/ Ti	Q# 348/ Topic: Chem 30 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	
7(d)(i)	heat with (conc.) KMnO4	-

Page **624** of **703**

Patrick Brannac

www.SmashingScience.org



Page **623** of **703**

Patrick Brannac

~	-		3	m	m 	ri 	m	m	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		m = = = = = = = = = = = = = = = = = = =	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································								
the second secon	$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$	any three from:	Point 1: bonds/electrons are partially delocalised in T or delocalised in T or delocalised/ π system/ π bonding extends over only five carbons	Point 2: four π-electrons in the (delocalised system of T) or methylbenzene has (two) more π-electrons/(two) more delocalised electrons	Point 3: contains a carbon that is $s\rho^3$ hybridised in T or (all the) carbons are $s\rho^2$ hybridised in metry/lbenzene	Point 4: one carbon has a bond angle of 109.5*/tetrahedral (in T) or (C-C) bond strengths/lengths are not all the same or not all the bond angles are 120° (in T)	# 350/ Topic: Chem 30 ALvl Chemistry/2017/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org	H ₂ + Pt or H ₂ + Ni + heat or pressure	HTT H	S	HH CHCH2P2	(CH ₃) ₂ CH, CH ₃ and OH on the correct ring atoms i.e. structure is correct	all Hs on the same side of the ring	 # 351/Topic: Chem 30 ALVI Chemistry/2015/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org (d) (i) any four of 	M1: o-bonds between C-C or C-H	M2: π-bonds formed from overlap of p-orbitals	M3: (re-bonds/electrons) above and below the ring	Me; toordsreek-ctrons are detocalised M5: bond andle 120°	M6: intermediate C–C bond length/ all C–C same length /strength	M7: carbons are sp ² hybridised	(ii) correct delocalised structure of borazine	B	
6(a)(i)	6(a)(ii)	6(a)(iii)					# 350/	4(c)(j)	4(c)(ii)					# 351/ (d)									

4(c)(jj)	4(c)(iii) Mt —OH directs to 2,4 AND both 2 positions occupied / only position 4 is available M2 —COOH directs to 3 position AND only position 3 is available / 5 is occupied
(# 355/ To	(# 355/ Topic: Chem 31 ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org
9(a)	M1: CH3COC1 > CH3CH2C1 > CgH5C1
	 M2 any two from: in C₂H₂C1 (no hydrolysis) C-C1 bond is part of delocalised system In C₂H₂C1 (no hydrolysis) C-C1 bond is part of delocalised system OR p-orbital on C1 overlaps with π system OR electrons from C1 overlap with π system
	 CH₃COCI carbon in C-C1 bond is more electron deficient since it is also attached to an oxygen atom (ora) or C-C1 bond strength is weakest in CH₃COCI (ora)

	3
Q# 356/ Topic: Chem 32 ALvI Chemistry/2022/m/T21/Paper 4/Q# 4/www.SmashingScience.org	4(e) p-orbital on oxygen overlaps with ring /π system OR Ione pair of e ⁻ on oxygen is delocalised into the ring [1] electron density in ring increases [1] attracts/polarises electrophile better [1]
Q# 356,	4(e)

CH₃CH₂Cl carbon in C-Cl bond strengthened by positive inductive effect of alkyl group

÷

 $\begin{array}{l} 2H_2SO_4 + HNO_3 \rightarrow 2HSO_4^- + NO_2^* + H_3O^*\\ \textbf{OR} \ H_2SO_4 + HNO_3 \rightarrow HSO_4^- + NO_2^* + H_2O \end{array}$

Ξ (a) 4

Patrick Brannac

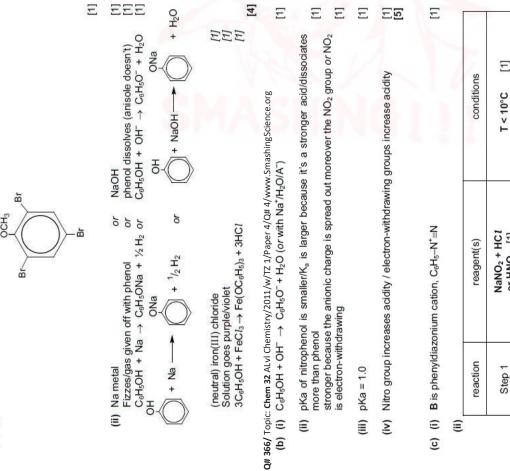
Patrick Brannac

Page **626** of **703**

_	M1: trend phenylethanoic acid > phenol > ethanol [1]	4
	 M2: why phenylethanoic acid is the strongest negative inductive electron withdrawing effect of C=O which weakens O-H bond / stabilises anion [1] 	
	 May phenol is stronger than ethanol/ weaker than phenylethanoic acid oxygen lone pair is delocalised into the ring system which weakens O-H bond / stabilises anion [1] 	
	M4: why ethanol is the weakest • electron donating alkyl/tethyl group which strengthens O-H bond / destabilises anion [1]	
18	Q# 358/ Topic: Chem 32 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	-
	M1: HNO2 OR NaNO2 + HCI [1]	2
_	M2: T \gg 10 °C / warm AND water [1]	
	8	2
	2-ritrophenol No ₂ 4-ritruphenol S - 11	7
	5	2
	2.4.6-tribromaphenol	5
	۲. / [2]	
	bromine is decolourised AND white precipitate is formed BOTH [1]	1
-	C¢H50H + NaOH → C¢H50Na + H₂0 [1]	-
	ALLOW any equation for phenol acting as an acid	
	phenol-water>ethanol [1]	°
	 (phenol:) lone pair on oxygen is delocalised into the benzene ring 	
•	 (ethanol:) positive inductive effect / electron donating effect of alkyl / ethyl group 	
•	 correct statement about stabilisation of anion/ conjugate base OR weakening of O-H bonds once in the context of phenol/ethanol 	
	 correct statement about ease of proton/H* donation in the context of phenol / ethanol [2] 	
	Two correct statements = 1 mark	
2	Q# 359/ Topic: Chem 32 ALvI Chemistry/2020/s/T2 1/Paper 4/Q# 5/www.SmashingScience.org	
_	lone pair of oxygen is delocalised into the ring	2
	any one from: phenol has a higher electron density in the ring phenol can polarise/induce a dipole in Br ₂	
	0# 360/ Topic: Chem 32 ALvI Chemistry/2020/m/TZ 2/Paper 4/0# 5/www.SmashingScience.org	•
	and the more acidic than phenol AND because the O-H bond in acid is weaker OR carboxylate ion is more stable	N
	M2 O-H bond weakened /loses proton more easily AND by negative inductive effect of C=O / due to electronegative C=O OR carboxylate ion / anion is more stable AND due to delocalisation of minus charge by C=O / 2O	
	Datrick Rrannae	Je Harris
5	www.smasningscience.org	SMASH

Q# 361/ Topic: Chem 32 ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

[1] pr	-	2		1	-		-	2		-	-	3			-
M1 C-X/ C-CI/ C-O bond is stronger (in chlorobenzene / phenol) [1] M2 p-orbital / Ione pair on C1/ O(H)/ X (in chlorobenzene / phenol) [1] M3 electrons of the (C1/ O/ electronegative atom) AND overlap / delocalise with π-electron cloud / delocalise into ring [1]			<pre>(www.SmashingScience.org</pre>			/www.SmashingScience.org			<pre>'www.SmashingScience.org</pre>	M1: phenol is more acidic than ethanol because the O–H bond in phenol is weakened/the phenoxide anion is stabilised/ethanol has an electron donating	M2: p orbital/lone pair of electrons on O can be delocalised over/overlaps with ring	Structure	м С С С С С С К	Ho	
M1 C-X/ C-CI/ C-O bond is stronger (in chlorobenzene / phenol) [1] M2 p-orbital/Ione pair on CI/ O(H)/ X (in chlorobenzene/ phenol) [1] M3 electrons of the (CI/ O/ electronegative atom) AND overlap / delocali		OH 4-bromophenol	Q# 362/ Topic: Chem 32 ALvI Chemistry/2017/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org			Q# 363/ Topic: Chem 32 ALVI Chemistry/2017/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org		C14H15O6NNa3 + 3H2O	Q# 364/ Topic: Chem 32 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	cidic than ethanol because oxide anion is stabilised/eth	ir of electrons on O can be	conditions	dilute, 5 ° C	aqueous (I: temperature)	ion
C-C1/ C-O bond is stronger (tal / lone pair on C1/ O(H) / X ons of the (C1/ O / electrone)		OH 2-bromophenol structure and name correct [1]	em 32 ALvI Chemistry/			em 32 ALvl Chemistry/	white precipitate	C14H1506N + 3N30H → C14H160	em 32 ALvl Chemistry/	M1: phenol is more a weakened/the pheno	M2: p orbital/lone pai	reagent	HNO3	${\sf Br}_2$	electrophilic substitution
7(a) M1 C-X/(M2 p-orbi M3 electro	-	7(b)	Q# 362/ Topic: Ch	8(c) phenol	ketone	Q# 363/ Topic: Ch	7(c)(i) white p	7(c)(ii) C14H15	Q# 364/ Topic: Ch	7 (a) (i) N	»Z ~ C	(ii)	-13		(iii)



Page **628** of **703**

Patrick Brannac

www.SmashingScience.org

Q# 365/ Topic: Chem 32 ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) (i)

6(a) 6(c) (q)9 Ξ (both) [1] E heat/boil/T > 10° T < 10°C HNO3 NB HNO3(aq) OK for both or HNO₂ [1] H₂O / aq

Q# 368/ Topic: Chem 33 ALvI Chemistry/2022/m/T21/Paper 4/Q# 6/www.SmashingScience.org Mf: curly arrow from lone pair on :NH₂ to carbonyl C[™])=O M2: correct dipole on [∞]C=O[™] AID curly arrow from bond C=O to O[™]) M3: correct structure of the intermediate (inc. charges) M4: curly arrow from hore pair on :O to C=O AID curly arrow from C—C16 C1 HOCH2COOH + 2SOCI2 → CICH2COCI + 2SO2 + 2HCI to remove / neutralise excess H*/ acid produced OR to react with any acidic by-products / HCI/ SO2 OR to react with any unreacted W Ar-NH2

[Total: 13]

533

correct reagent chosen and the correct "no reaction" specified correct positive observation

turns from orange to green with cyclohexanol; no reaction with phenol Cr₂O₇²⁻ + H⁺:

or

no reaction with cyclohexanol; decolourises or white ppt with phenol (d) either Br₂(aq):

E

five correct products five correct "no reaction"s (4 correct = [1]; 3 correct = [0])

5 × [1] [2]

Page 630 of 703 Patrick Brannac

111 DNIHS

www.SmashingScience.org

N / nitrogen can donate its lone pair / LP / pair of electrons

(p)9

[Total: 14]

[5]

(both) [1]

dilute

Step 3

Step 2

Page 629 of 703

Patrick Brannac

www.SmashingScience.org

[]

Q# 367/ Topic: Chem 32 ALvI Chemistry/2009/w/TZ 1/Paper 4/O# 4/www.SmashingScience.org
 (cyclohexanol & phenol) hydrogen bonding to (solvent) water molecules

due to OH group

phenoxide anion is more stable (than cyclohexoxide) / OH bond is weaker

(q)

due to delocalisation of charge / lone pair over the ring

[]]

(c)

reagent product with cyclohexanol	Na(s) RONa or ROTNa ⁺

reagent	product with cyclohexanol	product with phenol
Na(s)	RONa or RO ⁻ Na ⁺	ArONa or ArO [¬] Na⁺
NaOH(aq)	no reaction	ArONa or ArO ⁻ Na ⁺
Br ₂ (aq)	no reaction	tribromophenol
$I_2(aq) + OH^{-}(aq)$	no reaction	no reaction
an excess of acidified Cr ₂ O ₇ ²⁻ (aq)	cyclohexanone	no reaction

1
C C C C C C C C C C C C C C C C C C C

O# 369/ T	Copic: Ch	nem 33 ALvl Chemistry/20	2/m/TZ 1/Paper 4/Q# 4/v	Q# 369/ Topic: Chem 33 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	
4(d)(iii)	 (CO owir cart All three 	 (CO)O—H bond weaker / more easy to donate H⁺ in K owing to negative inductive/ electron withdrawing effect of C=O / COOH carboxylate anion stabilised / phenoxide anion is less stabilised All three for two marks 	to donate H⁺ in K withdrawing effect of C=O / COO de anion is less stabilised	H group	2
Q# 370/ T	Copic: C	Topic: Chem 33 ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	1/s/TZ 1/Paper 4/Q# 6/w	ww.SmashingScience.org	
6(a)	M1: eth	M1: ethanoic acid > butanoic acid > water > ethanol	r > ethanol		4
	M2: a re strength	M2: a reason given in terms of an electron donating or an electron withdrawing group for one of strengthening of O-H bond OR weakening of O-H bond OR stability of anion	n donating or an electron withdra g of O–H bond OR stability of an	wing group for one of: ion	
	Two out	Two out of the three alternatives M3, M4 and M5.	and M5:		
	M3: etha	M3: ethanol: positive inductive effect / electron donating effect of ethyl / alkyl / R group	ctron donating effect of ethyl / alk	yl / R group	
	M4: buta	M4: butanoic acid: positive inductive effect / electron donating effect of propy/ / alky/ / R group	<pre>t/electron donating effect of pro</pre>	pyl / alkyl / R group	
	M5: (eith over CO	her ethanoic or butanoic) <u>acid</u> : ne)O	gative inductive effect of either C	M5: [either ethanoic or butanoic) acid: negative inductive effect of either C=O or carbonyl OR negative charge delocalised over COO-	
6(b)(i)		reagents and conditions	observed change		3
	test 1	Tollen's reagent, warm OR	silver mirror		l
	test 2	renings solution, warm acidified MnO4 ⁻ , warm	(brick) red ppt/ solid decolourises OR bubbles		_
	M1 / M2	M1 / M2: reagents and conditions × 2			-
	M3- ohe	M3: observations hoth correct			
0# 371/ T	onic: C	nem 33 ALVI Chemistrv/20	2/Paper 4/0# 6/	Topic: Chem 33 Alvi Chemistry/2021/m/TZ 2/Paner 4/0# 6/www SmashingScience.org	
	CO ₂ and H	CO ₂ and H ₂ O / in words		-	
Q# 372/ T	Copic: Ch	102 ALVI Chemistry/20	21/m/TZ 2/Paper 4/Q# 5/v	Topic: Chem 33 ALvI Chemistry/2021/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org	
5(b)(i)	DIOH	COAH		-	
				Í	
5(b)(ii)	M1: heat/ M2: PC ₄₆ (M1: heat / reflux with acidified / alkaline KMnO4 (then acidify) M2: PC& OR SOC& (heat with) PC&	(then acidify)	2	
5(b)(iii)	C ₈ H ₆ O ₄ + : OR C ₈ H ₆ O OR 3C ₈ H ₆	$ \begin{split} & \mathcal{C}_{\theta}H_{0}O_{4}+2PCI_{0} \to \mathcal{C}_{\theta}H_{0}O_{4}+2POCI_{0}+2HCI\\ & \text{OR} \ \mathcal{C}_{\theta}H_{0}O_{4}+2SOCI_{0} \to \mathcal{C}_{\theta}H_{0}O_{5}CI_{0}+2SO_{2}+2HCI\\ & \text{OR} \ \mathcal{3}C_{\theta}H_{0}O_{4}+2PCI_{0} \to \mathcal{3}C_{\theta}H_{0}O_{5}CI_{0}+2H_{5}PO_{5} \end{split} $	ĨŶ	3	
Q# 373/ T	Copic: Ch	Topic: Chem 33 ALvI Chemistry/2020/s/T2 1/Paper 4/Q# 6/www.SmashingScience.org	20/s/TZ 1/Paper 4/Q# 6/w	ww.SmashingScience.org	
6(a)	M1 2-ch	M1 2-chloropropanoic acid > 3-chloropropanoic acid > propanoic acid [1]	ppanoic acid > propanoic acid [3
	M2 CH ₃ stabilise	M2 CH ₃ CHC/CO ₂ H / C/CH ₂ CH ₂ CO ₂ H (an stabilise carboxylate anion [1]	more acidic) as they contain an	M2 CH ₅ CHC/CO ₂ H / C/CH ₂ CO ₂ H (are more acidic) as they contain an electronegative Cl atom so weaken O-H bond/ stabilise carboxylate anion [1]	
	M3 CH ₃ stabilise	M3 CH ₃ CHCICO ₂ H (is more acidic than (stabilise carboxylate anion more [1]	CH2CH2CO2H) as the Cl atom i	M3 CH ₅ CHCRCO ₂ H (is more acidic than CRCH ₂ CH ₂ CO ₂ H) as the Cl atom is closer to CO ₂ H so weaken O-H bond more / stabilise carboxylate anion more [1]	
6(c)	L	reagents and conditions	observed change		5
	taat 1	M1 Tollen's reagent, warm	silver mirror		
	N L	Fehling's solution, warm	(brick)-red ppt.		
	test 2	M2 aqueous alkaline iodine OR	yellow ppt.		
		2,4-DNPH	orange ppt.		
	test 3	M3 acidified MnO4 ⁺ , warm	decolourises (and bubbles)		
	Two cor Three c	Two correct observations = 1 mark Three correct observations = 2 marks			
Q# 374/ T	Copic: C	nem 33 ALvl Chemistry/20	0/m/TZ 2/Paper 4/Q# 1/v	Q# 374/ Topic: Chem 33 ALvI Chemistry/2020/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	

					Γ
1(c)(iii)		reactant	observation with (CO ₂ H) ₂		2
		warm H*/MnO4 ⁻	decolourised OR effervesoence / bubbling / fizzing		
		2,4-DNPH	none / no reaction		
		warm Tollens' reagent	none / no reaction		
Q# 375/ To	opic: Chem 33 ALvl Chei	mistry/2018/s/TZ 1/Pa	Q# 375/ Topic: Chem 33 ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org	nce.org] .
8(b)	8(b) C ₁₅ H ₂₂ O ₄				-


1010	313/ 1001C. CITELI 33 ALVI CITELITISU // 2018/3/ 12 1/ 14/24 0/ WWW.3111831111820121102.018	
8(b)	C ₁₅ H ₂₂ O ₄	1
8(c)(i)	Of the cool of the	-
B(c)(ii)	CO ₂	1
	oxidation / oxidative cleavage	
(c)(iii)	CHicocoaH	1

Q# 376/ Topic: Chem 33 ALvI Chemistry/2018/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

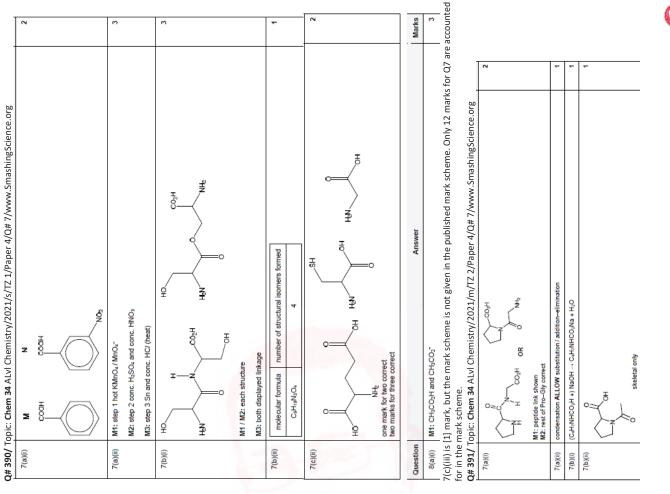
7(b)(i)	propanoic acid, phenol, propan-1-ol	1
7(b)(ii)	 propen-1-ol: O-H bond strengthened by positive inductive effect of alkyl group OR propoxide ion is destabilised by positive inductive effect of alkyl group 	2
	 phenol: O-H bond weakened by negative inductive effect of ring OR phenoxide ion is stabilised by delocalisation of oxygen lone pair into ring 	
	 propanoic acid: OH bond weakened by negative inductive effect of C=O OR propanoate ion is stabilised by detocalisation of minus charge by C=O 	
	1 mark for a correct explanation, max 2 marks	
7(c)	Tollens' reagent or Fehling's reagent	-
	methanoic acid gives a silver mirror/solid with Toller/s reagent OR red / orange ppt/ solid with Fehlings' reagent	-
(d)	PCIs or PCIs (+heat) or SOCIs (added to propanoic acid)	-
3	product of first step:	-
	add product of first step to phenol in NaOH	-
Q# 377/ Tc	Q# 377/ Topic: Chem 33 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 9/www.SmashingScience.org	
(q)8	benzoic acid > methylphenol > phenylmethanol	e
	methylphenoxide anion has delocalisation of the lone pair on oxygen over the ring	
	benzoic acid has an (extra) electronegative oxygen or electron withdrawing C=O	
Q# 378/ Tc	Q# 378/ Topic: Chem 33 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	
1(d)(ii)	the KMnO ₄ would decolourise bubbles / gas evolution would be seen	2

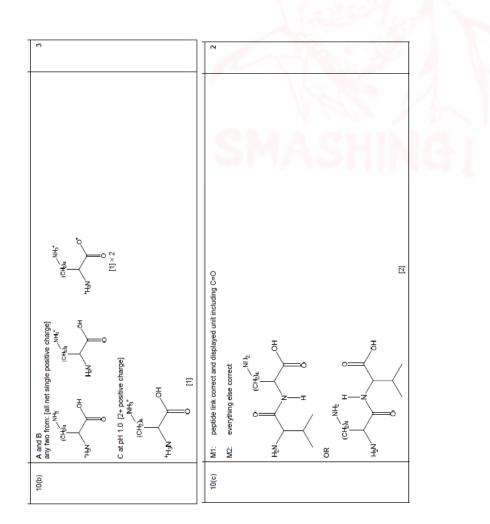
379/	fopic: Chem 33 /	379/ Topic: Chem 33 ALVI Chemistry/2017/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	
7(b)(i)	H [*] (aq) + heat	-	-
7(b)(ii)	hydrolysis	-	-
7(b)(iii)	CH₃OH	-	-
		-	ſ

Page **631** of **703**

Patrick Brannac

www.SmashingScience.org




CELEN

Page **632** of **703**

Patrick Brannac

(1)	(1)	[2]	(1) (1)	(<u>1</u>)	(1) [5] (1) (1)	(1) [5]			F		-	2		2	-	~			-	~			t of 703
Q# 385/ Topic: Chem 33 ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) (i) SOC12 or PC15 or PC13	(ii) $CH_3CO_2H + SOCl_k \longrightarrow CH_3COCl + SO_2 + HCl$ or $CH_3CO_2H + PCl_6 \longrightarrow CH_3COCl + POCl_3 + Hcl$ or $3CH_3CO_2H + PCl_3 \longrightarrow 3CH_3COCl + H_3PO_3$		(b) (i) A is C ₆ H ₅ CO ₂ C ₂ H ₅ B is C ₆ H ₅ CONH ₂	(ii) ester amide	 (iii) nucleophilic substitution / condensation (c) (i) C is C/COCOC1 D is C/COCOCC1 	(iv) condensation (polymer) or polyester		0# 386/ Topic: Chem 34 Avid Chemistry/2022/m/Tz 1/Paper 4/0# 5/www.5mashineScience.org	S(c)(vi) 00	— Ĕ -	S(a)(b) CH ₃ CHCROOH + H ₂ O = CH ₃ CHCROO ⁻ + H ₃ O ⁺ OR CH ₃ CHCROOH = CH ₃ CHCROO ⁻ + H ⁺	S(a)(ii) M1: [H1] = 10 ⁻¹⁶¹ = 0.0309 (mol dm ⁻²) M2: K ₅ = 0.030970.60 = 1.592 × 10 ⁻³ ecf pK ₆ = -log 1.592 × 10 ⁻³ = 2.80 ecf	Ē	8(a) bromine decolourised OR orange / brown to colourless [1] white precipitate [1]	no change	8(c) NH2		E M	8(d) 2,4,6-tribromophenylamine [1] ECF 8(c) for a bromophenylamine	Q# 389/ Topic: Chem 34 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org	-o	0 II	www.SmashingScience.org Patrick Brannac Page 634 of 703
6 Q#		— T				T		Q#	S(5	S.	"#_							_	-		III IBNIHSYN
Ξ	= =	ε	2 2	-	te 1 sient 1 bond			8	[2]		L	[3]		₽-<			H2	×	×	[5]	2		×Ω
nashingScience.org 100cm³				ashingScience.org	either (RCOCi) has two electron-withdrawing groups/atoms, making the more δ+/electron deficient or (RCOCi) has an oxygen, making the carbon more δ+/electron deficient or (RCOCi) has two electron-withdrawing groups, weakening the C-CI bond	ashingScience.org	-		OR p-orbital on Cl also attached to an	asso attaction to all	octron withdrawing 1	ad into ring	ashingScience.org	CO ₂ H	C		H2	x	CO ₂				Page 633 of 703
oer 4/Q# 10/www.Sm cm³) = 3.04 × 10 ⁻³ mol in				oer 4/Q# 2/www.Sma	vithdrawing groups g the carbon mor- frawing groups, we	iper 4/Q# 5/www.Sm		X ora	t of delocalised system C overlap with π system actron deficient since it is :	100 4/0# 3/00 Sm	as an electronegative/ele	gen (on phenol) delocalise ng stabilised	oer 4/Q# 5/www.Sm	ਙ⊰	C	>	H ₂	×	×				Patrick Brannac
stry/2016/s/TZ 1/Pap 1000 = 3.04 × 10 ⁻⁴ mol < 5/2 = 7.6 × 10 ⁻⁴ (in 25	 + 64 + 2 = 90 + 64 + 2 = 90 mass 02,0,4H₂ = 3.04 × 10⁻³ × 90 = 0.2736 × 100,40 = 0.68% PCL or PCL 			stry/2015/s/TZ 1/Pap de or HC l	er (RCOCI) has two electron-w more &+/electron deficient RCOCI) has an oxygen, makin RCOCI) has two electron-withc	stry/2014/w/TZ 1/Pa	12c1 > CeHsC1	o of: C-C1 bond strength is weakest in CH ₃ CH ₂ COC1 ora	In CeH ₂ CI (no hydrolysis) C-CI bond is part of delocatised system OR p-orbital on Cl overlaps with π system OR electrons from Cl overlap with π system CH-CH-COCI ranhou in C-CI bond is more electron deficient since it is also attached to an	strv/2014/w/TZ 1/Pa	CO2H AND (CICH2CO2H)	DH AND electrons on oxy electrons from oxygen ening O-H bond/anion beir	stry/2013/s/TZ 1/Pap		H ₂ O		H2	×	×				Patı
Q# 380/ Topic: Chem 33 ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 10/www.SmashingScience.org 10 (a) n(MnO_x) = 0.02 × 15.2/1000 = 3.04 × 10 ⁻⁴ mol n(C ₂ Q ₄ H ₃) = 3.04 × 10 ⁻⁴ × 5/2 = 7.6 × 10 ⁻⁴ (in 25cm ³) = 3.04 × 10 ⁻³ mol in 100cm ³	Mr = 24 + 64 + 2 = 90 mass of C, = 0 percentage = 0.273 SOCL or PCL	50 - 10 SO - 10 ZOO	J is CH ₃ oco-coocH ₃ K is HN NH	Q# 381/ Topic: Chem 33 ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.5mashingScience.org Q (a) (i) hydrogen chloride or HCl		Q# 382/ Topic: Chem 33 ALvl Chemistry/2014/w/T2 1/Paper 4/Q# 5/www.SmashingScience.org	CH4CH2COCI > CH3CH4CH2CI > C8H3CI	any two of: C-Cl bond strength i	 In C₆H₅Cl (no hydroverlaps with π systemetraps with π systemetraps with π systemetraps with π systemetraps of CH₂CH₂CH₂COCl service 	0	idity of C/CH2CO2H > CH3	Ct of Definition of phenol > CH ₂ CH ₂ OH AND electrons on oxygen (on phenol) delocalised into ring OR benzene ring withdraws electrons from oxygen on oxygen (on phenol) delocalised stronger acid inheed to weakening O-H bondlarilon being stabilised	Q# 384/ Topic: Chem 33 ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a)				Na	KOH(aq)	Na ₂ CO ₃ (aq)				www. Smashing Science.org
Q# 380/ Topic: 10 (a) n(n(× ×		<u>,</u> × ≖	Q# 381/ Topic 2 (a) (i)	(ii)	0# 382/ Topic	5 (a) C	9		0# 383/ Topic	(p) (l) ac	(i) (i)	0# 384/ Topic: 5 (a)				5						www.Sma

Page **636** of **703**

Patrick Brannac

n 1 n <th></th> <th>ontime a COO- ontime a COO- ontime a COO- poster contains a NH5⁺ contains a NH5⁺ poster d/QH 4/www.SmashlingScience.org per 4/QH 4/www.SmashlingScience.org ber 4/QH 4/www.SmashlingScience.org</th>		ontime a COO- ontime a COO- ontime a COO- poster contains a NH5 ⁺ contains a NH5 ⁺ poster d/QH 4/www.SmashlingScience.org per 4/QH 4/www.SmashlingScience.org ber 4/QH 4/www.SmashlingScience.org
Man gram contraints a COO- contraints a COO- contraints a COO- contraints a NH4" (1/2 L/P aper 4/0# 10/www.SmashingScience.org CH5 CH5 CON-	gram) gram setter of contains a COC- setter of contains a NH+ ¹ contains a NH+ ⁵ (TZ 1/Paper 4/O# 10/www.SmashingScience.org CH- C C C C C C C C C C C C C C C C	pgran pg
w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org	w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org	w/TZ 1/Paper 4/O# 10/www.SmashingScience.org
	Contribution of the second sec	C ^{H5} C CONH) CONH) coNing Ala only) s/TZ1/Paper 4/Q# 4/www.SmashingScience.org
	s/T2 1/Paper 4/Q# 4/www.SmashingScience.org	ss/T21/Paper 4/Q# 4/www.SmashingScience.org T > benzamide / S [1]

Q# 394/ Topic: Chem 34 ALvl Chemistry/2020/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

4(b)(i) reaction 1 LiAlH4 reaction 2 heat NH3 under pressure/ heat NH3 in a sealed tube	4(b)(ii) reaction 1 reduction 2	4(b)(j) 4(b)(ji) 395/	reaction 1 reaction 2 reaction 1 reaction 2 Topic: Chem	4(b)(i) reaction 1 LiAIH ₄ reaction 2 heat NH ₃ under pressure/ heat NH ₃ in a sealed tube reaction 1 reduction reaction 1 reduction reaction 2 nucleophilic substitution ##395/ Tobic: Chem 34 ALVI Chemistry/2020/m/T2 2/Paper 4/O# 6/www.5mashineScience.org	2 2
4(b)() reaction 1 LiAlH4 2	reaction 2 heat NHs under pressure/ heat NHs in a sealed tube	(hcc #)	reaction 1	(# 334) Topic. Chem 34 ALVI Chemistry/2020/5/12 1/Faper 4/C# 4/WWW.ShidshingSuterice.org	2
4(b)(ii) reaction 1 reduction 2			reaction 2	nucleophilic substitution	
4(b)(ii) reaction 1 reduction 2 reaction 2 nucleophilic substitution 2	reaction 2 nucleophilic substitution	# 395/	Topic: Chen	n 34 ALvl Chemistrv/2020/m/TZ 2/Paper 4/0# 6/www.SmashingScience.org	

ŧ

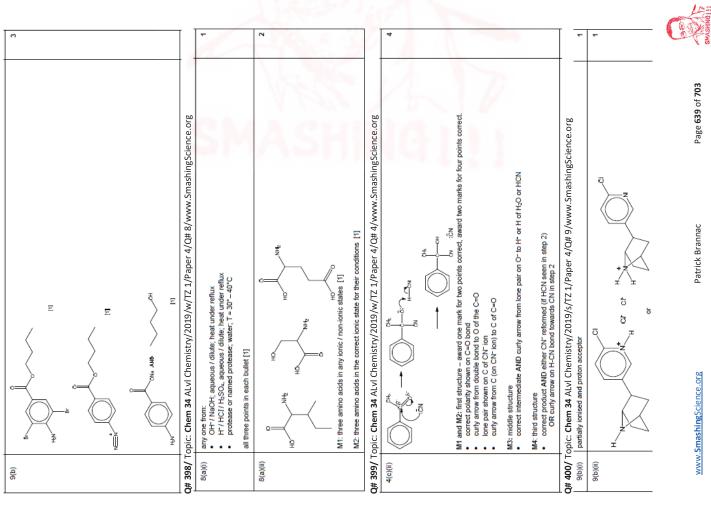
6(b)	0= T	2
	Han CH(CHb)2 CH(CHb)2	
	M1 one peptide link fully displayed (but not contradicted by the other peptide link)	
	M2 rest of structure correct	
B(c)(j)	M1 optical isomerism	2
	м2 соон соон	
	R CIT	
	NH2 H2N	
6(c)(ii)	I	-
396/ To	396/ Topic: Chem 34 ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org]

Q# 39

4(a)(i)	A = ester B = (2°) amide	2
4(a)(ii)	2	+
4(b)	COOH	8
	M1 phenylalanime M2 protonated amine	
	M3 (ethanoi) CH ₃ CH ₂ OH	
4(c)(i)	catalyst / halogen carrier	1
4(c)(ii)	M1 —OH directs to 2,4 AND both 2 positions occupied / only position 4 is available M2 —COOH directs to 3 position AND only position 3 is available / 5 is occupied	2
4(d)(i)	x = 14.4 / 100 \times 100 / 1.1 = 13.1 13 carbon atoms (some working required)	-
4(d)(ii)	(250 – 205 = 45, so) CO ₂ H / C ₂ H ₅ O	1
Q# 397/ T	Q# 397/ Topic: Chem 34 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	
9(a)(i)	$RNH_2 + H^+ \rightarrow RNH_3^+ OR RNH_2 + HCI \rightarrow RNH_5CI$ [1]	1
9(a)(ii)	weaker AND lone pair of N delocalised into benzene ring [1]	•

Patrick Brannac

www.SmashingScience.org


www.SmashingScience.org

Patrick Brannac

Q# 401/ T	Q# 401/ Topic: Chem 34 ALvl Chemistry/2019/s/T2 1/Paper 4/Q# 4/www.SmashingScience.org	Γ
4(f)(i)	CH3COCI + CH3NH2 → CH3CONHCH2 + HCI	2
	M1 Correct formulae of CH3COCI or CH3CONHCH3	
	M2 rest of the equation	
4(f)(ii)	condensation or addition-elimination	-
Q# 402/ T	0# 402/ Topic: Chem 34 ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	
6(a)	CH ₃	2
	Hgc	
	HN	
	M1 amide bond displayed [1] M2 rest of the structure [1]	
6(b)	Vallys Lys	9
-		
	mixture applied here	
	M1 value on the cross [1] M2 values and Lyss mut by the right of the cross (in any order) [1] M3 relative order of values and you the same side of the cross) [1]	
	Explanation	
	 Vial does not move as it is a xwitterion / neutral (is the his) OR Lys //viel.ys move towards negative (pole) as they are positively charged Lys moves the furthest as it has the lowest Mr. (with the same positive charge) OR Vial-Lys moves the least as it has the largest Mr, (with the same positive charge) 	
Q# 403/ T	Q# 403/ Topic: Chem 34 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org] .
9(c)(i)	(phenyldiazonium ion is stabilised because) positive charge is delocalised by ring / positive charge is spread over ring	1
9(c)(ii)	HO HO HO HO	-
	N2	-
Q# 404/ T	Q# 404/ Topic: Chem 34 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	
7(b)(i)	(RCO ₃ H + H ₃ NR'	1
7(b)(ii)	broken: C-O, N-H formed: C-N, O-H	2
7(b)(iii)	bonds formed: 305 + 400 or 755 bonds broken: 360 + 360 or 750 (both) ΔH = 750 - 765 = -15 (k.)	2
7(c)	(if ΔG = 0, then) ΔH = TΔS ΔS = ΔH/T = -8000 / 288 = - 20.1 (J mor ¹ K ⁻¹)	2
Q# 405/ T	Q# 405/ Topic: Chem 34 ALVI Chemistry/2018/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	
7(d)(ii)	Sn and HC? heat + conc. (then add NaOH)	2
Q# 406/ T	Q# 406/ Topic: Chem 34 ALVI Chemistry/2018/m/TZ 2/Paper 4/Q# 4/www.SmashingScience.org	
4(b)(i)	nitrogen has a lone pair which can accept a proton or can be donated to a proton	-
4(b)(ii)	e.g. $G_{4}H_{3}H_{2} + HCl \neq C_{4}H_{3}NH_{3}^{+} + Cl^{-}$ etc.	-
4(b)(iii)	butanamide is non-basic / neutral or (much) less basic than butylamine	-
4(b)(iv)	LiA M4 (in dry ether)	-

www.SmashingScience.org

Page **640** of **703**

Patrick Brannac

TI I DNIHSWWS

Q# 407/ Topic: Chem 34 ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org

3(a)(iv)	A is CH ₃ NH ₂ B is HCO ₂ H	2
Q# 408/ T(Q# 408/ Topic: Chem 34 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org	
6(e)(ii)		
	structure of diazonium salt R	1
	structure of azo dye S	1
Q# 409/ T(Q# 409/ Topic: Chem 34 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org	
6(c)	(benzocaine) is less (basic than ethylamine) AND Ione pair (on N) is less available to accept a proton/H ⁺ since (lone pair on N) is delocalised over the ring or phenyl ring is electron withdrawing group	2
	OR ethylamine is more basic (than benzocaine) AND Ione pair (on N) is more available to accept a proton/H ⁺ since ethyl/alkoh monutis electron-chonation monut	
Q# 410/ T(0# 410/ Topic: Chem 34 ALVI Chemistry/2017/s/TZ 1/Paper 4/0# 2/www.SmashingScience.org	
2(e)(i)	n(BaCO ₃) =1.66/197.3 = 8.4(1) × 10 ⁻² mol	-
2(e)(ii)	n(RNCO) = 8.41 × 10 ⁻³ mol, so M _t = 1/(8.41 × 10 ⁻³) = 119	1
2(e)(iii)	molecular formula = C ₇ H ₆ NO	-
2(e)(iv)	CHN M	
	Total:	23
Q# 411/ T(Q# 411/ Topic: Chem 34 ALvl Chemistry/2017/m/T2 2/Paper 4/Q# 5/www.SmashingScience.org	Ī
5(b)	$C_{10}H_{13}NH_{2} + H_{3}O^{*} = C_{10}H_{13}NH_{3}^{*} + H_{2}O$	-
5(c)	in compound H, the alkyl groups are electron donating/have a positive inductive effect, so it is more basic than NH3	-
	in phenylamine, the lone pair (of N) is delocalised over the anyl group/benzene ring, so phenylamine is less basic than NH3.	-

Q# 412/ Topic: Chem 34 ALvI Chemistry/2016/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

	4. ++++ 10010. CICIII]
1(e)(j)	lone pair receive/accepts a proton/H*	~ ~	2
1(e)(ii)	HsNCH5CH3NHz+2HCI→CIH3NCH5CH3NH5CI		
	OR H₅NCH₅CH₅NH₅ +2H ⁺ → H₃N°CH₅CH₅N°H₃	÷	~
1(f)(i)	amide bond, displayed or -CONH-	-	
	rest of the molecule with continuation bonds	÷	
	т: 0— т: 0—		
			2
1(f)(ii)	condensation / addition - elimination	-	-
1(f)(iii)	any named polyalkene/eg polyethene, PVC	-	
ł	allow Bakelite or Kevlar		~
	Total:		20
2# 413/ Top	Q# 413/ Topic: Chem 34 ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org		
7 (a) (i)	= 		
	NH2 CH CH CO2H CO2H CO2H CO2H	[2]	-
(II)	Mr = 233	[]	_
(b) (d)	NH ₂ CH(CH ₂ OH)CO ₂	[1]	-
(11)	F is a DC power supply G is the anode DR positive electingle		

(II)	(ii) $M_r = 233$	Ξ
(i) (q)	(b) (i) NH2CH(CH2OH)CO2	[1]
(II)	F is a DC power supply G is the anode OR positive electrode Is the cathode OR negative electrode H is filter paper (OR gel) soaked in buffer solution	[4]
(III)	P is NH2CH2CO2- or NH2CH2CO2H or glycine S is [ala-ser-ghy] ⁽⁻¹ glycine is the smallest, so travels fastest; tripeptide is the largest, so travels slowest	EEE
(c) (i)	(c) (i) heat with H ₅ O* OR heat with OH7aq)	[1]
(ii)	(ii) hydrolysis	[1]
		[Total: 13]
	-	

Page **642** of **703**

Patrick Brannac

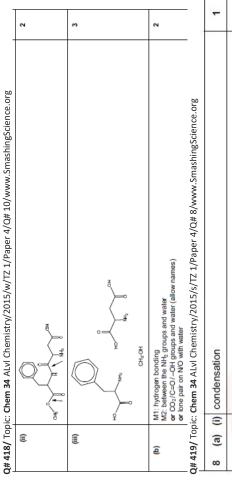
www.SmashingScience.org

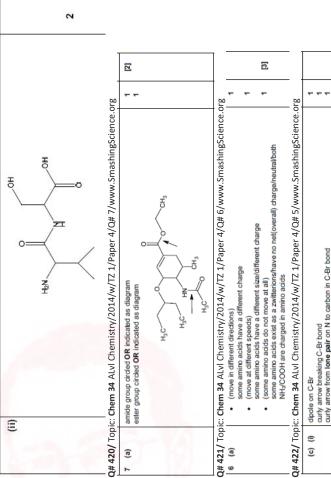
Correction

Page **641** of **703**

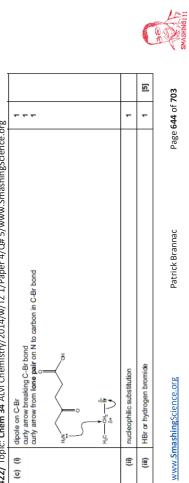
Patrick Brannac

Q# 414/ Topic: Chem 34 ALvI Chemistry/2016/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org


	•		0	
9	(a) (i)	(i) $C_8H_5NO_2 + 6H^2 \longrightarrow C_8H_5NH_2 + 2H_5O$		[1]
	(II)	(ii) $2C_{6}H_{5}NO_{2} + 14HCl + 3Sn \rightarrow 2C_{6}H_{3}NH_{3}Cl + 3SnCl_{4} + 4H_{2}O$		[2]
	(q)	(M, values: CeH4NO ₃ = 123 CeH4NH ₃ CI = 129.5) theoretical yield = $5.0\times129.5/123$ = 5.26 percentage yield = $100\times4.2/5.26$ = 79.8% (80%)		EE
	(c) (j)	() $C_{eH_{a}NH_{2}} = 93$ yield of phenylamine = 4.2 × 93/129.5 = 3.016 g		[1]
	(II)	(ii) mass left in water = $3.016 - 2.68 = 0.336g$ $K_{\text{sat}} = (2.68/50)/(0.336/25) = 3.99$		[]
	(p)	phenylamine is less basic that ethylamine the kone pair on N is delocalised over the ring making it less available for reaction with a proton /8+H		[2]
	(e) (i)	(i) step 1: HNO ₂ CR (NaNO ₂ + HCI) at $T < 10^{\circ}$ C step 2: boll/heat in water		ĒĒ
	(II)	(II) E is Ortania (CI)		[1]
				[Total: 13]
ŧ.	415/To	Q# 415/ Topic: Chem 34 ALvl Chemistry/2016/m/T2 2/Paper 4/Q# 9/www.SmashingScience.org	org .	1
L				


aper 4/Q# 9/www.SmasningScience.org	
r'ha	
77	
È	
nemistry/ 2016/i	
5	
Ā	
34	
hem	
l opic: C	1000
\c15/	200

(c) (i)	V: it has two amine/NH ₂ groups (which can be protonated) <i>or</i> it has an amine/NH ₂ group on its side chain/R group	-
(II)	(ii) four (TT, TU, UT, UU)	1
Q# 416/ Topic: 4 (c) (i)	Q# 416/ Topic: Chem 34 ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org (c) (i) see line on diagram in (b)	-
(ii)		-


Q# 417/ Top	Q# 417/ Topic: Chem 34 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org	
i) (q)	(b) (i) white precipitate/solid	
ii)	(ii) between 0° C and 10 °C	
(iii)) M1: double bond between nitrogen atoms M2: rest of molecule	
	HO	

MMM	
2	
1	:
DPL 2	5
Pa	5
-	ì
4	!
<u>ک</u>	
/2015	
Z	-
O# 418/ Topic: Chem 34 Al vl Chemistry	
, he	
4 ALVIC	
A	
25	,
em	
5	;
.0	5
Tor	
# 418/ To	ì
4	
ö	Ì

--- -

Page **643** of **703**

Patrick Brannac

[1]	[1]	[1]	Ξ	Ŧ	<u> </u>	Ì	ĩ	Ĩ.	<u> </u>	[1]	<u>.</u>			[]] []] []]	[1]	[3]			CASH
/www.SmashingScience.org		l ethyl group	lelocalised into the ring	i/www.SmashingScience.org	condensation	does not need C=C/double bond	needs two different functional groups	different formula	small molecule /H2O/HCI is formed		/www.SmashingScience.org		Lysine		i/www.SmashingScience.org				tc Page 646 of 703
try/2013/s/TZ 1/Paper 4/Q# 4, ptor	 NH₃ > phenylamine 	ethylamine (more basic) due to electron donating ethyl group	phenylamine (less basic) due to lone pair being delocalised into the ring	:ry/2012/s/TZ 1/Paper 4/Q# 8,		puo	al group	same general (empirical) formula as monomer	ule/H ₂ O/HCI		try/2012/s/TZ 1/Paper 4/Q# 7,	Start point	Glycine	Glutamic acid between + and start point Lysine between - and start point Glycine at, or <i>very</i> close to, start point	try/2012/s/TZ 1/Paper 4/Q# 6,	Al9-			Patrick Brannac
Q# 427/ Topic: Chem 34 ALvI Chemistry/2013/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org (c) (base is a) proton acceptor	basicities: ethylamine > NH ₃ > phenylamine	ethylamine (more basic	phenylamine (less basi	Q# 428/ Topic: Chem 34 ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org (c.)	Addition OR	requires C=C/double bond	uses the same functional group	same general (empiriœ	no loss of small molecule/H ₂ O/HCI	Any two differences	Q# 429/ Topic: Chem 34 ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a)	+	Glutamic acid	Glutamic acid between + and star Lysine between – and start point Glycine at, or <i>very</i> close to, start	Q# 430/ Topic: Chem 34 ALVI Chemistry/2012/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) (i) Condensation	(ii) ala-ala, gly-gly, ala-gly			www.SmashingScience.org
[1]		[1]									4 × [1] [4]	E	2 × [1]	[2]			[] []	[1]	C Provest
ashingScience.org	asningscience.org imonia	asching Science and	I A SHI II B S CICHICE. OI B						solution					nashing Science. or g	CH ₃	н			Page 645 of 703
TZ 1/Paper 4/Q# 3/www.Smi aq))	1.2 1/Paper 4/0# 3/www.sm ase/more basic than am	(alkyl/CH ₂) groups	/ 12 T/raper 4/ C# // www.sir	gias: sides			10 2		filter paper soaked in buffer	sircuit)	ntre of plate]		s) 3S)	,172 1/Paper 4/Q# 6/www.Sm 3.v sg)	H ₃ C C	Mer Participation of the second secon	ß		Patrick Brannac
Q# 423/ Topic: Chem 34 ALvI Chemistry/2014/s/T2 1/Paper 4/Q# 3/www.SmashingScience.org 3 (a) heat in dilute HC((aq) (or H ₂ SO ₄ (aq))	Q# 424/ IOPIC: Chem 34 ALVI Chemistry/2014/s/12 1/Paper 4/U# 5/www.5mashingScience.org (iv) piperidine should be a stronger base/more basic than ammonia		7 (a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		electrolyte	Itthe day	Illi v V		amino acid mixture placed here	power supply (idea of complete circuit) electrolyte/buffer solution	germice paper aportation paper (amino acid) sample/mixture [centre of plate]	(b) any two from:	size/w, (or the arrino acid species) charge (on the amino acid species) terr perature	Q# 426/ Topic: Chem 34 ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org 6 (a) (i) six/6 (gsv, sgv, gvs, vgs, svg)	OH (II)	HN	two displayed peptide bonds correct formula of peptide	(iii) valine (allow glycine)	www.SmashingScience.org

C S ANNUAL STATE Page **646** of **703**

effervescence / bubbles produced colour turns from orange to green propylamine is more basic than phenylamine because lone pair on N is delocalised over ring in phenylamine (so less available for (iii) because it's an amide or not an amine or its lone pair is delocalised (over C=O) decolourises / white ppt formed available due to electronegative oxygen [NOT: E is neutral, but the diamine is diag: NH₂CH₂CH₂OH---OHCH₂CH₂NH₂ or NH₂CH₂CH₂OH---NH₂CH₂CH₂OH (i.e. H-bond from OH group to either OH or NH₂) purple colour disappears Q# 433/ Topic: Chem 34 ALvI Chemistry/2011/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org Q# 434/ Topic: Chem 34 ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org Q# 435/ Topic: Chem 34 ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org or the propyl group is electron-donating, so the lone pair is more available or HNO2/H⁺ at T<10°C, then phenol in NaOH (1) coloured dye formed steamy fumes ethylamine > NH₃ due to electron-donating ethyl/alkyl group phenylamine < NH₃ due to delocalisation of lone pair over ring 4 (a) (i) $C_2H_5NH_2 + HA \rightarrow C_2H_5NH_3^+ + A^-$ (HA can be H_2O , HCl etc.) Allow \rightleftharpoons instead of arrow phenylamine least basic → HOCH₂CH₂NH₃⁺OH⁻ → HOCH₂CH₂NH₃⁺C/ (reaction with any acceptable Bronsted acid accepted) (1) → HOCH₂CH₂NH₃⁺ ammonia or HOCH₂CH₂NH₂ + HCl or HOCH2CH2NH2 + H2O (ii) hydrogen bonding PCI3/ PCI5/ SOCI2 HOCH2CH2NH2 + H⁺ ethylamine most basic 4 (a) hydrogen bonding Cr₂O₇²⁻/ H⁺ MnO₄⁻/ H⁺ ethanolamine: phenylamine: protonation) or less Br₂(aq) basic Na or or or (111) 1 (c) (e) (q) [1] [5 max 4] [1] [1] [1] [1] [1] [1] [1] [max 3] [1] + [1] ΞΞ $4 \times [1]$ ΞΞ [4] filter paper soaked in buffer solution Marks: power supply / electrolyte + filter paper / buffer / acid mixture central Q# 432/ Topic: Chem 34 ALvl Chemistry/2011/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org Q# 431/ Topic: Chem 34 ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 7 (a) Sketch and label the apparatus used to carry out electrophoresis e.g glass slides (ci O) Voltage applied Magnitude of the charge (on the amino acid species) z≣z (warm is insufficient) 5 NOT LIA/H4, NaBH4 d.c. power supply step 4 is conditional of structure E step 4: warm + in H₂O pH of the buffer Charge on the amino acid species Size of the amino acid species / Mr amino acid mixture placed here Q Sn + HCl conc. + reflux Temperature (ii) step 2: electrolyte Ξ (11) (i) (d) (q)

[2]

E

(1)

Ξ

Ξ

EE**4**

(1)

(F)

(1)

[2]

(1)

4

(1)

(L)

F

Page 648 of 703

Patrick Brannac

www.SmashingScience.org

www.SmashingScience.org

Patrick Brannac

Page 647 of 703

A HINING

[Total: 12]

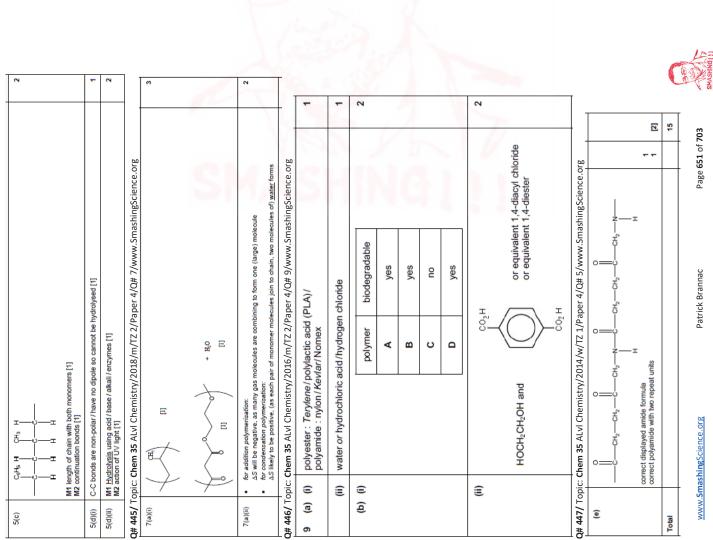
Q# 436/ Topic: Chem 34 ALVI Chemistry/2009/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org (e) (i) A species having positive and negative ionic centres / charges, with no overall charge [1]

O# 437/ Topic: Chem 35 Au/ Chemistry/2022/m/Tz 1/Paper 4/Q# 5/www.SmashingScience.org 5(b)(iv) CH3 CH3 Au/ Chemistry/2022/m/Tz 1/Paper 4/Q# 5/www.SmashingScience.org 5(b)(iv) CH3 CH4 H H indicating CH3 CH4 H H indicating CH4 H H H indicating Condensation Ch4 H H	www.SmashingScier	www.SmashingScience.o	www.SmashingScience.org	C is biodegradable / easily hydrolysed Topic: Chem 35 ALvI Chemistry/2021/5/T2 1/Paper 4/0# 6/www.SmashingScience.org 一一一一一一一一一 M1: correct displayed amide linkage M1: correct displayed amide linkage M2: the rest of the repeat unit correct including trailing bonds Topic: Chem 35 ALvI Chemistry/2021/m/T2 2/Paper 4/0# 6/www.SmashingScience.org Topic: Chem 35 ALvI Chemistry/2021/m/T2 2/Paper 4/0# 6/www.SmashingScience.org 10: Chemistry/2021/m/T2 2/Paper 4/0# 6/www.SmashingScience.org 10: Chemi	www.SmashingScience.org	www.SmashingScience.org
Topic: Chem 35 ALVI Chemis CH3 ALVI Chemis CH3 ALVI Chemis CH4 A H middle anide group shown displayed [1] rest of structure correct [1] condensation C is biodegradable / easily hydrolysed C is biodegradable / easily hydrolysed Doi:: Chem 35 ALVI Chemistry/200		M1: correct displayed amide linkage M1: correct displayed amide linkage M2: the rest of the repeat unit correct including trailing bonds M2: the rest of the repeat unit correct including trailing bonds	6(d) 6(d)	Opt Culent 32: ALM Chemistry 2022/37/2.17 apper -4/0# of www.SinasiningSucience.org Mil: correct displayed amide linkage Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.or Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.or Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.or Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/O# 6/www.SmashingScience.or Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/O# 6/www.SmashingScience.or Opic: Chem 35 ALVI Chemistry/2021/m/TZ 2/Paper 4/O# 6/www.SmashingScience.or Mil: preserve of an ester group from the dial and COOH OR presence of an ester group from the fumaric acid and OH Mil: preserve of an ester group from the fumaric acid and OH	Optic. Client 35 ALM Cheft Program (V/CLCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2C	Cuterin 32 Activity Cuterins (1)/2.02.1/3 / 12.1 / rapet +/ Art o/ www. Cuterin 32 Activity Cuterins (1)/2.02.1/m/T2 2/Paper 4/0# 6/www be rest of the repeat unit correct including trailing bonds the rest of the repeat unit correct including trailing bonds The rest of the repeat unit correct including trailing bonds Chem 35 ALVI Chemistry/2021/m/T2 2/Paper 4/0# 6/www Chem 35 ALVI Chemistry/2021/m/T2 2/Paper 4/0# 6/www Chem 35 ALVI Chemistry/2021/m/T2 2/Paper 4/0# 6/www Chem 35 ALVI Chemistry/2021/m/T2 2/Paper 4/0# 6/www contact displayed and correct including trailing bonds Chem 35 ALVI Chemistry/2020/w/T2 1/Paper 4/0# 10/ww pair of momentant molecting training bonds the rest of repeat unit molecting training bonds the rest of repeat unit molecting training bonds bonds are non-polar polyationes to ondensation HOCHOLICI 1/Paper 4/0# 10/ww

e.g. H₂NCH₂Cl Q# 441/ Topic: Chem 3

-c ₆ H₄-NH ₃ ⁺	[1] [2]		ethan(e)-1,2-di HO ₂ CCO ₂ H or ethan(e)dioic a
Tot	[Total: 16]	Q# 442/ T	Q# 442/ Topic: Chem 3
hem 35 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 5/www.SmashingScience.org]	9(c)(l)	
	2		
		VEN-20	Both ticks cor
I H H H H e group shown displayed [1] mic connect [1]		a(c)(II)	0) - - -
	-		I
dable/ easily hydrolysed 35 Al vi Chemistrv/2021/s/T71/Paner 4/O# 6 /www.SmashineScience orp	1		M1: amide link
	2	0/U)	M2: rest of the
Hoth		(1)0	
	-		Ŧ
lisplayed amide linkage		(e)	or CH ₃ CCI=CH
of the repeat unit correct including trailing bonds		Q# 443/ T	Q# 443/ Topic: Chem 3
35 ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org		5(a)(i)	~/
-		8	X
		5	NC
if more than one unit drawn ALLOW one repeat unit identified		J	M1 correct C-(M2 continuatio
2		5(a)(ī)	addition
		5(a)(iii)	Any two of:
if an ester group from the diol and COOH OR presence of an ester group from the fumaric acid and OH ast unit including danging bonds			permanent dip
 non-polar / polyalkenes cannot be hydrolysed these can be horder down by hydrolysed 			London/van de
35 ALVI Chemistry/2020/w/TZ 1/Paper 4/Q# 10/www.SmashingScience.org		Q# 444/ T	Q# 444/ Topic: Chem 3!
pair of monomers type of polymetration are entropy and incomposition	-	5(a)(ii)	-
Product and HO-O-OH And HO-O-OH And HO-O-OH And HO-O-OH AND			
CH_CHCF_amit CH_CHCH_2 addition			and object one
E			rest of the struc
[1] ALLOW Super Glues	1	5(b)	[1] for each con
th two amine groups per molecule, amine groups must not be on the same carbon atom [1] CH5.NH2.	-		
35 ALvl Chemistry/2019/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org]		bonds bro

8(c)(i)	any structure containing one COOH / COCI and NHs groups in the same molecule	one COOH / CO	0CI and NH ₂ group:	s in the same mol	ecule [1]	
8(c)(ii)	HOCH ₂ CH ₂ OH [1] ethan(e)-1,2-diol [1]	ecf for diols				4
	H0 ₂ CCO ₃ H or CXOCCOC7 [1] ethan(e)dioic acid or ethan(e)dioyl chloride [1] ecf for diacids / diacyl chlorides	27 [1] an(e)dioyl chloric	de [1] ecf for diacid	ds / diacyl chloride	8	
Q# 442/ T	opic: Chem 35 ALvl C	hemistry/201	19/s/TZ 1/Pape	er 4/Q# 9/www	Q# 442/ Topic: Chem 35 ALvI Chemistry/2019/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	-
9(c)(i)			σ-bonds only π	π-bonds only bot	both g- and g-bonds	-
	<u> </u>	bonds broken bonds formed			× ×	
	Both ticks correct					
9(c)(ii)	0 	N	o			2
	I	— 1				
	M1: amide link					
	M2: rest of the structure					
(p)6	H H H H		f o			2
1000	or CH ₃ CCI=CH ₃ and C ₃ H ₃ CH=CHCH ₃ each correct structure scores one mark	CH=CHCH3 ear	ch correct structure	scores one mark	a te destructions de services de servic	
0# 443/ T	opic: Chem 35 ALvI C	/ polyalkenes ca hemistry/201	nnot be nydrolysed 19/m/TZ 2/Pap.	er 4/Q# 5/ww	9(e) C-C bonds are non-polar / polyakenes cannot be hydrolysed and polyamides can be broken down by hydrolysis Q# 443/ Topic: Chem 35 ALVI Chemistry/2019/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org	-
5(a)(i)	NC NC	1				2
T	M1 correct C–C backbone (with correct side groups) M2 continuation bonds and two repeat units	e (with correct sind two repeat un	de groups) its			
5(a)(ii)	addition					-
5(a)(iii)	Any two of: permanent dipole (attraction): C, N, O, OR CO, CN, CO ₂ CH ₃ , OCH ₃	ion): C, N, O, OF	R CO, CN, CO ₂ CH ₃	OCH3		2
	H-bonding: N, O OR CO, CN	CN				
0# 444/ T	London/van der Waals: N, C, H, O OR CH3, CN, CO2CH3, C–C chains onic: Cham 25 Al VI Chamictrv/2018/Av/T7 1/Paner 4/0±	I. C. H. O OR CH	13, CN, CO2CH3, C- 18/w/T7 1/Pane	C chains er 4/O# 5/wwv	Londonivan der Waals: N. C. H. O OR CH3, CN. CO2CH3, C-C chains D# 4444 Tonie: Chem 35 Al vl Chemictrv / J118 /w/17 1 / Danner 4/O# 5/ www. Smaching Science org	
5(a)(ii)				z		2
	one amide bond displayed in full [1]	d in full [1]	н			
	rest of the structure – one repeat unit only [1]	repeat unit only	[1] /			
5(b)	[1] for each correct tick					2
		σ-bonds only	π-bonds only b	both σ - and π -bonds	sp	
	bonds broken		`			
	bonds formed	*				


www.SmashingScience.org

Patrick Brannac

Page **650** of **703**

Patrick Brannac

7 11 1-1

Page **652** of **703**

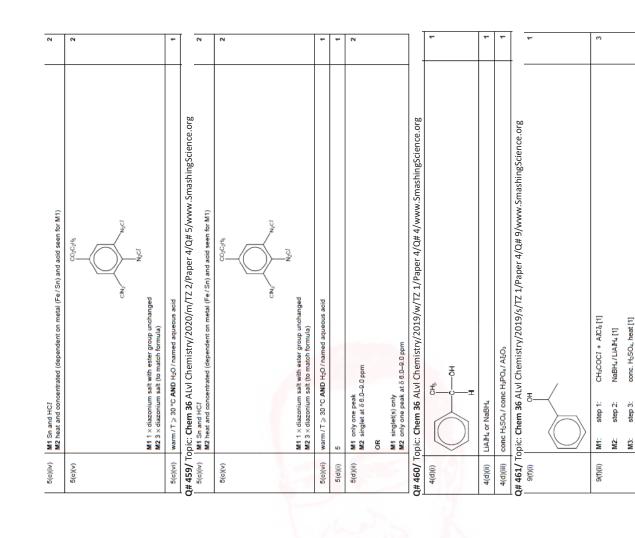
Patrick Brannac

	omer	2 × [1]	[1]					1	[1]	[1]	[1]	2	-	3			2			-	2	-	-		SMASHIN
shingScience.org nds/alkene ule	the same as that of its mon the same as that of its mon tional groups							an one repeat unit shown		se out water (owtte)	or diagram showing this)														Page 654 of 703
nistry/2011/s/TZ 1/Paper 4/0# 9/www.SmashingScience.org addition needs unsaturated/double bonds/alkene condensation eliminates a small molecule	empirical formula of addition polymer is the same as that of its monomer condensation needs two different functional groups	(NOT - "condensation needs two different monomers")		F	0	CH2-O		sticks to rest of molecule Note : candidates need only show 'brackets' if more than one repeat unit shown		o alternate in order to conden	(and still form a polyalkene) (o					tcz [1]			and 3,5-/meta- directing [1]						Patrick Brannac
Q# 452/ Topic: Chem 35 ALvl Chemistry/2011/s/T2 1/Paper 4/Q# 9/www.5mashingScience.org (b) Any TWO from: addition needs unsaturated/double bonds/alkene condensation eliminates a small molecule	empirical condense	" – TON)	(c) (i) Water	(ii)			Correct 'ester' bond	sticks' to rest of molecule Note : candidates need or	(iii) Polyesters	(d) Monomers in <i>Terylene</i> have to alternate in order to condense out water (owtte)	Alkenes can link in any order (and still form a polyalkene) (or diagram showing this)		0 (zero) in F AND 2 (two) in J	step 1 CH ₃ C/AND A/Cl ₃ [1]	step 2 $D = O_3N$ [1]	step 4 (hot) Sn AND concentrated AND HC1 [1]	Hoto	NO2 [1]	COOH group is electron-withdrawing group and 3,5-/meta- directing [1]	C ₅ H ₁₈ O	hydrolysis [1] acid–base / neutralisation [1]	$C_6H_5OH + Na \rightarrow C_6H_5O^{(-)}Na^{(+)} + \%H_2$	J →a		www. Smashing Science.org
Q# 452/ T (b)			(c)							(p)		4(a)(ī)	4(a)(ii)	4(b)(i)			4(b)(ii)			4(c)(i)	4(c)(ii)	4(d)(j)	4(d)(ji)		MMM
	[1]	[1]	[1] [3]	[1]	c ones) [1]	[1]	[1]				EE		EE	max two	[1] [1] [max 3]									(IT I DINIHSYMS
smashingScience.org				ittracts water more)	ains (as well as hydrophili		SmashingScience.org					r a long time do not decor			ources										Page 653 of 703
013/s/TZ 1/Paper 4/Q# 8/www.S CO2H	сн—сн ₂ —			absorbing properties (allow a	more polar(ity)/more hydrophilic / has ionic side-chains (as well as hydrophilic ones)	able/decompose	.012/w/TZ 1/Paper 4/Q# 8/www.	н - сн ₃ - сн ₃ -	 		ONE)	s pollute the environment for kly	Produce toxic gases on burning		Strategy 1: Recycle polymer waste / use renewable resources Strategy 2: Develop biodegradable polymers										Patrick Brannac
Q# 449/ Topic: Chem 35 ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 (a) (i) CO2H CO2H CO2H CO2H		(ii) Addition	(iii) Hydrogen bonding	(b) (i) more / increase water absorbing properties (allow attracts water more)	more polar(ity)/more h)	(ii) It should be biodegradable/decompose	Q# 450/ Topic: Chem 35 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 8/www.SmashingScience.org (ii) condensation	(d) (j)	0		ester linkage shown rest of repeat unit correct (ONE)	 (b) Reasons: Plastics/polymers pollute the environment for a long time do not decompose/ biodegrade quickly 	Produce toxic gases on burning		Strategy 1: Recycle polym Strategy 2: Develop biodec										www.SmashingScience.org

TITONIHSTWS

Q# 454/ Topic: Chem 36 ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org

9(a)	PCi OR PCi OR SOCE [1]	1
9(b)(i)	amide [1]	1
9(b)(ii)	HCI/hydrogen chloride OR C2HsNH3CI/ ethylanmonium chloride [1]	1
9(c)(i)	LiA?H.4 [1]	1
9(c)(ii)	reduction [1]	1
Q# 455/ 1	Q# 455/ Topic: Chem 36 ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	
7(d)(i)	Br ₂ + UV light [1]	-
7(d)(ii)	CN II	-
7(d)(iii)	CHECK Q is corrrect step 2 - KCN in ethanol + heat [1] step 3 - HC((aq) + heat/reflux/boil [1]	2
7(d)(iv)	CHBr2 OR CBr3 III	L
	ALLOW any viable organic by-product from this radical substitution reaction, e.g. ceHsCH2CH2CeHs	
Q# 456/ 1	Q# 456/ Topic: Chem 36 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	
6(c)(i)	G = HOCH,CH,CH,CH,CH	2
6(c)(ii)	M1: step 1 NaOH(aq) + heat	4
	M2: step 2 acidified KMnO ₄ + heat / acidified K ₂ Cr ₅ O ₇ + heat	
	M3: step 3 CN-/KCN/NaCN + heat	Z
	M4: step 4 LiAlH4, ALLOW Na in ethanol or H2 + Ni/Pd/Pt	1
Q# 457/ T 7(c)(i)	Topic: Chem 36 ALvI Chemistry/2021/m/T2 2/Paper 4/Q# 7/www.SmashingScience.org CH4000cAths: = diverse CH2COCAths: = diverse All three correct for two marks	
7(c)(ii)	addition	
7(c)(iii)	H ₂ /Ni OR H ₂ /Pt OR H ₂ /Pd	
7(c)(iv)	condensation / (nucleophilic) substitution / elimination	
7(c)(v)	ethanol / C_HsOH / CH3CH3OH	
7(c)(vi)	*cc) *co2H *i	
	M112: All four correct: Ione pair on NHs correct of points correct display on C—C1 correct display on C—C1 correct display on C—C1 to C1 correct display on C—C1 to C1	


Q# 458/ Topic: Chem 36 ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org

F 0 0

M3: intermediate =

E. <mark>0R</mark>

۶Ľ -co₂H

Page **656** of **703**

Patrick Brannac

www.SmashingScience.org

Page **655** of **703**

CAR

www.SmashingScience.org

Patrick Brannac

Q# 462/ Topic: Chem 36 ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org

7(a)(i)	HOIC-COH OR HOIC-COCI	-
7(a)(ii)	sock or Pck	1
7(b)(i)		4
7(b)(ii)	M1 step 1: Clc+ AICls	5
	M2 step 3: conc. HNO ₃ + H ₂ SO ₄	
	M3 step 4:Sn + conc. HC/ M4 step 6:TiA/H.	
	MS any volt M = 17 y no of: T < 60 °C / reflux for step 1 T < 60 °C / reflux for step 3 heat / T > 60 °C / reflux for step 4	d
7(b)(iii)		-
7(b)(iv)	steps 1, 2 and 3	-
7(c)		4
Q# 463/ T(Q# 463/ Topic: Chem 36 ALvI Chemistry/2019/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org	
5(b)(i)	Y CHICOCO2CH3	2
5(b)(ii)	Z CHJC(OH)(CN)CO2CH3 M1M2 step 1: CH3OH and (conc) H5SO4 + heat	4
	M3 step 2: HCN + NaCN catalyst	
	M4 step 3: T > 100%C / heat with Al ₂ O ₃ (or heat with c. H_2SO_4)	

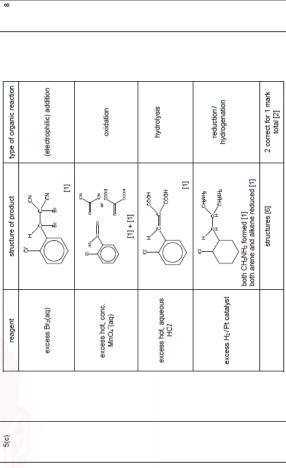
Q# 464/ Topic: Chem 36 ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

7(c)(i)	step 1 conc. HNO ₃ + H ₅ SO ₄ (and temperare 50–55 °C) [1]	
	step 2 Sn + HCI AND one of conc.HCl + heat [1]	
	step 4 H ₅ O warm / heat [1]	
7(c)(ii)	*N~N	•
	Cr or Cr	
7(c)(iii)	step 1 electrophilic substitution	-
7(c)(iv)	$7(c)(iv)$ CeHeNO2 + 6[H] \rightarrow CeHeNH2 + 2H2O	•
Q# 465/ T	لم 465/ Topic: Chem 36 ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 9/www.SmashingScience.org	

9(c) step 1 treat benzoic acid with SOC12 or PC12 to make the acyl chloride

e

ith the benzoyl chloride)	
NaOH(aq) (and shake w	
ormula is C ₆ H ₆ COC <i>1</i> issolve the methylphenol in N	
fc step 2 d	


Q# 466/ Topic: Chem 36 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

loot .		
8(b)(i)	step 1 heat with AIC5, + (CH ₃):CHC1 or CH ₃ CH=CH ₂ step 2 heat the AIC5, + CH ₃):COC1 or CH ₃ CH=CH ₂ step 3 head with AIC5, CH ₃ COC0 step 4 LiA1 ^H 4. (in dry ether)	4
8(b)(ii)	step 2 electrophilic (aromatic) substitution step 4 reduction	2
TILLE		

Q# 467/ Topic: Chem 36 ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 6/www.SmashingScience.org 6(b)(ii)

step 1 Sn + HCI[1] concentrated/reflux/heat [1] step 2 CH₂COCI[1] step 3 KM0-2/manganate(<u>TII</u>)/MnO₄⁻ (acidified/alkaline) and heat [1] step 3 etheonol, H₂SO₄, concentrated/reflux/heat [1]

Q# 468/ Topic: Chem 36 ALvI Chemistry/2017/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

Page **657** of **703**

www.SmashingScience.org

Patrick Brannac

www.SmashingScience.org

Patrick Brannac

Page **658** of **703**

Q# 469/ Topic: Chem 36 ALvI Chemistry/2017/s/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

I			1+1	1+1	-	-	1	1	+	-	-	-	-	1	14
															Total:
0	W	amide							S	M	A	Sł			
	L	amine methyl ketone							NH2 O						
	к	aromatic amine aldehyde							at of the second						
	ſ	amine methyl ketone						Na	<i>°</i>	NH ₂	z_2 ₩		iral atoms shown		
			J and L correct	K correct	M correct	hydrolysis	P is C ₆ H ₅ NH ₂	Q is CH ₃ CH ₂ CO ₂ Na	si r	K is	r is	M is	K&L only: two chiral atoms shown	W is C ₆ H ₅ CO ₂ Na	
	5(a)					5(b)(i)	5(b)(ii)		5(c)					(p)	

O# 470/ Topic: Chem 36 ALVI Chemistry/2017/s/T2 1/Paper 4/O# 4/www.SmashingScience.org

d or C with 4 different						7	1+1				
optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C* indicated or C with 4 different	groups	$C_{10}H_{14}O + 3H_2 \longrightarrow C_{10}H_{20}O$ correct formulae	balancing	electrophilic substitution	step 3 reduction	step 5 substitution / hydrolysis	step 1 (CH ₃) ₂ CHCl + AICl ₃ /AIBr ₃ /FeCl ₃ /FeBr ₃	step 2 HNO ₃ + H ₂ SO ₄ conc (T < 55 °C)	step 3 Sn + HCI	step 4 HNO ₂ (or NaNO ₂ + HCl) (at T < 10 °C)	the two temperatures for steps 2 and 4
4(a)(i)		4(a)(ii)		4(b)(i)	4(b)(jj)		4(b)(iii)				

Q# 471/ Topic: Chem 36 ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 5/www.SmashingScience.org

5(a)(i)	$(CH_3)_5C-CI/(CH_3)_2C = CH_2$	-
	AICI3 + heat	
5(a)(ii)	(UV) light	
5(a)(iii)	$\bigcirc \mathcal{L}_{c}$	F
5(a)(iv)	ammonia/NH3	
	heat in sealed tube / heat under pressure	-
Q# 472/ Top	Q# 472/ Topic: Chem 36 ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	_

9 (a)

n			[1]	
	(q)	step 1: C ₆ H ₅ COCI + A/C ₅ (+ heat) step 2: CH ₅ CH ₅ CI + A/C ₅ (+ heat) step 3: Br ₅ + B(m (or heat)) step 4: KCN + heat (in entanol) step 5: H ₆ O' OR H ⁻ in H ₅ O (OR HC/ (aq) etc AND heat/boil/reflux	EEEEE	
	(c)	step 1: electrophilic substitution OR nucleophilic substitution step 5: hydrolysis OR nucleophilic substitution	[] [1]	
			[Total: 9]	

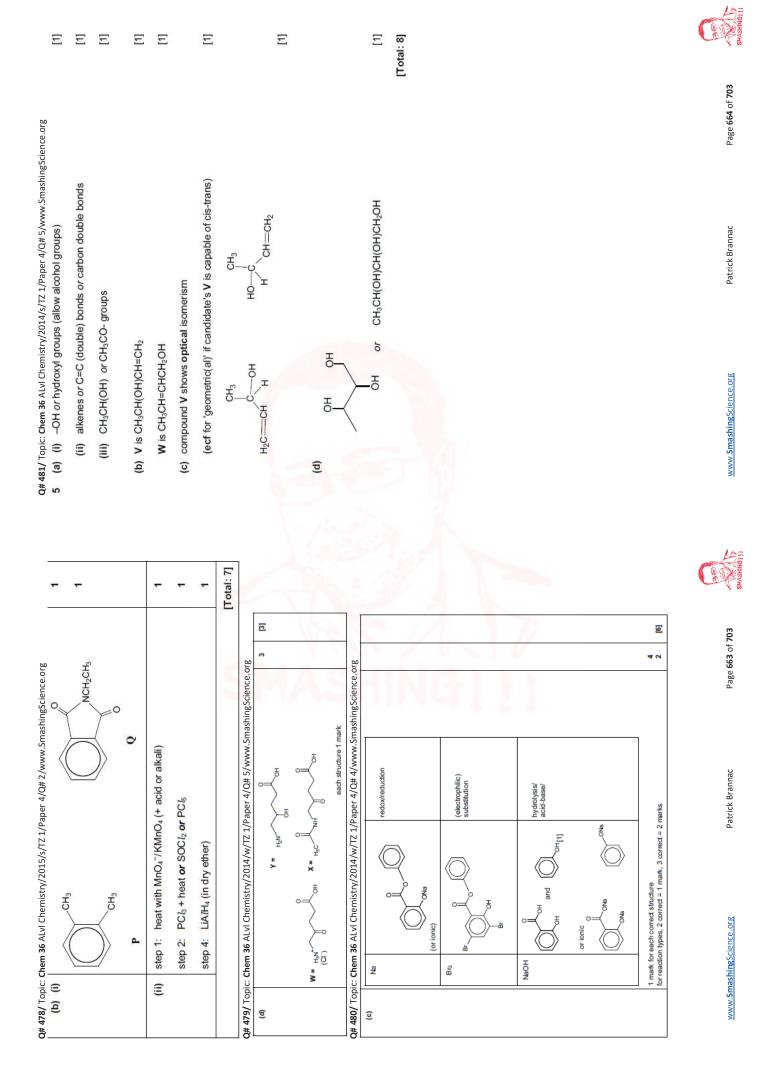
Q# 473/ Topic: Chem 36 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

(p)	reagent	observation	 ŝ
	alkaline iodine solution	yellow ppt. formed	
	universal indicator	blue / purple colour formed	
	2,4-dinitrophenylhydrazine	yellow/orange ppt formed	
	Tollens' reagent	no reaction	
(e) (i)	LiA/H4		-
(ii)	H-O-		ł
	\langle		
	(must be skeletal)		
(!!!)	CH ₃ OH		1
	CH ₃ C		
	ĊH ₃		

Page **660** of **703**

Patrick Brannac

Ĕ	
<u>e</u>	
ŝ	
60	
.⊆	
Ч.	
ä	
Ę	
ŝ	
≥	
3	
3	
F)	
#	
Ø	
4	
<u> </u>	
e	
a	
٩.	
N	
i/TZ 2/Pap∈	
\leq	
Ē	
6	
1	
2016	
1	
£	
ist	
3	
ē	
등	
, C	
ALv	
A	
36 ALv	
~	
hem	
Ę.	
0	t
:: :	
D	
ō	
Q# 474/ To	
4	
474,	
#	
₿-	L
-	


1	-	-		-	-	-	m	3		U	۰	3		
/w.SmashingScience.org	1	1		-	- CCI3	w.SmashingScience.org	AS							7
0# 474/ Topic: Chem 36 ALvl Chemistry/2016/m/TZ 2/Paper 4/0# 1/www.SmashingScience.org		$x = 60/C_{60}H_{60}$	reaction 1: Cl ₂ and UV light; reaction 2: AICI ₃ , Cl ₂ (NOT aqueous);	(free) radical substitution	cr cc c	Q# 475/ Topic: Chem 36 ALvI Chemistry/2015/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org	N N N N N N N N N N N N N N N N N N N		402 + HCI	step 1 (linked to a reduction) reflux/heat/>50 $^\circ C$ or conc/6M (HCi) and step 2 $<10^\circ C$	roup)	structure of product hype of reaction	H ₃ N ⁺ Cr acid-base	CH ₃ CH ₂ , MH ₂ NH ₂ Br
c: Chem 3() sp ²				-	c: Chem 30	Solution North State	Sn + HCI	HNO2 or NaNO2 + HCI	step 1 (linke and s	diazonium (group)	reagent	HC/	CH ₃ CH ₂ Br
Q# 474/ Topi	(i) (q)	(ii)	(c) (j)	(ii)	(iii)	Q# 475/ Topi	7 (a) (i)	(ii)			(11)	7		

Q# 476/ Topic: Chem 36 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

7 (a) (i)	heat with catalyst \boldsymbol{or} heat with $A_{\tilde{E}}O_3/SiO_2$	1
(ii)	B is CH ₃ CH ₃ CH ₃	1
(111)	C is CH2=CHCH2CH2CH3	1
	D and E are CH ₃ CH=CHCH ₂ CH ₃ (one shown as cis, the other as trans)	-
	F is CH ₃ CH ₂ CH ₂ CO ₂ H	~
	G is CH ₃ CO ₂ H	
	H is CH ₅ CO ₂ H	
(iv) Q# 477/ Topic:	(iv) geometrical or cis-trans or E–Z Q# 477/ Topic: Chem 36 ALvI Chemistry/2015/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org	-
6 (a) (i)	CH ₃ COC1 or ethanoyl chloride	-
(ii)	electrophilic substitution	1
(iii)	conc HNO_3 and conc H_2SO_4	1
(iv)	CHI3	1
e	o chat of	Ŧ
3		2 5
	O2N NO2 O2N NO2	
	\leftarrow	
(i) (q)		-
(1)	polvamide or condensation	-
(111)		-
(iv)	Sn /Fe + HCl + conc/ aq /heat/warm	1
_	-	-

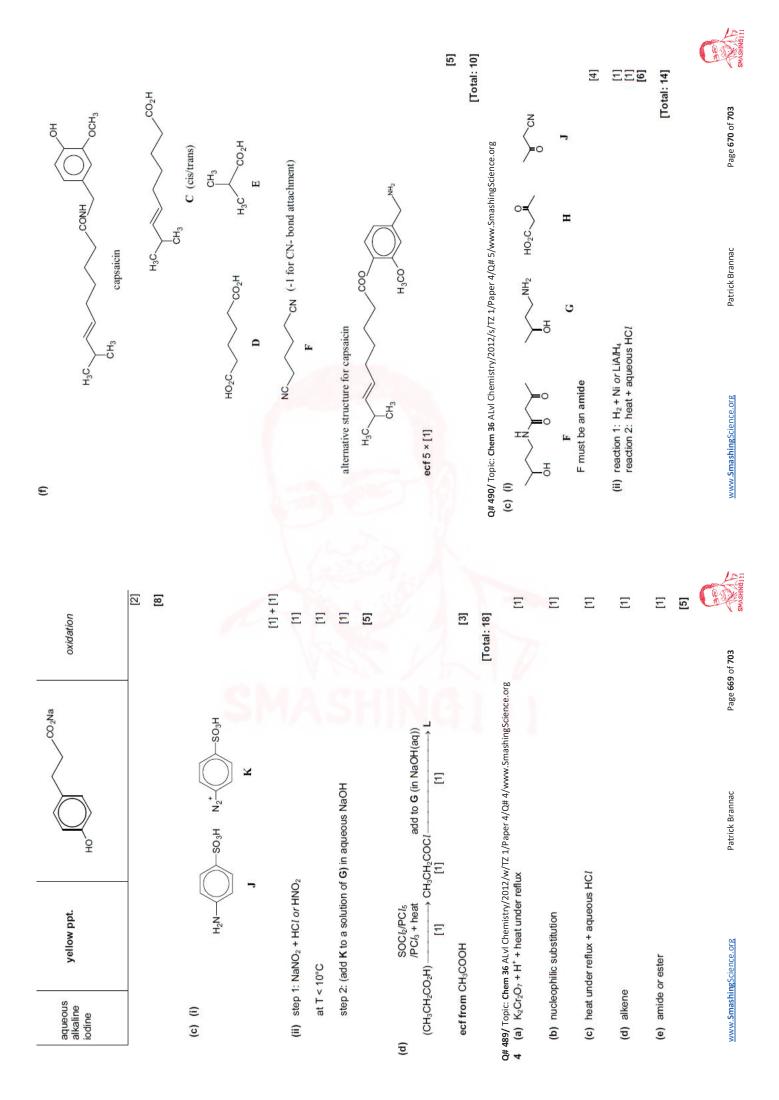
12

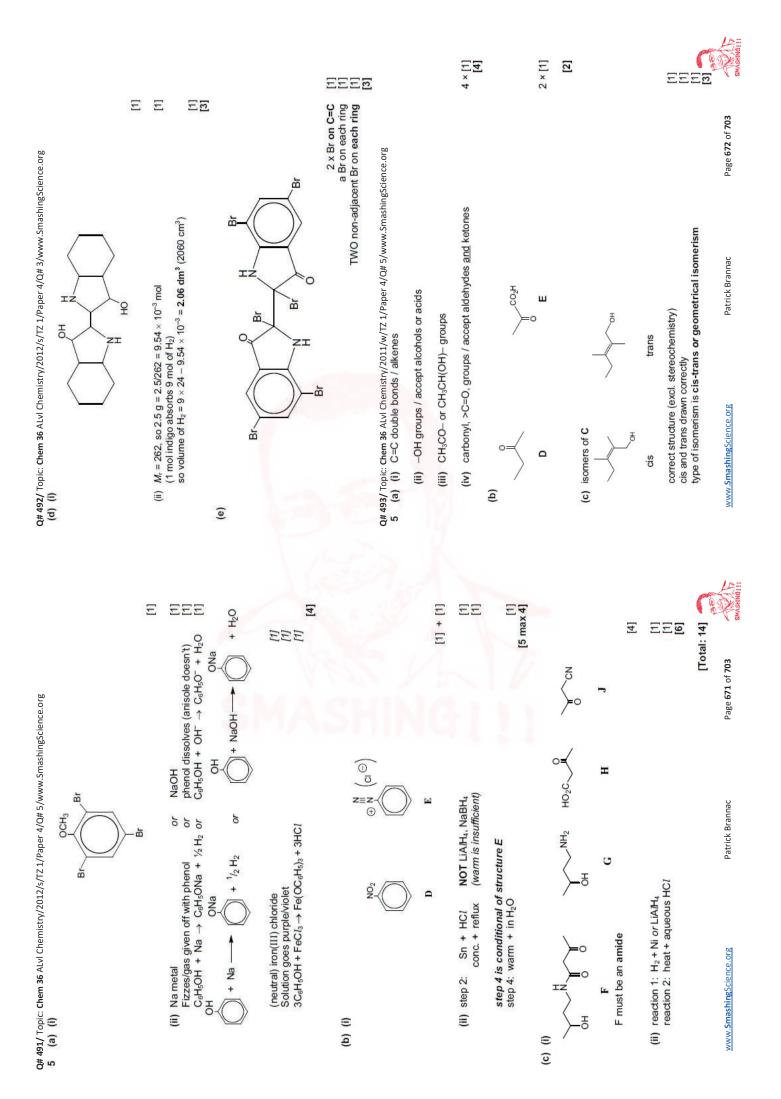
[2]	[1]	[1]	[1]	[2]	[Total: 17]	ΞΞ		[1]	[3]		[2]	aBr) [Total: 18]	[1]	[1]		E	E	[] []	5				Page 666 of 703
Q# 483/ Topic: Chem 36 ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org (e) (i) alkene(1), amide(1)			reflux (not warm)			Q# 484/ Topic: Chem 36 ALvI Chemistry/2013/w/T2 1/Paper 4/Q# 4/www.SmashingScience.org (d) Cf-CH2CH2-CO2H HO-CH2CH2-CH2-CI				Q# 485/ Topic: Chem 36 ALvI Chemistry/2013/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org (e) G is CH ₃ CH ₃ COCI		or corresponding Br compounds for G, H and J; CH ₃ CH ₂ COBr, SOBr ₂ , NaBr)	Q# 486/ Topic: Chem 36 ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 5/www.5mashingScience.org (b) (i) (CH ₃) ₃ C-CI (any unambiguous structure or name)	ination	<i>either</i> CH ₃ CO ₂ H and heat with (conc) H ₂ SO ₄								Patrick Brannac Page 66
Q# 483/ Topic: Chem 36 ALVI Chemistry/ (e) (i) alkene(1), amide(1)	(ii) NH ₃	(iii) H ₂ O	(iv) HCl (aq)/H ₃ O ⁺ and heat/reflux (not warm)			Q# 484/ Topic: Chem 36 ALVI Chemistry/ (d) CI-CH2-CD2-H HO-CH2CH2-C12 HO-CH2CH2-C12	Ho	Br		Q# 485/ Topic: Chem 36 ALVI Chemistry, (e) G is CH ₃ CH ₂ COCI		(or corresponding Br con	Q# 486/ Topic: Chem 36 ALvl Chemistry. (b) (i) (CH ₃) ₃ C–C1 (any uni	(ii) reduction or hydrogenation	(iii) either CH ₃ CO ₂ H and	CH3COCI	(iv) reflux	dilute HCl					www.SmashingScience.org
			[1]	ΞΞ				E			[1]			E				5	333	[5] max [4]	EE	[Total: 14]	6 of 703
w.SmashingScience.org					se or white out formed																		Page 665 of 703
y/2014/s/TZ 1/Paper 4/Q# 4/wwv סט	5-5	CN	>	HCN + base	or real curano.		2 or 3 bromines in ring			² HN	(or ionic)		NH ₃ CI +		House	VHCOCH ₃							Patrick Brannac
Q# 482/ Topic: Chem 36 ALvl Chemistry/2014/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org (b) (i) (i)	ОН	Compound Z is	9	step 1: HCN + NaCN or HCN + base	atep 2. 112 - 1100 Linua	HO HO	бе	B	(c)			1.44C	НО			CH ₃ CO0			M1. annue M2: alcoholic ester M3: both phenolic esters		(d) amide ester		www.SmashingScience.org

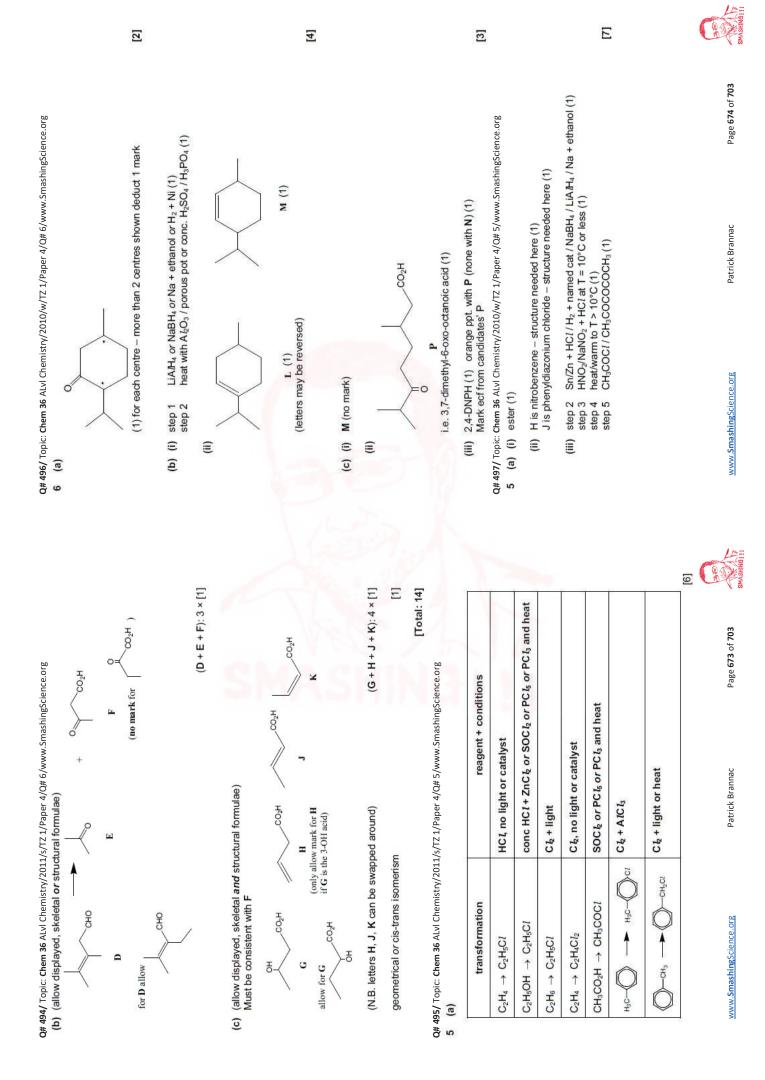
c) (i)				Q# 487/ Topic: Ch	em 36 ALvl Chemistry/2013	Q# 487/ Topic: Chem 36 ALVI Chemistry/2013/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	5
	reagent and conditions	product with A	product with B	(d) (i) st	(d) (i) step 1: nucleophilic substitution	itution	[1]
		₽́		st	step 2: hydrolysis		[1]
	$Br_2(aq)$	Br	no reaction	(ii) st	(ii) step 1: KCN (in ethanol) and reflux	and reflux	[1]
		C(CH ₃) ₃		st	step 2: H_3O^* / aqueous acid and reflux	ad and reflux	[1]
	heat with HBr	no reaction	Br C(CH ₃) ₃	ш) Т	T is		Ξ
	pass vapour over heated Al ₂ O ₃	no reaction	c(CH ₃) ₃	s	W is		Ξ
	heat with acidified K ₂ Cr ₂ O ₇	no reaction	C(CH ₃)s	8			[1] [6] [Total: 15]
			[9]	Q# 488/ Topic: Che 5 (a) phenol ketone	em 36 ALvl Chemistry/2012 I	Q# 488/ Topic: Chem 36 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) phenol ketone	ΞΞ
(ii)	<i>either</i> : Cr ₂ O ₇ ^{2−} /H ⁺ : no observ	(ii) either: Cr₂O₇²⁻/H⁺: no observation with A and goes from orange to green with B.	ange to green with B.				[2]
	Br ₂ (aq): white ppt. with A and no observation/ppt with B	id no observation/ppt with B	E	(q)			
			[Total: 17]	reagent	observation	structure of product	type of reaction
				sodium metal	effervescence /bubbles/fizzing		xopeJ
				snoenbe	decolourises	Br	electrophilic
				bromine	or white ppt.	Р	substitution

Page **668** of **703**

Patrick Brannac


www.SmashingScience.org




Page **667** of **703**

www.SmashingScience.org

Patrick Brannac

-	
s	
ure	
ŝ	
ructi	
st	
aut	
differen	
Ě	
If C	
þ	
lla,	
nu	
LO	
rf	
lla	
eci	
Q	
L	
ame molecul	
Sa	
the s	
e t	
that have the same mole	
5	
ha	
st	
Б	
unoduu	
dr	
S	
(i)	
-	
(q)	

- (methyl) ketone or carbonyl (1) phenol (NOT hydroxy) (1) (11)
- K is 4-ethanoylphenol, HO-C₆H₄-COCH₃ (must be 1,4- disubstituted isomer) (1) (111)

[3]

ĒĒ

step 1 is KCN in ethanol, heat [HCN negates] step 2 is H_2 +Ni / Pt or LiAlH₄ or Na in ethanol [NOT NaBH₄ or Sn/HCI]

Q# 499/ Topic: Chem 36 ALvI Chemistry/2010/s/TZ 1/Paper 4/Q# 4/www.SmashingScience.org

(d) (i) X is CH₃CH₂CN

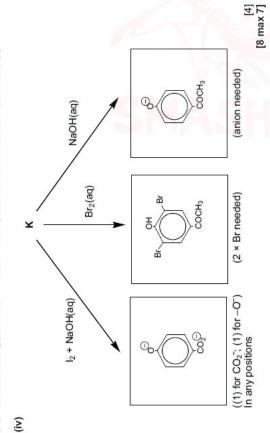
1

Q# 500/ Topic: Chem 36 ALvI Chemistry/2009/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org 5 (a) (i) 1: KMnO4

(1)

EEE

E4


-[-CO-C₆H₄-CO-NH-C₆H₄-NH-]- (Peptide bond must be displayed for minm)

(11)

(NOT aq)

heat with H⁺ or OH⁻ II: SOCl₂ or PCl₃

(a) (i)

for [1] for [2] [4 max 3]

[1] + [1]

(1 mark for each end)

(i) CH₃NHCO-C₆H₄-CONHCH₃

(q)

HOCH₂CH₂O-CO-C₆H₄-CO-OCH₂CH₂OH or the polymer -{- OCH₂CH₂O-CO-C₆H₄-CO-}-

(11)

[1] + [1]

33

H2N-C6H2Br2-NH2 or H2N-C6H2Br3-NH2 or H2N-C6Br4-NH2

(ii)

(1 mark for each end)

CI⁺NH₃-C₆H₄-NH₃⁺ CI⁻

Ξ

(c)

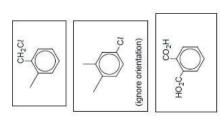
EE

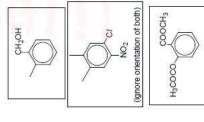
EE4

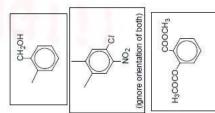
0# 501/ Topic: Chem 37 ALvI Chemistry/2022/m/TZ 1/Paper 4/0# 6/www.SmashingScience.org

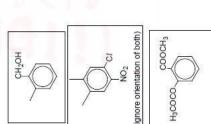
m-prop-2-yl phenol, (CH₃)₂CH-C₆H₄OH + NaOH(aq)

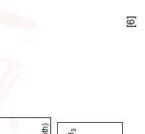
÷


[Total: 14]


 $HNO_2 (or NaNO_2 + HCI/H_2SO_4)$ at T < 10°C


-1


(p)


Q# 498/ Topic: Chem 36 ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7

[Total: 6]

Page 675 of 703

Patrick Brannac

www.SmashingScience.org

Page 676 of 703 Patrick Brannac www.SmashingScience.org Ξ C°H°O b, c, f 65 σ -9(e)(iii) 9(e)(jjj 9(e)(iv) 9(e)(i)

sCH₂⁺	[1]	
[1]		
[1]		
f [1]		

I I I DINIHISYMS

6(f)(iii)

Q# 502/ Topic: Chem 37 ALvI Chemistry/2022/m/TZ 1/Paper 4/Q# 6/www.SmashingScience.org

X is more attracted/more affinity/adsorbed more to the stationary phase OR lidocaine dissolves better in the solvent ORA

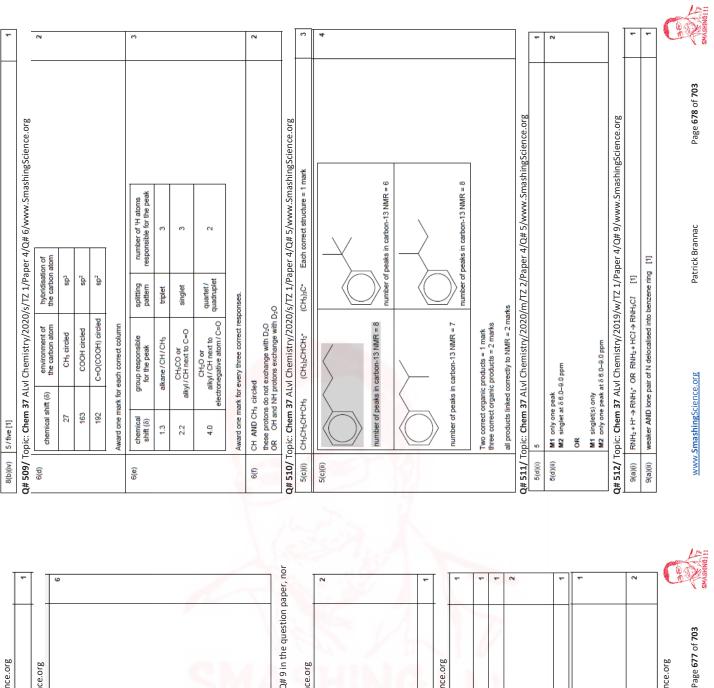
R_t = distance travelled by solute / substance / compound / component + distance travelled by solvent (front)

6(e)(ji) 6(e)(iii)

mobile = ethyl ethanoate stationary = SiO₂ / silica or AI₂O₃ / alumina

6(e)(i)

Q# 503/ Topic: Chem 37 ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org


8 3.0 = alkyl next to C=O / —CH(z)–C=O
 8 2.3 = alkyl next to aromatic ring / Ha)C–Ar
 All three correct for two marks

õ 7.1 = attached to aromatic ring / H—Ar

quartet AND triplet

6(f)(i) 6(f)(ii)

9 (nine)

					L X	i paper,	2				4	-									_
Q# 504/ Topic: Chem 37 ALvI Chemistry/2021/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org		04 505/ Topic: Chem 37 ALvI Chemistry/2021/s/TZ 1/Paper 4/Q# 9/www.SmashingScience.org	GH3			Not sure why 9(a) is given this numbering system, no other question part is present for Q# 9 in the question paper, any other part is given in the mark scheme published. Q# 506/ Topic: Chem 37 ALVI Chemistry/2021/s/TZ 1/Paper 4/Q# 6/www.SmashingScience.org					14 C		Topic: Chem 37 ALvI Chemistry/2020/w/TZ 1/Paper 4/Q# 9/www.SmashingScience.org								ل المعند الله المعند المعند من 10 من
w/TZ 1/Paper 4/Q# 7/		s/TZ 1/Paper 4/Q# 9/		но-		em, no other question olished. s/T2 1/Paper 4/Q# 6//	number of peaks in carbon-13 NMR	1	-	2		jes with deuterium	w/TZ 1/Paper 4/Q# 9/		measurements) [1]				E		w/TZ 1/Paper 4/Q# 8/
Lvl Chemistry/2021/		Lvl Chemistry/2021/	о Но Но		F HO structure	Not sure why 9(a) is given this numbering system, no any other part is given in the mark scheme published. Q# 506/ Topic: Chem 37 ALvI Chemistry/2021/s/T21/	number of peaks in proton NMR	2	+	ын 2	one mark for three, four or five correct two marks for six correct	OH peak disappears AND proton / H exchanges with deuterium	Lvl Chemistry/2020/	(because CDC_{b}/it) does not give a peak [1] OR because CHC_{b} does give a peak	as a standard / reference for (chemical shift measurements) [1]		 (6 = 1.4) triplet (6 = 1.4) two H on neighbouring C atom (6 = 4.3) quarter (quadruptet (6 = 4.3) three H on neighbouring C atom mark as - √ - √ [2] 	phenyl [1]	cooch _é ch ₅ or c _{ehe} co _{-cehe} [1]		Lvl Chemistry/2020/
opic: Chem 37 A	6 [1]	opic: Chem 37 A	Р	с СНI ₃ Но	HO- one mark for each structure	vhy 9(a) is given part is given in 1 opic: Chem 37 A	compound	Hco₂H	H ₀ CCO ₂ H	H02CCH2CH2CO2H	one mark for three, two marks for six c	OH peak disappeal	opic: Chem 37 A	(because CDCI3/it OR because CHCI	as a standard / ref	ester [1]	 (5 = 1.4) triplet (5 = 1.4) two H (5 = 1.4) quart (5 = 4.3) quart (5 = 4.3) three mark as • 	aryl group / arene / phenyl [1]	8	CH3CH21/C2H51[1]	opic: Chem 37 A
Q# 504/ T	7(a)	Q# 505/ T	9(a)			Not sure v any other Q# 506/ T	6(b)(ii)					6(b)(iii)	Q# 507/ T	9(a)	(q)6	9(c)	(i)(b)6	9(d)(ii)	9(d)(iii)	9(e)	Q# 508/ T

www.SmashingScience.org

			I
9(c)(j)	2 [1]		-
9(c)(ii)	CH2 next to e	CH ₂ next to ester and terminal CH ₃ are circled [1]	۲
9(c)(iii)	 one less peak the lost peak i protons excha • v·· for tw 	one less peak the lost peak is NH ₂ / aryl annine protons exchange with D Ap protons are labile OR valid equation 	2
Q# 513/ T	opic: Chem	Q# 513/ Topic: Chem 37 ALvI Chemistry/2019/w/TZ 1/Paper 4/Q# 4/www.SmashingScience.org	-
4(d)(iv)	9		L
4(d)(v)	 25–50 110–160 190–220 		2
	Award 1 mar	Award 1 mark for two points, award 2 marks for three points	
Q# 514/ T ₀ 8(b)	Opic: Chem 37 AL TMS: Reference CDCIs: Solvent	Q# 514/ Topic: Chem 37 ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8(b) TMS: Reference CDC&: Solvent	-
8(c)(i)	M1: CH3CO		3
	M2: CH3CH2O	0,	1
	M3: (CO)CH2O	07	
8(c)(ii)	CH3COCH2OCH2CH3	DCH ₂ CH ₃	-
8(d)	HCO ₂ C(CH ₃) ₃		~
8(e)(i)	this is a (car	this is a (carbon) atom which has four different atoms or groups attached to it	-
8(e)(ii) Q# 515/ T	CH ₃ CH ₂ CH(CH ₃)COOH	8(e)(iii) CH ₃ CH ₂ CHICH ₃ COOH Q# 515/ Topic: Chem 37 ALVI Chemistry/2019/m/TZ 2/Paper 4/Q# 6/www.SmashingScience.org	-
6(c)(i)	six		-
ð(c)(ii)	M1 peak at ő M2 peak at 2 M3/M4 peaks	M1 peak at 6 0.9 is due to 12 H M2 peak at 2.2 is due to 2 H MS/M4 peaks at 1.2, 1.4 and 1.7 are all singlets	4
6(c)(iii)	H ₃ C GH		2
B(c)(iv)	NH / NH ₂ pro	NH/ NH2 protons AND exchange with D ₂ O/D	-
	OR -NH2 + E	OR -NH ₂ + D ₂ O → -ND ₂ + H ₂ O	
Q# 516/ T	opic: Chem	Q# 516/ Topic: Chem 37 ALvI Chemistry/2018/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org	
5(a)(i)	[1] for each o	[1] for each correct answer	2
	Π	number of peaks	
	۳	3	
	9	6	

2

Q# 519/ Topic: Chem 37 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 9/www.SmashingScience.org

n = (100 / 1.1)(8 / 100) = 7.3 (=> 7 C atoms)

9(a)(i)

F is C₇H₆O G is C₁₄H₁₂O₂

9(a)(iii)

9(a)(iv)

÷. Η'Ο

9(a)(ii)

propanal would have peak at 9.3-10.5 because of CHO / aldehyde

propan-1-ol would have peak at 0.5-6.0 thecause of OH group

propanoic acid

7(e)(i) 7(e)(ii)

Q# 518/ Topic: Chem 37 ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org

(contains) hydrogen bonding

carboxylic acid

M1 peak assignments [1] M2 explanation of Z OR X [1]

% of Z = 47/98 = 48%

1(a)(ii)

(Permanent dipole-dipole and London forces)

aldehyde alkane

> ۲ N

Q# 517/ Topic: Chem 37 ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

London forces only OR no hydrogen bonding

explanation

organic compound

peak

1(a)(i)

×

				shingScience.org				splitting pattern	triplet
		3600	1260	Q# 521/ Topic: Chem 37 ALvI Chemistry/2017/w/T2 1/Paper 4/Q# 6/www.SmashingScience.org			number of H	atoms responsible for the peak	3
		3200-3600	1000-1260	/w/TZ 1/Paper 4		m e detected		group responsible for the peak	CH ₍₃₎
	1670-1740			hemistry/2017		CDC_{13} will produce no signal in the spectrum or CHC_{13} would produce a signal/would be detected		group respons	0
				37 ALVI C		produce no si vould produce		₫/pm	1.2
7 peaks	0	но	or c-o	ppic: Chem	6(d)(i) 7 peaks	CDCI3 will I or CHCI3 w			
8(a)(i)	8(a)(ii)			Q# 521/ To	(i)(b)8	6(d)(ii)	(iii)(p)9		

		splitting pattern	triplet	quartet	singlet (broad)	multiplet
		number of H atoms responsible for the peak	3	2	2	4
	CDCI3 will produce no signal in the spectrum or CHC8 would produce a signal / would be detected	group responsible for the peak	CH ₍₃₎	CH _(Z) O	NH ₂	H attached to aromatic/benzene ring
	duce no sig	õ/ppm	1.2	3.5	5.5	7.1-7.4
7 peaks	CDCI ₃ will pro or CHCI ₃ wou					
6(d)(i)	6(d)(ii)	6(d)(iii)				

4

2

Q# 520/ Topic: Chem 37 ALvI Chemistry/2018/m/TZ 2/Paper 4/Q# 8/www.SmashingScience.org

hydrolysis

9(a)(vi)

E P 21

H \$10.0

9(a)(v)

Page **680** of **703**

Patrick Brannac

www.SmashingScience.org



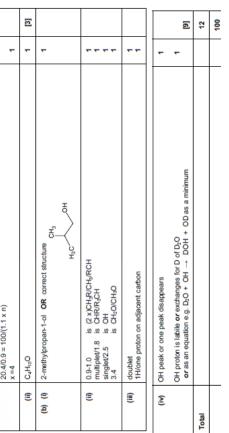
Page **679** of **703**

www.SmashingScience.org

Patrick Brannac

(60) point of 5.1 NH2, park and addrepone i (F) NH2, preformers exclange/many anti-distribution i (F) NH0, + HC, Ior HN2, i (F) NH2, Preformer exclange/many anti-distribution i (F) NH2 NH2 i (F) NH2 NH2 i i (F) NH2 NH2 NH2 i (F) NH2 NH2 NH2 i (F) NH2 NH2 NH2 i (F) NH2 NH2	neighbouring or there is an	//adjacent	carbon atom has CH ₂ (O) group	neighbouring/adjacent carbon atom has two protons/H (attached to it) or there is an adjacent ${\rm CH}_2({\rm O})$ group	iched to it)				1
	k at 5.5/I	NH ₂ peak v exchange	will disappear ∳/swap with deuter	ium					-
	IO2 + HC	1 or HNO2							
				т б 2 =− *Z ==Z			SM		
	cture of d	liazonium :	salt R						,
	icture of a	izo dye S						V	
	Chem	37 ALVI (Chemistry/201	.7/s/TZ 1/Paper	4/Q# 6/v	vww.Smas	hingScience.org		
Lota:		õ value 1.4 2.7 4.0			hyl /alcohol	splitting doublet singlet quartet	result with D ₂ O peak remains peak disappears peak remains	38	
	hree grou	ups are in t	their correct places	wrt the õ values					1
	of H atom:	s for each	peak agrees with g	group column				1	-
	ting patter	ms double	t, singlet and quart	et are assigned to co	orrect group:				-
	k identifiek	d as OH di	sappears with D ₂ O), no other peak disap	ppears				-
								Total:	16
= 0.1	Chem	37 ALVI (Chemistry/201	17/m/TZ 2/Paper	r 4/Q# 9/	www.Sma	shingScience.org		
.2-7.9 is CH/ any I hydrogens le proton / T does not contain -OH or -NH groups.	= 100 × (I	M+1)((1.1)	× M) = 100 × 3.4/(1	1.1 × 33.9) = 9.1					-
2-7.9 is CH/ any hydrogens le proton /T does not contain -OH or -NH groups.	ence <u>9</u> ca	rbons aton	ns						1
2-7.9 is CH/ aryl hydrogens le proton/T does not contain -OH or -NH groups.	sH ₁₀ O2								1
2-7.9 is CH/ any hydrogens le proton / T does not contain –OH or –NH groups.	150 - 119	= 31), hen	nce fragment is CH	OF					-
2-7.9 is CH/anyl hydrogens le proton / T does not contain -OH or -NH groups.	is C=O A	ND W is C	2						-
le proton / T does not contain -OH or -NH groups.	3.9 is CH	or alkyl/C	CH ₃ next to oxygen	AND 5 7.2-7.9 is CH	H/aryl hydro	gens			-
	lkyl H nex	t to C=O A	AND alkyl H next to	aryl ring					-
	one of the	functional	I groups in T contai	ins a labile proton/T	does not or	ontain -OH o	r –NH groups.		-
				↓ [₩]					2
	seven							_	-

111BNUHSVHS


Page **681** of **703**

www.SmashingScience.org

Patrick Brannac

Page **684** of **703**

Q# 529/ Top (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	Q# 529/ Topic: Chem 37 ALVI Chemistry/2015/w/T2 1/Paper 4/Q# 9/www.SmashingScience.org (d) (i) E = CH and F = CH ₃ (ii) E = CH and F = CH ₃ Chem 37 ALVI Chemistry/2015/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (iii) E = urbiet and adjacent 1H Chem 37 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Q# 530/ Topic: Chem 37 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (iii) C4H ₁₀ O Chem 37 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (iii) C4H ₁₀ O Chem 37 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (iii) C4H ₁₀ O Chem 37 ALVI Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org (iii) C4H ₁₀ O Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org Chemistry/2014/w/T2 1/Paper 4/Q# 8/www.SmashingScience.org 3.4 C3H ₁₀ O C4H ₁₀ O C4H ₁₀ O C4H ₁₀ O (iii) C3H ₁₀ O S2 CHHRCH C4H ₁₀ O C4H ₁₀ O C4H ₁₀ O 3.4 Single/C5 S0 CH ₁₀ O/CH ₁₀ O C4		
(i)	OH peak or one peak disappears	-	

÷

-2

either one or both CH₃ groups circled

CH₃

CH3

CH₃

CH₃

(1)

CH2NH2 CH₃-C-CH₃

3 carbon atoms	3 carbon atoms			1 2
C ₃ H ₆ O ₃				1
absorption/ cm ⁻¹	appearance of the peak	type of bond	functional group	
3350	broad and strong	OH or O-H	alcohol/ROH	
2680	very broad and strong	OH or O-H	(carboxylic) acid/CO2H	
1725	strong	C=0	(carboxylic) acid/CO ₂ H	
F				2
õ/ppm ty	type of proton		relative peak area	
_	-CH ₃ or -CH ₂ or -CH or alkane	e		2
	 –OCH or –OCH2 or –OCH3 or CH or alkyl next to electronegative atom/oxygen 	H or alkyl 1 ygen		
	-OH or alcohol	-		
- 12.9	-OH or -CO ₂ H or carboxylic acid	d 1		2
				4
iblet and 1/	doublet and 1/one H/proton on neighbouring OR adjacent carbon	OR adjacent carbo	5	-
4.7 and 12.9	OR -OH and -CO ₂ H		5	1
0=				
┥	Ę			
—.	5			-
	Į		ć	4
<u> </u>				_
	both rec	both required for 1 mark		
iomar	number of nacko			
P P				7
c	4			-
y	,			2

[Total: 13]

Q# 528/ Topic: Chem 37 ALvI Chemistry/2016/m/TZ 2/Paper 4/Q# 7/www.SmashingScience.org

CH₃

(c) (j)

ļ

ő

0

€

L is

-

-

Ξ

(ii) Only one peak, so only one type/ environment of C atom

(c) (i) CH₃ at 815 CH₂O at 865

(d) (i) M is H0_2C-00_2H N is CH_3OCO-C0_2H O is CH_3OCO-C00CH₃

ΞΞ

3]

E

Page **683** of **703**

Patrick Brannac

Q# 533/ Topic: Chem 37 ALvl Chemistry/2013/s/T2 1/Paper 4/Q# 7/www.SmashingScience.org (c) insecticides: gas-liquid or thin-layer chromatography	: paper or thin-layer chromatography	gas-liquid or thin-layer chromatography [1]	Q# 534/ Topic: Chem 37 ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 7/www.SmashingScience.org (c) P is CH ₃ CO ₂ CH ₂ CH ₃	rbons present is) (100 × 0.22)/(1.1 × 5.1) = 4 car ogens leaving 32 mass unit or 2 oxygen or s) C₄H ₈ O ₂ n adjacent 3H/CH ₃ adjacent 2H/CH ₂ O (group) et shows presence of ethyl/CH ₃ CH ₂ (group)	[5]	Q# 535/ Topic: Chem 37 ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 8/www.SmashingScience.org 8 (a) partition - separation due to the different solubilities of compounds in two solvents/phases	adsorption – separation due to the different attractions between the compounds and the stationary phase, relative to their solubility in the solvent [1] Note, if candidates do <u>not</u> refer to different solubilities and different attractions max 1		•	•	• A	•	X - sample		Patrick Brannac Page 686 of 703
Q# 533/ Topic: Chem 37 ALvI Che (C) insecticides: gas-lic	dyes : paper	drugs: gas-liquid or [1] thin-layer [1]	Q# 534/ Topic: Chem 37 ALvI Che (c) P is CH ₃ CO ₂ CH ₂ CH ₃	 3 × [1] any four of: 3 different (proton) environments (M and M+1 data shows no of ca the NMR spectrum shows 8 hydr M, = 88 and (molecular formula is M, = 88 and (molecular formula is 3 peaks/triplet (at 1.3) shows an [1] 3 peaks/triplet (at 1.3) shows an (peak at) 2.0/singlet shows CH₃C (peak at) 4.1/quartet and 1.3/triplet 		Q# 535/ Topic: Chem 37 ALvI Che 8 (a) partition – separat	adsorption – sepa stationary phase, re Note, if candidates	(q) [1]	EE	EE	[]			Ring: A + B:	www.SmashingScience.org
IshingScience.org	1 [3]	shingScience.org		e I I I	но он	or 🛛	1		7			[Total: 11]			Page 685 of 703
/2014/w/TZ 1/Paper 4/Q# 6/www.Smi	(automational in parts	Alvi Chemistry/2014/s/T21/Paper 4/Q#7/www.Sma n = $\frac{100 \times 2.5}{1.1 \times 74}$ or equivalent n = 3.1 hence G has three carbon atoms	I ₂ R or methyl or CH ₃ or CH ₃ CO(R)	(δ 11.8) (R)COOH or (R)CONH(R) The (-OH) peak at δ 11.8 (disappears) because of (O)H-D exchange or equation showing this (e.g. R-OH + D ₂ O \rightleftharpoons R-OD + HOD) CH ₃ CH ₂ CO ₂ H	<	CH ₃ or 0 or 0	т	0–2.1	3-4.0	9–1.4	ane: ô 0. 9– 1.4				Patrick Brannac
Q# 531/ Topic: Chem 37 ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 6/www.5mashingScience.org (b) (i) (ii) chemistry/and externation of the constraint of the constraintof the constraint of the constraint of the constraint of t	(ii) by adsorption	Q# 532/ Topic: Chem 37 ALvI Chemistry/2014/s/TZ 1/Paper 4/Q# 7/www.SmashingScience.org 7 (a) Expression: $n = \frac{100 \times 2.5}{1.1 \times 74}$ or equivalent n = 3.1 hence G has three carbon atoms	 (b) (i) (ö 1.1) RCH₃ or RCH₂R or methyl or CH₃ (ö 2.2) (R)CH₂CO(R) or CH₃CO(R) 	(δ 11.8) (R)COOH or (R)CONH(R) (ii) The (–OH) peak at δ 11.8 (disappears) because of (O)H-D exchange or equati (e.g. R-OH + D ₂ O \rightleftharpoons R-OD + HOD) (iii) CH ₃ CH ₂ CO ₂ H	(c) (i)		or H ₃ C N C	(ii) If methyl ethanoate: 8 2.0–2.1 8 3.3–4.0	Or if 1, 3-dioxolane: ô 3.3–4.0 ô 3.3–5.0	Or if 1, 2-dioxolane: 8 0.9–1.4 8 3.3–4.0	Or if dihydroxycyclopropane: ô 0.9–1.4 ô 0.5–6.0				www.SmashingScience.org

[2]							[9]								[9]	: 10]
(1) (1)	Ĩ]	for (1)	(E) (E)	(1)	(1)								x 5	[Total: 10]
atoms / protons are in t		HCO ₂ CH ₂ CH ₃	ethyl methanoate	all for (2) two	on environments, but the				(1)	(1)	(1)		(1)	(1)	(1) Ma	
is influenced by adjacent tts 1 (methyl to -OH protons) 4.05		CH ₃ CO ₂ CH ₃	methyl ethanoate		s or methyl ethanoate each have 3 different protr saks.	0	cid or ethyl methanoate or the H-CO proton	9/w/TZ 1/Paper 4/Q# 7/www.5 5 : 2)		o	o phenol / OH	hydrogens on benzene rin	sitution		ohenol	
ild experienced by protons fferent chemical environmen taks are in the area ratio 3 : are at 0.5 – 6.05 and 3.3 –		CH ₃ CH ₂ CO ₂ H	propanoic acid			A is OCH ₃ , B is CH ₃ C) compound – propanoic ac the –OH proton	ic: Chem 37 ALvI Chemistry/2000 Nuclear spin (If M : M+1 gives a ratio 1		Single peak at 3.7 8 due t	Single peak at 5.6 & due t	1,2,1 peak at 6.8 ô due to	Pattern suggests 1,4 subs	(x = 7,) y = 8, z = 2	Compound is 4-methoxylr	
(b) fie dif pe or	(c) (i				ii)		III)	Q# 538/ Topi (c) (i)								
								[8] max [7] [Total: 11]								
 (i) 1 - no mark The spectrum of alcohol / Y contains different peaks Alcohol / Y contains different chemical environments Spectrum 2 contains only one peak (1) 	(ii) Spectrum 2 only shows 1 peak so Z must be a ketone (1)	Hence Y must be a 2° alcohol (1)	Number of carbon atoms present $=\frac{0.6 \times 100}{17.6 \times 1.1} = 3$ (1)	Thus Z must be CH ₂ COCH ₂ (1)			OH (1)	(iv) All of the protons in Z are in the same chemical environment (1)								
	 (b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments (1) peaks are in the area ratio 3 : 1 (methyl to -OH protons) or are at 0.5 - 6.05 and 3.3 - 4.05 	1 - no mark (b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments 1 - no mark (1) The spectrum of alcohol / Y contains different peaks (1) Alcohol / Y contains different chemical environments (1) Spectrum 2 contains only one peak (1) (1) Spectrum 2 only shows 1 peak so Z must be a ketone (1) (1)	1 - no mark (b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments 1 - no mark (1) The spectrum of alcohol / Y contains different peaks (1) Alcohol / Y contains different chemical environments (1) Alcohol / Y contains only one peak (1) (1) Spectrum 2 only shows 1 peak so Z must be a ketone (1) (1) Hence Y must be a 2° alcohol (1) CH ₃ CO ₂ CH ₃ HCO ₂ CH ₂ CO ₃	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 - no mark 1 - no mark(b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments peaks are in the area ratio 3: 1 (methyl to -OH protons)(1)1 - no mark The spectrum of alcohol / Y contains different chemical environments Alcohol / Y contains different chemical environments Spectrum 2 contains only one peak (1)(b) field experienced by protons is influenced by adjacent atoms / protons are in two or are at 0.5 - 6.05 and 3.3 - 4.05(1)Alcohol / Y contains different chemical environments Spectrum 2 contains only one peak (1)(c) (i)(i)Spectrum 2 only shows 1 peaks to Z must be a ketone (1)(c) (i)(c) (i)Hence Y must be a 2° alcohol (1)(c) (i)(c) (i)(c)Number of carbon atoms present = $\frac{0.6 \times 100}{17.6 \times 1.1}$ = 3 (1)(c) (i)(c)Thus Z must be CH ₂ COCH ₄ (1)(c)(i)(c)Thus Z must be CH ₂ COCH ₄ (1)(c)(c)(c)Thus Z must be CH ₂ COCH ₄ (1)(c)(c) <td>$\begin{array}{c} 1 - n0 \mbox{ mark } \\ 1 + n0$</td> <td>$\begin{array}{c} \label{eq:constraint} \\ 1 - no \max \\ 1$</td> <td>$\begin{array}{c} 1 - n0 \ \text{mark} \\ 1 - n0 \ \text{mark} \ 1 - n0 \ \text{mark} \\ 1 - n0 \ \text{mark} \ 1 - n0 \ \text{mark} \ 1 - n$</td> <td>$\begin{array}{c} \label{eq:constraints} \\ eq:con$</td> <td>$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td> <td>$\begin{array}{c} 1 - 0.0 \mbox{ model} \\ 2 - 0.0 \mbox{ model}$</td> <td>$\begin{array}{llllllllllllllllllllllllllllllllllll$</td> <td>$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td> <td>$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td> <td>$\begin{array}{c} 1 Intermed Sector of Y contrast is interrected and environments in the area retro's 1 (field environments is interrected and environments is present at an interrect by adjacent atoms / protors are into a different channel of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of and a sector of an at a state of the area retro s 1 (field environments is present at a sector of a sector at a sector of a sector at a retro of the area retro s 1 (field environments is a sector of a sector at a retro at a retro of a sector at a retro at a retro of a sector at a retro of a retro at a retro of a r$</td> <td>$\begin{array}{c} \label{eq:constraints} \\ eq:con$</td>	$ \begin{array}{c} 1 - n0 \mbox{ mark } \\ 1 + n0 $	$ \begin{array}{c} \label{eq:constraint} \\ 1 - no \max \\ 1$	$ \begin{array}{c} 1 - n0 \ \text{mark} \\ 1 - n0 \ \text{mark} \ 1 - n0 \ \text{mark} \\ 1 - n0 \ \text{mark} \ 1 - n0 \ \text{mark} \ 1 - n$	$ \begin{array}{c} \label{eq:constraints} \\ eq:con$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{array}{c} 1 - 0.0 \mbox{ model} \\ 2 - 0.0 \mbox{ model} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$ \begin{array}{c} 1 Intermed Sector of Y contrast is interrected and environments in the area retro's 1 (field environments is interrected and environments is present at an interrect by adjacent atoms / protors are into a different channel of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of the area retro's 1 (field environments is present at a sector of and a sector of an at a state of the area retro s 1 (field environments is present at a sector of a sector at a sector of a sector at a retro of the area retro s 1 (field environments is a sector of a sector at a retro at a retro of a sector at a retro at a retro of a sector at a retro of a retro at a retro of a r$	$ \begin{array}{c} \label{eq:constraints} \\ eq:con$

Page **688** of **703**

Patrick Brannac

www.SmashingScience.org

Page **687** of **703**

2016 Data Booklet and Periodic Table

The Data Booklet was used for all Paper 1, 2 and 4 exams until and including winter 2021.

Two Data Booklets cover the time period of this Work Book, one for exams after 2009 and the other for exam safter 2016. Only the data booklet for 2016 is given here, but for exam questions for years 2009 to 2015 care should be taken checking the mark schemes, sometimes constants change from one edition of a Data Booklet to another, so answers to calculations using data from an unintended Data Booklet might be a little out as a result. If unsure, check out the earlier data booklet for questions 2015 and before (Google: "2009 data booklet 9701").

Contents: Tables of Chemical Data

1	Important values, constants and standards	3
2	lonisation energies (1 st , 2 nd , 3 rd and 4 th) of selected elements in kJ mol ⁻¹	4
3	Bond energies	5
4	Standard electrode potential and redox potentials, E^{\ominus} at 298K (25 °C)	7
5	Atomic and ionic radii	10
6	Typical proton (¹ H) chemical shift values (δ) relative to TMS = 0	12
7	Typical carbon (¹³ C) chemical shift values (δ) relative to TMS = 0	13
8	Characteristic infra-red absorption frequencies for some selected bonds	14
9	The orientating effect of groups in aromatic substitution reactions	15
10	Names, structures and abbreviations of some amino acids	16
11	The Periodic Table of Elements	17

The Periodic Table of Elements 11

1 Important values, constants and standards

	-						
molar gas constant	$R = 8.31 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$						
the Faraday constant	$F = 9.65 \times 10^4 \mathrm{Cmol^{-1}}$						
the Avogadro constant	$L = 6.02 \times 10^{23} \text{ mol}^{-1}$						
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$						
speed of light in a vacuum	$c = 3.00 \times 10^8 \text{ms}^{-1}$						
rest mass of proton, ¹ H	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$						
rest mass of neutron, ¹ ₀ n	$m_{\rm n} = 1.67 \times 10^{-27} \rm kg$						
rest mass of electron, $_{-1}^{0}$ e	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$						
electronic charge	$e = -1.60 \times 10^{-19} C$						
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ under room conditions (where s.t.p. is expressed as 101 kPa, approximately, and 273K [0 °C])						
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298 K [25 °C])						
specific heat capacity of water	= $4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (= $4.18 \text{ Jg}^{-1} \text{ K}^{-1}$)						

	Proton number	First	Second	Third	Fourth
н	1	1310	-	-	-
He	2	2370	5250	-	-
Li	3	519	7300	11800	-
Be	4	900	1760	14800	21000
В	5	799	2420	3660	25000
С	6	1090	2350	4610	6220
N	7	1400	2860	4590	7480
0	8	1310	3390	5320	7450
F	9	1680	3370	6040	8410
Ne	10	2080	3950	6150	9290
Na	11	494	4560	6940	9540
Mg	12	736	1450	7740	10500
Al	13	577	1820	2740	11600
Si	14	786	1580	3230	4360
P	15	1060	1900	2920	4960
S	16	1000	2260	3390	4540
Cl	17	1260	2300	3850	5150
Ar	18	1520	2660	3950	5770
K	19	418	3070	4600	5860
Ca	20	590	1150	4940	6480
Sc	21	632	1240	2390	7110
Ti	22	661	1310	2720	4170
V	23	648	1370	2870	4600
Cr	24	653	1590	2990	4770
Mn	25	716	1510	3250	5190
Fe	26	762	1560	2960	5400
Со	27	757	1640	3230	5100
Ni	28	736	1750	3390	5400
Cu	29	745	1960	3350	5690
Zn	30	908	1730	3828	5980
Ga	31	577	1980	2960	6190
Br	35	1140	2080	3460	4850
Rb	37	403	2632	3900	5080
Sr	38	548	1060	4120	5440
Ag	47	731	2074	3361	5000
I	53	1010	1840	3000	4030
Cs	55	376	2420	3300	4400
Ва	56	502	966	3390	4700

2 Ionisation energies (1st, 2nd, 3rd and 4th) of selected elements, in $kJmo\Gamma^1$

3 Bond Energies

3(a) Bond energies in diatomic molecules (these are exact values)

Homonuclear

Heteronuclear

Bond	Energy / kJmol ^{−1}
н—н	436
D—D	442
N≡N	944
0=0	496
P≡P	485
S=S	425
F—F	158
C <i>l</i> —C <i>l</i>	242
Br—Br	193
I—I	151

Bond	Energy / kJ mol ⁻¹
H—F	562
H—Cl	431
H—Br	366
H—I	299
C≡O	1077

3(b) Bond energies in polyatomic molecules (these are average values)

Homonuclear

Heteronuclear

Bond	Energy / kJmol ^{−1}
C—C	350
C=C	610
C=C	840
CC (benzene)	520
N—N	160
N=N	410
0—0	150
Si—Si	225
P-P	200
s—s	265

Bond	Energy / kJ mol ⁻¹
C—H	410
C—Cl	340
C—Br	280
C—I	240
C—N	305
C=N	610
C≡N	890
c_o	360
C=O	740
C=O in CO ₂	805
N—H	390
N—Cl	310
0—н	460
Si-Cl	360
Si—H	320
Si—O (in SiO ₂ (s))	460
Si=O (in SiO ₂ (g))	640
P—H	320
P—Cl	330
P—0	340
P=0	540
S—H	340
S—Cl	250
S—0	360
S=O	500

4 Standard electrode potential and redox potentials, E^{\oplus} at 298 K (25°C)

For ease of reference, two tables are given:

- (a) an extended list in alphabetical order;
- (b) a shorter list in decreasing order of magnitude, i.e. a redox series.

(a) E^{\oplus} in alphabetical order

Electrode re	eaction		E [⇔] /V
Ag ⁺ + e ⁻	\rightleftharpoons	Ag	+0.80
Al ³⁺ + 3e ⁻	$\stackrel{\frown}{\leftarrow}$	Al	-1.66
Ba ²⁺ + 2e [−]	$\stackrel{)}{\rightleftharpoons}$	Ва	-2.90
Br ₂ + 2e ⁻	$\stackrel{\sim}{\leftarrow}$	2Br ⁻	+1.07
Ca2+ + 2e-	$\stackrel{`}{\rightleftharpoons}$	Са	-2.87
Cl ₂ + 2e ⁻	\rightleftharpoons	2C1-	+1.36
2HOC1 + 2H ⁺ + 2e ⁻	\rightleftharpoons	Cl ₂ + 2H ₂ O	+1.64
ClO ⁻ + H ₂ O + 2e ⁻	\rightleftharpoons	Cl ⁻ + 2OH ⁻	+0.89
Co ²⁺ + 2e ⁻	\neq	Со	-0.28
Co ³⁺ + e ⁻	+	Co ²⁺	+1.82
[Co(NH ₃) ₆] ²⁺ + 2e ⁻	\rightleftharpoons	Co + 6NH ₃	-0.43
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	-0.91
Cr ³⁺ + 3e [−]	\rightleftharpoons	Cr	-0.74
Cr ³⁺ + e ⁻	+	Cr ²⁺	-0.41
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	+	2Cr ³⁺ + 7H ₂ O	+1.33
Cu ⁺ + e ⁻	\neq	Cu	+0.52
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0.34
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+0.15
[Cu(NH ₃) ₄] ²⁺ + 2e ⁻	\neq	Cu + 4NH ₃	-0.05
$F_2 + 2e^-$	\neq	2F-	+2.87
Fe ²⁺ + 2e ⁻	1	Fe	-0.44
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0.04
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0.77
[Fe(CN) ₆] ^{3–} + e [–]	\rightleftharpoons	[Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	\rightleftharpoons	Fe(OH) ₂ + OH [−]	-0.56
2H ⁺ + 2e ⁻	\rightleftharpoons	H_2	0.00
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2 + 2OH^-$	-0.83
I ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+0.54
K ⁺ + e ⁻	\rightleftharpoons	K	-2.92
Li ⁺ + e ⁻	\rightleftharpoons	Li	-3.04
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2.38
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1.18
Mn ³⁺ + e ⁻	\rightleftharpoons	Mn ²⁺	+1.49
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1.23
MnO ₄ ⁻ + e ⁻	\rightleftharpoons	MnO4 ²⁻	+0.56
$MnO_4^- + 4H^+ + 3e^-$	\rightleftharpoons	$MnO_2 + 2H_2O$	+1.67
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	Mn ²⁺ + 4H ₂ O	+1.52
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	NO ₂ + H ₂ O	+0.81
$NO_3^- + 3H^+ + 2e^-$	\rightleftharpoons	HNO ₂ + H ₂ O	+0.94
NO ₃ ⁻ + 10H ⁺ + 8e ⁻	\rightleftharpoons	NH₄ ⁺ + 3H₂O	+0.87

Electrode r	reaction		E [↔] /V
Na ⁺ + e ⁻	\rightleftharpoons	Na	-2.71
Ni ²⁺ + 2e ⁻	\rightarrow	Ni	-0.25
[Ni(NH ₃) ₆] ²⁺ + 2e ⁻	\rightleftharpoons	Ni + 6NH ₃	-0.51
$H_2O_2 + 2H^+ + 2e^-$	\rightarrow	2H ₂ O	+1.77
$HO_2^- + H_2O + 2e^-$	\rightleftharpoons	3OH ⁻	+0.88
O ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	\rightleftharpoons	4OH ⁻	+0.40
O ₂ + 2H ⁺ + 2e ⁻	\rightarrow	H_2O_2	+0.68
$O_2 + H_2O + 2e^-$	\rightleftharpoons	HO ₂ ⁻ + OH ⁻	-0.08
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0.13
Pb ⁴⁺ + 2e ⁻	\rightleftharpoons	Pb ²⁺	+1.69
PbO ₂ + 4H ⁺ + 2e ⁻	\rightarrow	Pb ²⁺ + 2H ₂ O	+1.47
SO4 ²⁻ + 4H ⁺ + 2e ⁻	\rightarrow	SO ₂ + 2H ₂ O	+0.17
S ₂ O ₈ ²⁻ + 2e ⁻	\rightleftharpoons	2SO4 ²⁻	+2.01
S ₄ O ₆ ²⁻ + 2e ⁻	\rightleftharpoons	2S ₂ O ₃ ²⁻	+0.09
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Sn ⁴⁺ + 2e [−]	\neq	Sn ²⁺	+0.15
V ²⁺ + 2e ⁻	\rightleftharpoons	V	-1.20
V ³⁺ + e ⁻	\rightleftharpoons	V ²⁺	-0.26
VO ²⁺ + 2H ⁺ + e ⁻	\rightleftharpoons	V ³⁺ + H ₂ O	+0.34
VO ₂ ⁺ + 2H ⁺ + e ⁻	\rightleftharpoons	$VO^{2+} + H_2O$	+1.00
VO ₃ ⁻ + 4H ⁺ + e ⁻	\rightleftharpoons	$VO^{2+} + 2H_2O$	+1.00
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted.

(b) E^{\oplus} in decreasing order of oxidising power

Electrode reaction	n	E [↔] /V
$F_2 + 2e^- \rightleftharpoons$	2F ⁻	+2.87
$S_2O_8^{2-}+2e^- \rightleftharpoons$	2SO4 ²⁻	+2.01
$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons$	2H ₂ O	+1.77
MnO₄ ⁻ + 8H ⁺ + 5e ⁻ →	Mn ²⁺ + 4H ₂ O	+1.52
$PbO_2 + 4H^+ + 2e^- \rightleftharpoons$	Pb ²⁺ + 2H ₂ O	+1.47
Cl₂ + 2e [−] →	2C1-	+1.36
$\begin{array}{c c} Cl_2 + 2e^- & \rightleftharpoons \\ \hline Cr_2O_7^{2-} + 14H^+ + 6e^- & \rightleftharpoons \end{array}$	2Cr ³⁺ + 7H ₂ O	+1.33
$O_2 + 4H^+ + 4e^- \rightleftharpoons$	2H ₂ O	+1.23
$Br_2 + 2e^- \rightleftharpoons$	2Br⁻	+1.07
$ClO^- + H_2O + 2e^- \implies$	C1 ⁻ + 2OH ⁻	+0.89
$NO_3^- + 10H^+ + 8e^- \rightleftharpoons$	$NH_4^+ + 3H_2O$	+0.87
$NO_3^- + 2H^+ + e^- \rightleftharpoons$	$NO_2 + H_2O$	+0.81
	Ag	+0.80
$\begin{array}{c c} & Ag^{+} + e^{-} & \rightleftharpoons \\ \hline & Fe^{3+} + e^{-} & \rightleftharpoons \end{array}$	Fe ²⁺	+0.77
$I_2 + 2e^- \rightleftharpoons$	2I ⁻	+0.54
$O_2 + 2H_2O + 4e^- \rightleftharpoons$	4OH ⁻	+0.40
Cu ²⁺ + 2e [−] →	Cu	+0.34
SO4 ^{2−} + 4H ⁺ + 2e [−] →	SO ₂ + 2H ₂ O	+0.17
	Sn ²⁺	+0.15
$ \begin{array}{c c} Sn^{4^{+}} + 2e^{-} & \rightleftharpoons \\ S_4O_6^{2^{-}} + 2e^{-} & \rightleftharpoons \end{array} $	2S ₂ O ₃ ²⁻	+0.09
2H ⁺ + 2e [−] →	H ₂	0.00
Pb ²⁺ + 2e [−] →	Pb	-0.13
Sn ²⁺ + 2e [−] →	Sn	-0.14
Fe ²⁺ + 2e ⁻ →	Fe	-0.44
Zn ²⁺ + 2e ⁻ →	Zn	-0.76
2H ₂ O + 2e ⁻ →	$H_2 + 2OH^-$	-0.83
V ²⁺ + 2e [−] →	V	-1.20
Mg ²⁺ + 2e⁻ →	Mg	-2.38
Ca ²⁺ + 2e [−] →	Ca	-2.87
K⁺ + e⁻ →	K	-2.92

(a selection only - see also the extended alphabetical list on the previous pages)

5 Atomic and ionic radii

(a)	Period 1	atomic/nm	ionic/nm
	single covalent	H 0.037	H [−] 0.208
	van der Waals	He 0.140	
(b)	Period 2	atomic/nm	ionic/nm
	metallic	Li 0.152	Li ⁺ 0.060
		Be 0.112	Be ²⁺ 0.031
	single covalent	B 0.080	B ³⁺ 0.020
		C 0.077	C ⁴⁺ 0.015 C ⁴⁻ 0.260
		N 0.074	N ³⁻ 0.171
		O 0.073	O ²⁻ 0.140
		F 0.072	F ⁻ 0.136
	van der Waals	Ne 0.160	
<mark>(c)</mark>	Period 3	atomic/nm	ionic/nm
	metallic	Na 0.186	Na⁺ 0.095
		Mg 0.160	Mg ²⁺ 0.065
		Al 0.143	Al^{3+} 0.050
	single covalent	Si 0.117	Si ⁴⁺ 0.041 Si ⁴⁻ 0.271
		P 0.110	P ³⁻ 0.212
		S 0.104	S ²⁻ 0.184
		Cl 0.099	C <i>l</i> ⁻ 0.181
	van der Waals	Ar 0.190	
(d)	Group 2	atomic/nm	ionic/nm
	metallic	Be 0.112	Be ²⁺ 0.031
		Mg 0.160	Mg ²⁺ 0.065
		Ca 0.197	Ca ²⁺ 0.099
		Sr 0.215	Sr ²⁺ 0.113
		Ba 0.217	Ba ²⁺ 0.135
		Ra 0.220	Ra ²⁺ 0.140

(e)	Group 14	atom	ic/nm	ionic	/nm		
	single covalent	С	0.077				
		Si	0.117	Si ⁴⁺	0.041		
		Ge	0.122	Ge ²⁺	0.093		
	metallic	Sn	0.162	Sn ²⁺	0.112		
		Pb	0.175	Pb ²⁺	0.120		
(f)	Group 17	atom	ic/nm	ionic	/nm		
	single covalent	F	0.072	F ⁻	0.136		
		Cl	0.099	Cl⁻	0.181		
		Br	0.114	Br⁻	0.195		
		Ι	0.133	I-	0.216		
		At	0.140				
(g)	First row transition elements	atomi	ic/nm	ionic	/nm		
	metallic	Sc	0.164	19		Sc ³⁺	0.081
		Ti	0.146	Ti ²⁺	0.090	Ti ³⁺	0.067
		V	0.135	V ²⁺	0.079	V ³⁺	0.064
		Cr	0.129	Cr ²⁺	0.073	Cr ³⁺	0.062
		Mn	0.132	Mn ²⁺	0.067	Mn ³⁺	0.062
		Fe	0.126	Fe ²⁺	0.061	Fe ³⁺	0.055
		Со	0.125	Co ²⁺	0.078	Co ²⁺	0.053
		Ni	0.124	Ni ²⁺	0.070	Ni ³⁺	0.056
		Cu	0.128	Cu ²⁺	0.073		
		Zn	0.135	Zn ²⁺	0.075		

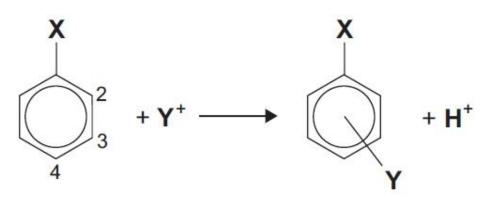
6 Typical proton (¹H) chemical shift values (δ) relative to TMS = 0

type of proton	environment of proton	example structures	chemical shift range (δ)
	alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
	alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
	alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
	alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i> , >CH-Br	3.2–4.0
0.11	attached to alkyne	≡C–H	1.8–3.1
C–H	attached to alkene	=CH ₂ , =CH–	4.5-6.0
	attached to aromatic ring	Ю-н	6.0–9.0
	aldehyde	R-C H	9.3–10.5
	alcohol	RO-H	0.5-6.0
O-H (see	phenol	Он	4.5–7.0
note below)	carboxylic acid	R—С 0—Н	9.0–13.0
	alkyl amine	R–NH–	1.0–5.0
N-H	aryl amine		3.0–6.0
(see note below)	amide	R—СН	5.0–12.0

Note: δ values for –O-H and –N-H protons can vary depending on solvent and concentration

hybridisation of the carbon atom	environment of carbon atom	example structures	chemical shift range (δ)
sp ³	alkyl	CH ₃ -, -CH ₂ -, -CH<, >C<	0–50
sp ³	next to alkene/arene	$-\mathbf{c} - \mathbf{c} = \mathbf{c}, -\mathbf{c} - \mathbf{c}$	10–40
sp ³	next to carbonyl/carboxyl	$-\mathbf{c} - \mathbf{c} - \mathbf{c} \mathbf{C} \mathbf{C} \mathbf{R}, - \mathbf{c} - \mathbf{c} \mathbf{C} \mathbf{C}_{2} \mathbf{R},$	25–50
sp ³	next to nitrogen	$- \begin{matrix} I \\ - C \\ I \\ NH_{2}, - \begin{matrix} I \\ - NR_{2}, \end{matrix} - \begin{matrix} I \\ - NHCO \\ I \end{matrix}$	30–65
sp ³	next to chlorine (-CH ₂ -Br and -CH ₂ -I are in the same range as alky <mark>I</mark>)		30–60
sp ³	next to oxygen	-с-он, -с-со-	50–70
sp²	alkene or arene	>C=C<,	110–160
sp ²	carboxyl	R–CO ₂ H, R–CO ₂ R	<mark>160–185</mark>
sp ²	carbonyl	R-CHO, R-CO-R	190–220
sp	alkyne	R–C≡C–	65–85
sp	nitrile	R–C≡N	100–125

7 Typical carbon (¹³C) chemical shift values (δ) relative to TMS = 0


8	Characteristic infra-red	absorption	frequencies f	for some selected bonds
---	--------------------------	------------	---------------	-------------------------

bond	functional groups containing the bond	absorption range (in wavenumbers) /cm ⁻¹	appearance of peak (s = strong, w = weak)					
C-0	alcohols, ethers, esters	1040–1300	s					
C=C	aromatic compounds, alkenes	1500–1680	w unless conjugated					
	amides,	1640–1690	s					
C=C C=O C=C C=N C-H	ketones and aldehydes,	1670-1740	S					
0-0	carboxylic acids,	1680-1730	S					
	esters	1710-1750	S					
C=C	alkynes	2150-2250	w unless conjugated					
C≡N	nitriles	2200-2250	w					
<u> </u>	alkanes, CH2-H	2850-2950	s					
C-H	alkenes/arenes, =C-H	3000- <mark>3</mark> 100	w					
N-H	amines, amides	3300-3500	w					
	carboxylic acids, RCO2-H	2500-3000	s and very broad					
O-H	H-bonded alcohol, RO-H	3200-3600	S					
	free alcohol, RO-H	3580-3650	s and sharp					

9 The orientating effect of groups in aromatic substitution reactions.

The position of the incoming group, **Y**, is determined by the nature of the group, **X**, already bonded to the ring, and not by the nature of the incoming group **Y**.

X- groups that direct the incoming Y group to the 2- or 4- positions	X- groups that direct the incoming Y group to the 3- position
-NH ₂ , -NHR or -NR ₂	-NO ₂
–OH or –OR	-NH3 ⁺
-NHCOR	-CN
–CH ₃ , –alkyl	-CHO, -COR
-Cl	-CO ₂ H, -CO ₂ R

			structure of side chain R- in							
name	3-letter abbreviation	1-letter symbol	R-CH CO ₂ H							
alanine	Ala	А	CH ₃ -							
aspartic acid	Asp	HO ₂ CCH ₂ -								
cysteine	Cys	С	HSCH ₂ - HO ₂ CCH ₂ CH ₂ -							
glutamic acid	Glu	Е								
glycine	Gly	G	H–							
lysine	Lys	К	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ -							
phenylalanine	Phe	F	СН2-							
serine	Ser	S	HOCH ₂ -							
tyrosine	Tyr	Y	но-СН2-							
valine	Val	v	CH ₃ CH- CH ₃							

10 Names, structures and abbreviations of some amino acids

Important values, constants and standards (2022 and after)

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C mol^{-1}}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

9701/41/O/N/23

Periodic table

		18	² He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Ϋ́	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon _	118	Og	oganesson -												
		17			6	ш	fluorine 19.0	17	Cl	chlarine 35.5	35	Br	bromine 79.9	53	I	iodine 126.9	85	At	astatine -	117	Ts	tennessine -		71	Lu	Iutetium 175.0	103	Ľ	lawrencium					
		16			8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ро	polonium –	116	۲۷	livermorium -		70	Υb	ytterbium 173.1	102	No	nobelium					
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	bismuth 209.0	115	Mc	moscovium -		69	T	thulium 168.9	101	рМ	mendelevium					
		14			9	U	carbon 12.0	14	N.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Рр	lead 207.2	114	Fl	flerovium -		68	ц	erbium 167.3	100	Еm	fermium					
		13			5	В	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4	113	ЧN	nihonium –		67	РH	holmium 164.9	66	Es	einsteinium					
										12	30	Zn	zinc 65.4	48	Cd	cadmium 112.4	80	Hg	mercury 200.6	112	C	copernicium -		99	Ŋ	dysprosium 162.5	86	ç	califomium					
ments									11	29	Cu	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium -		65	Tb	terbium 158.9	97	Ŗ	berkelium						
The Periodic Table of Elements	dn									10	28	iN	nickel 58.7	46	РЧ	palladium 106.4	78	Ŧ	platinum 195.1	110	Ds	darmstadtium -		64	Ъд	gadolinium 157.3	8	Cm	curium					
riodic Ta	Group									6	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium -		63	Eu	europium 152.0	95	Am	americium					
The Pe			- I	hydrogen 1.0						ω	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	76	so	osmium 190.2	108	Hs	hassium -		62	Sm	samarium 150.4	92	Pu	plutonium					
							SS			7	25	Mn	manganese 54.9	43	ЦC	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium		61	Pm	promethium _	93	ЧD	neptunium					
						loc				9	24	ъ	chromium 52.0	42	Mo	molybdenum 95.9	74	N	tungsten 183.8	106	Sg	seaborgium -	-	60	ΡN	neodymium 144.4	92	⊃	uranium 238 D					
							Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium -		59	Ъ	praseodymium 140.9	91	Ра	protactinium		
					w	ato	ato	ato		atc	ato	ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ŧ	hafnium 178.5	104	Ŗ	nutherfordium -		58	Ce	cerium 140.1	06	Ч
								-		ი	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 138.9	68	Ac	actinium					
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -			ids									
		1				:	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	Fr	francium -			lanthanoids			actinoids						

NO Nobelium Nd mendelevium FTM ¹⁰⁰ в ES einsteinium or Cf BK berkelium CD of the second second americium Pu Plutonium Np eptunium uranium 238.0 Pa protactinium 231.0 500 Th thorium 232.0 AC actinium

9701/41/O/N/23